No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 5:

Responding to the Environment

Control of the Regulon in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    1.37 MB
  • HTML
    216.66 Kb
  • XML
    213.47 Kb
  • Authors: Stewart G. Gardner1, and William R. McCleary2
  • Editor: James M. Slauch3
    Affiliations: 1: Department of Biological Sciences, Emporia State University, Emporia, KS 66801; 2: Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602; 3: The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL
  • Received 07 February 2019 Accepted 02 July 2019 Published 12 September 2019
  • Address correspondence to William R. McCleary, [email protected]
image of Control of the <span class="jp-italic">phoBR</span> Regulon in <span class="jp-italic">Escherichia coli</span>
    Preview this reference work article:
    Zoom in

    Control of the Regulon in , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/2/ESP-0006-2019-1.gif /docserver/preview/fulltext/ecosalplus/8/2/ESP-0006-2019-2.gif
  • Abstract:

    Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.

  • Citation: Gardner S, McCleary W. 2019. Control of the Regulon in , EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0006-2019


1. Westheimer FH. 1987. Why nature chose phosphates. Science 235:1173–1178. http://dx.doi.org/10.1126/science.2434996. [PubMed][CrossRef]
2. Kamerlin SC, Sharma PK, Prasad RB, Warshel A. 2013. Why nature really chose phosphate. Q Rev Biophys 46:1–132. http://dx.doi.org/10.1017/S0033583512000157. [PubMed][CrossRef]
3. Chin JP, McGrath JW, Quinn JP. 2016. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol 31:50–57. http://dx.doi.org/10.1016/j.cbpa.2016.01.010. [PubMed][CrossRef]
4. Manav MC, Sofos N, Hove-Jensen B, Brodersen DE. 2018. The Abc of phosphonate breakdown: a mechanism for bacterial survival. Bioessays 40:e1800091. http://dx.doi.org/10.1002/bies.201800091. [PubMed][CrossRef]
5. Metcalf WW, van der Donk WA. 2009. Biosynthesis of phosphonic and phosphinic acid natural products. Annu Rev Biochem 78:65–94. http://dx.doi.org/10.1146/annurev.biochem.78.091707.100215. [PubMed][CrossRef]
6. Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA. 1979. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205:160–166. http://dx.doi.org/10.1126/science.36664. [PubMed][CrossRef]
7. Rao NN, Roberts MF, Torriani A, Yashphe J. 1993. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli. J Bacteriol 175:74–79. http://dx.doi.org/10.1128/jb.175.1.74-79.1993. [PubMed][CrossRef]
8. Xavier KB, Kossmann M, Santos H, Boos W. 1995. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal P i during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system. J Bacteriol 177:699–704. http://dx.doi.org/10.1128/jb.177.3.699-704.1995. [PubMed][CrossRef]
9. Blount ZD. 2015. The unexhausted potential of E. coli. eLife 4:e05826. http://dx.doi.org/10.7554/eLife.05826. [PubMed][CrossRef]
10. Kaneko I, Tatsumi S, Segawa H, Miyamoto KI. 2017. Control of phosphate balance by the kidney and intestine. Clin Exp Nephrol 21(Suppl 1) :21–26. http://dx.doi.org/10.1007/s10157-016-1359-4. [PubMed][CrossRef]
11. Marks J, Debnam ES, Unwin RJ. 2013. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens 22:481–487. http://dx.doi.org/10.1097/MNH.0b013e3283621310. [PubMed][CrossRef]
12. Torriani-Gorini A. 1996. History of the Pho system, p 291–294. In Lin ECC, Lynch AS (ed), Regulation of Gene Expression in Escherichia coli. RG Landes Company, Austin, TX. http://dx.doi.org/10.1007/978-1-4684-8601-8_14. [CrossRef]
13. Torriani-Gorini A. 1987. The birth and growth of the Pho regulon, p 3–11. In Torriani-Gorini A, Rothman FG, Silver S, Wright A, Yagil E (ed), Phosphate Metabolism and Cellular Regulation in Microorganisms. ASM Press, Washington, DC.
14. Jacob F, Monod J. 1959. Genes of structure and genes of regulation in the biosynthesis of proteins. C R Hebd Seances Acad Sci 249:1282–1284. (In French.)
15. Horiuchi T, Horiuchi S, Mizuno D. 1959. A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature 183:1529–1530. http://dx.doi.org/10.1038/1831529b0. [PubMed][CrossRef]
16. Echols H, Garen A, Garen S, Torriani A. 1961. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol 3:425–438. http://dx.doi.org/10.1016/S0022-2836(61)80055-7. [PubMed][CrossRef]
17. Garen A, Echols H. 1962. Genetic control of induction of alkaline phosphatase synthesis in E. coli. Proc Natl Acad Sci U S A 48:1398–1402. http://dx.doi.org/10.1073/pnas.48.8.1398. [PubMed][CrossRef]
18. Garen A, Echols H. 1962. Properties of two regulating genes for alkaline phosphatase. J Bacteriol 83:297–300. [PubMed]
19. Willsky GR, Bennett RL, Malamy MH. 1973. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol 113:529–539.
20. Bracha M, Yagil E. 1969. Genetic mapping of the phoR regulator gene of alkaline phosphatase in Escherichia coli. J Gen Microbiol 59:77–81. http://dx.doi.org/10.1099/00221287-59-1-77. [PubMed][CrossRef]
21. Shinagawa H, Makino K, Nakata A, Brenner S. 1983. Regulation of the pho regulon in Escherichia coli K-12. Genetic and physiological regulation of the positive regulatory gene phoB. J Mol Biol 168:477–488. http://dx.doi.org/10.1016/S0022-2836(83)80297-6. [CrossRef]
22. Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A. 1985. Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol 184:241–250. http://dx.doi.org/10.1016/0022-2836(85)90377-8. [CrossRef]
23. Wanner BL, Latterell P. 1980. Mutants affected in alkaline phosphatase, expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics 96:353–366.
24. Stock JB, Ninfa AJ, Stock AM. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490.
25. Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A. 1989. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 210:551–559. http://dx.doi.org/10.1016/0022-2836(89)90131-9. [CrossRef]
26. Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A, Ishihama A. 1988. Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol 203:85–95. http://dx.doi.org/10.1016/0022-2836(88)90093-9. [PubMed][CrossRef]
27. Wanner BL. 1995. Signal transduction and cross regulation in the Escherichia coli phosphate regulon by PhoR, CreC, and acetyl phosphate, p 203–221. In Hoch JA, Silhavy TJ (ed), Two-Component Signal Transduction. ASM Press, Washington, DC.
28. Bachhawat P, Swapna GV, Montelione GT, Stock AM. 2005. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13:1353–1363. http://dx.doi.org/10.1016/j.str.2005.06.006. [PubMed][CrossRef]
29. Solá M, Gomis-Rüth FX, Serrano L, González A, Coll M. 1999. Three-dimensional crystal structure of the transcription factor PhoB receiver domain. J Mol Biol 285:675–687. http://dx.doi.org/10.1006/jmbi.1998.2326. [PubMed][CrossRef]
30. Blanco AG, Sola M, Gomis-Rüth FX, Coll M. 2002. Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure 10:701–713. http://dx.doi.org/10.1016/S0969-2126(02)00761-X. [CrossRef]
31. Medveczky N, Rosenberg H. 1970. The phosphate-binding protein of Escherichia coli. Biochim Biophys Acta 211:158–168. http://dx.doi.org/10.1016/0005-2736(70)90090-8. [CrossRef]
32. Tommassen J, Lugtenberg B. 1980. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase. J Bacteriol 143:151–157.
33. Schweizer H, Grussenmeyer T, Boos W. 1982. Mapping of two ugp genes coding for the pho regulon-dependent sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol 150:1164–1171.
34. Maas WK, Clark AJ. 1964. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. II. Dominance of repressibility in diploids. J Mol Biol 8:365–370. http://dx.doi.org/10.1016/S0022-2836(64)80200-X. [PubMed][CrossRef]
35. Wanner BL, McSharry R. 1982. Phosphate-controlled gene expression in Escherichia coli K12 using Mu dl-directed lacZ fusions. J Mol Biol 158:347–363. http://dx.doi.org/10.1016/0022-2836(82)90202-9. [PubMed][CrossRef]
36. Wanner BL. 1996. Phosphorous assimilation and control of the phosphate regulon, p 1357–1381. In Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella : Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
37. VanBogelen RA, Hutton ME, Neidhardt FC. 1990. Gene-protein database of Escherichia coli K-12: edition 3. Electrophoresis 11:1131–1166. [PubMed][CrossRef]
38. VanBogelen RA, Olson ER, Wanner BL, Neidhardt FC. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178:4344–4366. http://dx.doi.org/10.1128/jb.178.15.4344-4366.1996. [PubMed][CrossRef]
39. Chen C-M, Ye QZ, Zhu ZM, Wanner BL, Walsh CT. 1990. Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn ( psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265:4461–4471. [PubMed]
40. Wanner BL, Boline JA. 1990. Mapping and molecular cloning of the phn ( psiD) locus for phosphonate utilization in Escherichia coli. J Bacteriol 172:1186–1196. http://dx.doi.org/10.1128/jb.172.3.1186-1196.1990. [PubMed][CrossRef]
41. Baek JH, Lee SY. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol Lett 264:104–109. http://dx.doi.org/10.1111/j.1574-6968.2006.00440.x. [PubMed][CrossRef]
42. Baek JH, Lee SY. 2007. Transcriptome analysis of phosphate starvation response in Escherichia coli. J Microbiol Biotechnol 17:244–252.
43. Crépin S, Chekabab SM, Le Bihan G, Bertrand N, Dozois CM, Harel J. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Vet Microbiol 153:82–88. http://dx.doi.org/10.1016/j.vetmic.2011.05.043. [PubMed][CrossRef]
44. Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, Chang CH. 2012. Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in Escherichia coli. PLoS One 7:e47314. http://dx.doi.org/10.1371/journal.pone.0047314. [PubMed][CrossRef]
45. Jiang J, Yu K, Qi L, Liu Y, Cheng S, Wu M, Wang Z, Fu J, Liu X. 2018. A proteomic view of Salmonella Typhimurium in response to phosphate limitation. Proteomes 6:E19. http://dx.doi.org/10.3390/proteomes6020019. [PubMed][CrossRef]
46. Spira B, Yagil E. 1998. The relation between ppGpp and the PHO regulon in Escherichia coli. Mol Gen Genet 257:469–477. http://dx.doi.org/10.1007/s004380050671. [PubMed][CrossRef]
47. Spira B, Silberstein N, Yagil E. 1995. Guanosine 3′,5′-bispyrophosphate (ppGpp) synthesis in cells of Escherichia coli starved for P i. J Bacteriol 177:4053–4058. http://dx.doi.org/10.1128/jb.177.14.4053-4058.1995. [PubMed][CrossRef]
48. Bougdour A, Wickner S, Gottesman S. 2006. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 20:884–897. http://dx.doi.org/10.1101/gad.1400306. [PubMed][CrossRef]
49. Bougdour A, Gottesman S. 2007. ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci U S A 104:12896–12901. http://dx.doi.org/10.1073/pnas.0705561104. [PubMed][CrossRef]
50. Schurdell MS, Woodbury GM, McCleary WR. 2007. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J Bacteriol 189:1150–1153. http://dx.doi.org/10.1128/JB.01482-06. [PubMed][CrossRef]
51. Schweizer H, Boos W. 1985. Regulation of ugp, the sn-glycerol-3-phosphate transport system of Escherichia coli K-12 that is part of the pho regulon. J Bacteriol 163:392–394. [PubMed]
52. Wuttge S, Bommer M, Jäger F, Martins BM, Jacob S, Licht A, Scheffel F, Dobbek H, Schneider E. 2012. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2) of Escherichia coli. Mol Microbiol 86:908–920. http://dx.doi.org/10.1111/mmi.12025. [PubMed][CrossRef]
53. Metcalf WW, Wanner BL. 1991. Involvement of the Escherichia coli phn ( psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, P i esters, and P i. J Bacteriol 173:587–600. http://dx.doi.org/10.1128/jb.173.2.587-600.1991. [PubMed][CrossRef]
54. Metcalf WW, Wanner BL. 1993. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 129:27–32. http://dx.doi.org/10.1016/0378-1119(93)90692-V. [PubMed][CrossRef]
55. Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, Kim SK, Makino K. 2011. Identification of PhoB binding sites of the yibD and ytfK promoter regions in Escherichia coli. J Microbiol 49:285–289. http://dx.doi.org/10.1007/s12275-011-0360-6. [PubMed][CrossRef]
56. Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S. 2013. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J Biol Chem 288:8111–8127. http://dx.doi.org/10.1074/jbc.M112.445981. [PubMed][CrossRef]
57. Iwadate Y, Kato JI. 2017. Involvement of the ytfK gene from the PhoB regulon in stationary-phase H2O2 stress tolerance in Escherichia coli. Microbiology 163:1912–1923. http://dx.doi.org/10.1099/mic.0.000534. [PubMed][CrossRef]
58. Kim S-K, Makino K, Amemura M, Shinagawa H, Nakata A. 1993. Molecular analysis of the phoH gene, belonging to the phosphate regulon in Escherichia coli. J Bacteriol 175:1316–1324. http://dx.doi.org/10.1128/jb.175.5.1316-1324.1993. [PubMed][CrossRef]
59. Koonin EV, Rudd KE. 1996. Two domains of superfamily I helicases may exist as separate proteins. Protein Sci 5:178–180. http://dx.doi.org/10.1002/pro.5560050124. [PubMed][CrossRef]
60. Rapp M, Drew D, Daley DO, Nilsson J, Carvalho T, Melén K, De Gier JW, Von Heijne G. 2004. Experimentally based topology models for E. coli inner membrane proteins. Protein Sci 13:937–945. http://dx.doi.org/10.1110/ps.03553804. [PubMed][CrossRef]
61. Metcalf WW, Steed PM, Wanner BL. 1990. Identification of phosphate starvation-inducible genes in Escherichia coli K-12 by DNA sequence analysis of psi: lacZ(Mu d1) transcriptional fusions. J Bacteriol 172:3191–3200. http://dx.doi.org/10.1128/jb.172.6.3191-3200.1990. [PubMed][CrossRef]
62. Murray EL, Conway T. 2005. Multiple regulators control expression of the Entner-Doudoroff aldolase (Eda) of Escherichia coli. J Bacteriol 187:991–1000. http://dx.doi.org/10.1128/JB.187.3.991-1000.2005. [PubMed][CrossRef]
63. Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, Makino K. 2010. Identification and characterization of novel phosphate regulon genes, ecs0540-ecs0544, in Escherichia coli O157:H7. Mol Genet Genomics 284:197–205. http://dx.doi.org/10.1007/s00438-010-0559-y. [PubMed][CrossRef]
64. Yoshida Y, Sugiyama S, Oyamada T, Yokoyama K, Makino K. 2012. Novel members of the phosphate regulon in Escherichia coli O157:H7 identified using a whole-genome shotgun approach. Gene 502:27–35. http://dx.doi.org/10.1016/j.gene.2012.03.064. [PubMed][CrossRef]
65. Chekabab SM, Jubelin G, Dozois CM, Harel J. 2014. PhoB activates Escherichia coli O157:H7 virulence factors in response to inorganic phosphate limitation. PLoS One 9:e94285. http://dx.doi.org/10.1371/journal.pone.0094285. [PubMed][CrossRef]
66. Tree JJ, Wolfson EB, Wang D, Roe AJ, Gally DL. 2009. Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 17:361–370. http://dx.doi.org/10.1016/j.tim.2009.06.001. [PubMed][CrossRef]
67. Lamarche MG, Dozois CM, Daigle F, Caza M, Curtiss R, III, Dubreuil JD, Harel J. 2005. Inactivation of the pst system reduces the virulence of an avian pathogenic Escherichia coli O78 strain. Infect Immun 73:4138–4145. http://dx.doi.org/10.1128/IAI.73.7.4138-4145.2005. [PubMed][CrossRef]
68. Crépin S, Lamarche MG, Garneau P, Séguin J, Proulx J, Dozois CM, Harel J. 2008. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant. BMC Genomics 9:568. http://dx.doi.org/10.1186/1471-2164-9-568. [PubMed][CrossRef]
69. Lamarche MG, Kim SH, Crépin S, Mourez M, Bertrand N, Bishop RE, Dubreuil JD, Harel J. 2008. Modulation of hexa-acyl pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J Bacteriol 190:5256–5264. http://dx.doi.org/10.1128/JB.01536-07. [PubMed][CrossRef]
70. Lamarche MG, Wanner BL, Crépin S, Harel J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473. http://dx.doi.org/10.1111/j.1574-6976.2008.00101.x. [PubMed][CrossRef]
71. Crépin S, Porcheron G, Houle S, Harel J, Dozois CM. 2017. Altered regulation of the diguanylate cyclase YaiC reduces production of type 1 fimbriae in a pst mutant of uropathogenic Escherichia coli CFT073. J Bacteriol 199:e00168-17. http://dx.doi.org/10.1128/JB.00168-17. [PubMed][CrossRef]
72. Crépin S, Houle S, Charbonneau ME, Mourez M, Harel J, Dozois CM. 2012. Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection. Infect Immun 80:2802–2815. http://dx.doi.org/10.1128/IAI.00162-12. [PubMed][CrossRef]
73. Gao R, Stock AM. 2015. Temporal hierarchy of gene expression mediated by transcription factor binding affinity and activation dynamics. mBio 6:e00686-15. http://dx.doi.org/10.1128/mBio.00686-15. [PubMed][CrossRef]
74. Gao R, Stock AM. 2017. Quantitative kinetic analyses of shutting off a two-component system. mBio 8:e00412-17. http://dx.doi.org/10.1128/mBio.00412-17. [PubMed][CrossRef]
75. Siryaporn A, Goulian M. 2010. Characterizing cross-talk in vivo avoiding pitfalls and overinterpretation. Methods Enzymol 471:1–16. http://dx.doi.org/10.1016/S0076-6879(10)71001-6. [PubMed][CrossRef]
76. Siryaporn A, Goulian M. 2008. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol Microbiol 70:494–506. http://dx.doi.org/10.1111/j.1365-2958.2008.06426.x. [PubMed][CrossRef]
77. Gao R, Stock AM. 2013. Probing kinase and phosphatase activities of two-component systems in vivo with concentration-dependent phosphorylation profiling. Proc Natl Acad Sci U S A 110:672–677. http://dx.doi.org/10.1073/pnas.1214587110. [PubMed][CrossRef]
78. Gao R, Stock AM. 2018. Quantitative analysis of intracellular response regulator phosphatase activity of histidine kinases. Methods Enzymol 607:301–319. http://dx.doi.org/10.1016/bs.mie.2018.04.004. [PubMed][CrossRef]
79. Shinagawa H, Makino K, Yamada M, Amemura M, Sato T, Nakata A. 1994. Signal transduction in the phosphate regulon of Escherichia coli: dual functions of PhoR as a protein kinase and a protein phosphatase, p 285–289. In Torriani-Gorini A, Yagil E, Silver S (ed), Phosphate in Microorganisms: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC.
80. Carmany DO, Hollingsworth K, McCleary WR. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J Bacteriol 185:1112–1115. http://dx.doi.org/10.1128/JB.185.3.1112-1115.2003. [PubMed][CrossRef]
81. Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu Rev Biochem 69:183–215. http://dx.doi.org/10.1146/annurev.biochem.69.1.183. [PubMed][CrossRef]
82. Etzkorn M, Kneuper H, Dünnwald P, Vijayan V, Krämer J, Griesinger C, Becker S, Unden G, Baldus M. 2008. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS. Nat Struct Mol Biol 15:1031–1039. http://dx.doi.org/10.1038/nsmb.1493. [PubMed][CrossRef]
83. Taylor BL, Zhulin IB. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506. [PubMed]
84. Möglich A, Ayers RA, Moffat K. 2009. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294. http://dx.doi.org/10.1016/j.str.2009.08.011. [PubMed][CrossRef]
85. Gong W, Hao B, Mansy SS, Gonzalez G, Gilles-Gonzalez MA, Chan MK. 1998. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc Natl Acad Sci U S A 95:15177–15182. http://dx.doi.org/10.1073/pnas.95.26.15177. [PubMed][CrossRef]
86. Gao R, Stock AM. 2009. Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154. http://dx.doi.org/10.1146/annurev.micro.091208.073214. [PubMed][CrossRef]
87. Ashenberg O, Keating AE, Laub MT. 2013. Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans. J Mol Biol 425:1198–1209. http://dx.doi.org/10.1016/j.jmb.2013.01.011. [PubMed][CrossRef]
88. Willett JW, Kirby JR. 2012. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genet 8:e1003084. http://dx.doi.org/10.1371/journal.pgen.1003084. [PubMed][CrossRef]
89. Zschiedrich CP, Keidel V, Szurmant H. 2016. Molecular mechanisms of two-component signal transduction. J Mol Biol 428:3752–3775. http://dx.doi.org/10.1016/j.jmb.2016.08.003. [PubMed][CrossRef]
90. Wang C, Sang J, Wang J, Su M, Downey JS, Wu Q, Wang S, Cai Y, Xu X, Wu J, Senadheera DB, Cvitkovitch DG, Chen L, Goodman SD, Han A. 2013. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains. PLoS Biol 11:e1001493. http://dx.doi.org/10.1371/journal.pbio.1001493. [PubMed][CrossRef]
91. Marina A, Waldburger CD, Hendrickson WA. 2005. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J 24:4247–4259. http://dx.doi.org/10.1038/sj.emboj.7600886. [PubMed][CrossRef]
92. Bhate MP, Molnar KS, Goulian M, DeGrado WF. 2015. Signal transduction in histidine kinases: insights from new structures. Structure 23:981–994. http://dx.doi.org/10.1016/j.str.2015.04.002. [PubMed][CrossRef]
93. McCleary WR. 1996. The activation of PhoB by acetylphosphate. Mol Microbiol 20:1155–1163. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02636.x. [PubMed][CrossRef]
94. McCleary WR, Stock JB. 1994. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269:31567–31572.
95. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1) :D279–D285. http://dx.doi.org/10.1093/nar/gkv1344. [PubMed][CrossRef]
96. Galperin MY. 2010. Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13:150–159. http://dx.doi.org/10.1016/j.mib.2010.01.005. [PubMed][CrossRef]
97. Blanco AG, Canals A, Coll M. 2012. PhoB transcriptional activator binds hierarchically to pho box promoters. Biol Chem 393:1165–1171. http://dx.doi.org/10.1515/hsz-2012-0230. [PubMed][CrossRef]
98. Canals A, Blanco AG, Coll M. 2012. σ70 and PhoB activator: getting a better grip. Transcription 3:160–164. http://dx.doi.org/10.4161/trns.20444. [PubMed][CrossRef]
99. Kou X, Liu Y, Li C, Liu M, Jiang L. 2018. Dimerization and conformational exchanges of the receiver domain of response regulator PhoB from Escherichia coli. J Phys Chem B 122:5749–5757. http://dx.doi.org/10.1021/acs.jpcb.8b01034. [PubMed][CrossRef]
100. Creager-Allen RL, Silversmith RE, Bourret RB. 2013. A link between dimerization and autophosphorylation of the response regulator PhoB. J Biol Chem 288:21755–21769. http://dx.doi.org/10.1074/jbc.M113.471763. [PubMed][CrossRef]
101. Buckler DR, Zhou Y, Stock AM. 2002. Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure 10:153–164. http://dx.doi.org/10.1016/S0969-2126(01)00706-7. [CrossRef]
102. Blanco AG, Canals A, Bernués J, Solà M, Coll M. 2011. The structure of a transcription activation subcomplex reveals how σ(70) is recruited to PhoB promoters. EMBO J 30:3776–3785. http://dx.doi.org/10.1038/emboj.2011.271. [PubMed][CrossRef]
103. Willsky GR, Malamy MH. 1980. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365.
104. Saier MH, Jr, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. 2016. The transporter classification database (TCDB): recent advances. Nucleic Acids Res 44(D1) :D372–D379. http://dx.doi.org/10.1093/nar/gkv1103. [PubMed][CrossRef]
105. Davidson AL, Dassa E, Orelle C, Chen J. 2008. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364. http://dx.doi.org/10.1128/MMBR.00031-07. [PubMed][CrossRef]
106. Quiocho FA, Ledvina PS. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02484.x. [PubMed][CrossRef]
107. Luecke H, Quiocho FA. 1990. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347:402–406. http://dx.doi.org/10.1038/347402a0. [PubMed][CrossRef]
108. Wang Z, Choudhary A, Ledvina PS, Quiocho FA. 1994. Fine tuning the specificity of the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and crystallographic studies. J Biol Chem 269:25091–25094. [CrossRef]
109. Qi R, Jing Z, Liu C, Piquemal JP, Dalby KN, Ren P. 2018. Elucidating the phosphate binding mode of phosphate-binding protein: the critical effect of buffer solution. J Phys Chem B 122:6371–6376. http://dx.doi.org/10.1021/acs.jpcb.8b03194. [PubMed][CrossRef]
110. Sippel KH, Bacik J, Quiocho FA, Fisher SZ. 2014. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station. Acta Crystallogr F Struct Biol Commun 70:819–822. http://dx.doi.org/10.1107/S2053230X14009704. [PubMed][CrossRef]
111. Cox GB, Webb D, Godovac-Zimmermann J, Rosenberg H. 1988. Arg-220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in Escherichia coli but not for alkaline phosphatase repression. J Bacteriol 170:2283–2286. http://dx.doi.org/10.1128/jb.170.5.2283-2286.1988. [PubMed][CrossRef]
112. Cox GB, Webb D, Rosenberg H. 1989. Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the Escherichia coli Pst system. J Bacteriol 171:1531–1534. http://dx.doi.org/10.1128/jb.171.3.1531-1534.1989. [PubMed][CrossRef]
113. Rees DC, Johnson E, Lewinson O. 2009. ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227. http://dx.doi.org/10.1038/nrm2646. [PubMed][CrossRef]
114. Chan FY, Torriani A. 1996. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 178:3974–3977. http://dx.doi.org/10.1128/jb.178.13.3974-3977.1996. [PubMed][CrossRef]
115. Beis K. 2015. Structural basis for the mechanism of ABC transporters. Biochem Soc Trans 43:889–893. http://dx.doi.org/10.1042/BST20150047. [PubMed][CrossRef]
116. Hollenstein K, Frei DC, Locher KP. 2007. Structure of an ABC transporter in complex with its binding protein. Nature 446:213–216. http://dx.doi.org/10.1038/nature05626. [PubMed][CrossRef]
117. Hsieh YJ, Wanner BL. 2010. Global regulation by the seven-component P i signaling system. Curr Opin Microbiol 13:198–203. http://dx.doi.org/10.1016/j.mib.2010.01.014. [PubMed][CrossRef]
118. Kimura S, Makino K, Shinagawa H, Amemura M, Nakata A. 1989. Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene. Mol Gen Genet 215:374–380. http://dx.doi.org/10.1007/BF00427032. [PubMed][CrossRef]
119. Spira B, Aguena M, de Castro Oliveira JV, Yagil E. 2010. Alternative promoters in the pst operon of Escherichia coli. Mol Genet Genomics 284:489–498. http://dx.doi.org/10.1007/s00438-010-0584-x. [PubMed][CrossRef]
120. Steed PM, Wanner BL. 1993. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809. http://dx.doi.org/10.1128/jb.175.21.6797-6809.1993. [PubMed][CrossRef]
121. Haldimann A, Daniels LL, Wanner BL. 1998. Use of new methods for construction of tightly regulated arabinose and rhamnose promoter fusions in studies of the Escherichia coli phosphate regulon. J Bacteriol 180:1277–1286.
122. Surin BP, Rosenberg H, Cox GB. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol 161:189–198.
123. Rice CD, Pollard JE, Lewis ZT, McCleary WR. 2009. Employment of a promoter-swapping technique shows that PhoU modulates the activity of the PstSCAB2 ABC transporter in Escherichia coli. Appl Environ Microbiol 75:573–582. http://dx.doi.org/10.1128/AEM.01046-08. [PubMed][CrossRef]
124. Kadaba NS, Kaiser JT, Johnson E, Lee A, Rees DC. 2008. The high-affinity E. coli methionine ABC transporter: structure and allosteric regulation. Science 321:250–253. http://dx.doi.org/10.1126/science.1157987. [PubMed][CrossRef]
125. Johnson E, Nguyen PT, Yeates TO, Rees DC. 2012. Inward facing conformations of the MetNI methionine ABC transporter: implications for the mechanism of transinhibition. Protein Sci 21:84–96. http://dx.doi.org/10.1002/pro.765. [PubMed][CrossRef]
126. Gerber S, Comellas-Bigler M, Goetz BA, Locher KP. 2008. Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter. Science 321:246–250. http://dx.doi.org/10.1126/science.1156213. [PubMed][CrossRef]
127. Chen S, Oldham ML, Davidson AL, Chen J. 2013. Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 499:364–368. http://dx.doi.org/10.1038/nature12232. [PubMed][CrossRef]
128. Yang JG, Rees DC. 2015. The allosteric regulatory mechanism of the Escherichia coli MetNI methionine ATP binding cassette (ABC) transporter. J Biol Chem 290:9135–9140. http://dx.doi.org/10.1074/jbc.M114.603365. [PubMed][CrossRef]
129. Liu J, Lou Y, Yokota H, Adams PD, Kim R, Kim SH. 2005. Crystal structure of a PhoU protein homologue: a new class of metalloprotein containing multinuclear iron clusters. J Biol Chem 280:15960–15966. http://dx.doi.org/10.1074/jbc.M414117200. [PubMed][CrossRef]
130. Oganesyan V, Oganesyan N, Adams PD, Jancarik J, Yokota HA, Kim R, Kim SH. 2005. Crystal structure of the “PhoU-like” phosphate uptake regulator from Aquifex aeolicus. J Bacteriol 187:4238–4244. http://dx.doi.org/10.1128/JB.187.12.4238-4244.2005. [PubMed][CrossRef]
131. Lee SJ, Park YS, Kim SJ, Lee BJ, Suh SW. 2014. Crystal structure of PhoU from Pseudomonas aeruginosa, a negative regulator of the Pho regulon. J Struct Biol 188:22–29. http://dx.doi.org/10.1016/j.jsb.2014.08.010. [PubMed][CrossRef]
132. Gardner SG, Johns KD, Tanner R, McCleary WR. 2014. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J Bacteriol 196:1741–1752. http://dx.doi.org/10.1128/JB.00029-14. [PubMed][CrossRef]
133. Hoffer SM, Tommassen J. 2001. The phosphate-binding protein of Escherichia coli is not essential for P( i)-regulated expression of the pho regulon. J Bacteriol 183:5768–5771. http://dx.doi.org/10.1128/JB.183.19.5768-5771.2001. [PubMed][CrossRef]
134. Rao NN, Wang E, Yashphe J, Torriani A. 1986. Nucleotide pool in pho regulon mutants and alkaline phosphatase synthesis in Escherichia coli. J Bacteriol 166:205–211. http://dx.doi.org/10.1128/jb.166.1.205-211.1986. [PubMed][CrossRef]
135. Peterson CN, Mandel MJ, Silhavy TJ. 2005. Escherichia coli starvation diets: essential nutrients weigh in distinctly. J Bacteriol 187:7549–7553. http://dx.doi.org/10.1128/JB.187.22.7549-7553.2005. [PubMed][CrossRef]
136. Wanner BL. 1996. Signal transduction in the control of phosphate-regulated genes of Escherichia coli. Kidney Int 49:964–967. http://dx.doi.org/10.1038/ki.1996.136. [PubMed][CrossRef]
137. Rosenberg H, Gerdes RG, Chegwidden K. 1977. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 131:505–511. [PubMed]
138. Zuckier G, Torriani A. 1981. Genetic and physiological tests of three phosphate-specific transport mutants of Escherichia coli. J Bacteriol 145:1249–1256.
139. Muda M, Rao NN, Torriani A. 1992. Role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 174:8057–8064. http://dx.doi.org/10.1128/jb.174.24.8057-8064.1992. [PubMed][CrossRef]
140. Gardner SG, Miller JB, Dean T, Robinson T, Erickson M, Ridge PG, McCleary WR. 2015. Genetic analysis, structural modeling, and direct coupling analysis suggest a mechanism for phosphate signaling in Escherichia coli. BMC Genet 16(Suppl 2) :S2. http://dx.doi.org/10.1186/1471-2156-16-S2-S2. [PubMed][CrossRef]
141. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. 2017. The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278. http://dx.doi.org/10.1038/nprot.2016.169. [PubMed][CrossRef]
142. Vuppada RK, Hansen CR, Strickland KAP, Kelly KM, McCleary WR. 2018. Phosphate signaling through alternate conformations of the PstSCAB phosphate transporter. BMC Microbiol 18:8. http://dx.doi.org/10.1186/s12866-017-1126-z. [PubMed][CrossRef]
143. Daus ML, Grote M, Müller P, Doebber M, Herrmann A, Steinhoff HJ, Dassa E, Schneider E. 2007. ATP-driven MalK dimer closure and reopening and conformational changes of the “EAA” motifs are crucial for function of the maltose ATP-binding cassette transporter (MalFGK2). J Biol Chem 282:22387–22396. http://dx.doi.org/10.1074/jbc.M701979200. [PubMed][CrossRef]
144. Pontes MH, Groisman EA. 2018. Protein synthesis controls phosphate homeostasis. Genes Dev 32:79–92. http://dx.doi.org/10.1101/gad.309245.117. [PubMed][CrossRef]
145. Lüttmann D, Göpel Y, Görke B. 2012. The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 86:96–110. http://dx.doi.org/10.1111/j.1365-2958.2012.08176.x. [PubMed][CrossRef]
146. Lee CR, Cho SH, Yoon MJ, Peterkofsky A, Seok YJ. 2007. Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc Natl Acad Sci U S A 104:4124–4129. http://dx.doi.org/10.1073/pnas.0609897104. [PubMed][CrossRef]
147. Lee CR, Cho SH, Kim HJ, Kim M, Peterkofsky A, Seok YJ. 2010. Potassium mediates Escherichia coli enzyme IIA(Ntr)-dependent regulation of sigma factor selectivity. Mol Microbiol 78:1468–1483. http://dx.doi.org/10.1111/j.1365-2958.2010.07419.x. [PubMed][CrossRef]
148. Ronneau S, Petit K, De Bolle X, Hallez R. 2016. Phosphotransferase-dependent accumulation of (p)ppGpp in response to glutamine deprivation in Caulobacter crescentus. Nat Commun 7:11423. http://dx.doi.org/10.1038/ncomms11423. [PubMed][CrossRef]
149. Yoo W, Kim D, Yoon H, Ryu S. 2017. Enzyme IIA(Ntr) regulates Salmonella invasion via 1,2-propanediol and propionate catabolism. Sci Rep 7:44827. http://dx.doi.org/10.1038/srep44827. [PubMed][CrossRef]
150. Muriel-Millán LF, Moreno S, Gallegos-Monterrosa R, Espín G. 2017. Unphosphorylated EIIA Ntr induces ClpAP-mediated degradation of RpoS in A zotobacter vinelandii. Mol Microbiol 104:197–211. http://dx.doi.org/10.1111/mmi.13621. [PubMed][CrossRef]
151. Choi J, Shin D, Yoon H, Kim J, Lee CR, Kim M, Seok YJ, Ryu S. 2010. Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc Natl Acad Sci U S A 107:20506–20511. http://dx.doi.org/10.1073/pnas.1000759107. [PubMed][CrossRef]
152. Houot L, Chang S, Pickering BS, Absalon C, Watnick PI. 2010. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067. http://dx.doi.org/10.1128/JB.00213-10. [PubMed][CrossRef]
153. Gao R, Stock AM. 2013. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system. PLoS Genet 9:e1003927. http://dx.doi.org/10.1371/journal.pgen.1003927. [PubMed][CrossRef]
154. Gao R, Godfrey KA, Sufian MA, Stock AM. 2017. Counterbalancing regulation in response memory of a positively autoregulated two-component system. J Bacteriol 199:e00390-17. http://dx.doi.org/10.1128/JB.00390-17. [PubMed][CrossRef]
155. Gao R, Stock AM. 2018. Overcoming the cost of positive autoregulation by accelerating the response with a coupled negative feedback. Cell Rep 24:3061–3071.e6. http://dx.doi.org/10.1016/j.celrep.2018.08.023. [PubMed][CrossRef]
156. Capra EJ, Laub MT. 2012. Evolution of two-component signal transduction systems. Annu Rev Microbiol 66:325–347. http://dx.doi.org/10.1146/annurev-micro-092611-150039. [PubMed][CrossRef]
157. Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen J. 2001. Autoamplification of a two-component regulatory system results in “learning” behavior. J Bacteriol 183:4914–4917. http://dx.doi.org/10.1128/JB.183.16.4914-4917.2001. [PubMed][CrossRef]
158. Rudat AK, Pokhrel A, Green TJ, Gray MJ. 2018. Mutations in Escherichia coli polyphosphate kinase that lead to dramatically increased in vivo polyphosphate levels. J Bacteriol 200:e00697-17. http://dx.doi.org/10.1128/JB.00697-17. [PubMed][CrossRef]
159. van Veen HW, Abee T, Kortstee GJ, Konings WN, Zehnder AJ. 1994. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33:1766–1770. http://dx.doi.org/10.1021/bi00173a020. [PubMed][CrossRef]
160. Motomura K, Hirota R, Ohnaka N, Okada M, Ikeda T, Morohoshi T, Ohtake H, Kuroda A. 2011. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol Lett 320:25–32. http://dx.doi.org/10.1111/j.1574-6968.2011.02285.x. [PubMed][CrossRef]
161. Grillo-Puertas M, Rintoul MR, Rapisarda VA. 2016. PhoB activation in non-limiting phosphate condition by the maintenance of high polyphosphate levels in the stationary phase inhibits biofilm formation in Escherichia coli. Microbiology 162:1000–1008. http://dx.doi.org/10.1099/mic.0.000281. [PubMed][CrossRef]
162. Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51. http://dx.doi.org/10.1146/annurev.micro.62.081307.162903. [PubMed][CrossRef]
163. Girard ME, Gopalkrishnan S, Grace ED, Halliday JA, Gourse RL, Herman C. 2017. DksA and ppGpp regulate the sigma(S) stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J Bacteriol 200:e00463-17. http://dx.doi.org/10.1128/JB.00463-17. [PubMed][CrossRef]
164. Peterson CN, Ruiz N, Silhavy TJ. 2004. RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site. J Bacteriol 186:7403–7410. http://dx.doi.org/10.1128/JB.186.21.7403-7410.2004. [PubMed][CrossRef]
165. Ruiz N, Silhavy TJ. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J Bacteriol 185:5984–5992. http://dx.doi.org/10.1128/JB.185.20.5984-5992.2003. [PubMed][CrossRef]
166. Mika F, Hengge R. 2014. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 11:494–507. http://dx.doi.org/10.4161/rna.28867. [PubMed][CrossRef]
167. Santos-Beneit F. 2015. The Pho regulon: a huge regulatory network in bacteria. Front Microbiol 6:402. http://dx.doi.org/10.3389/fmicb.2015.00402. [PubMed][CrossRef]
168. Brokaw AM, Eide BJ, Muradian M, Boster JM, Tischler AD. 2017. Mycobacterium smegmatis PhoU proteins have overlapping functions in phosphate signaling and are essential. Front Microbiol 8:2523. http://dx.doi.org/10.3389/fmicb.2017.02523. [PubMed][CrossRef]
169. Wang X, Han H, Lv Z, Lin Z, Shang Y, Xu T, Wu Y, Zhang Y, Qu D. 2017. PhoU2 but not PhoU1 as an important regulator of biofilm formation and tolerance to multiple stresses by participating in various fundamental metabolic processes in Staphylococcus epidermidis. J Bacteriol 199:e00219-17. http://dx.doi.org/10.1128/JB.00219-17. [PubMed][CrossRef]
170. Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. http://dx.doi.org/10.1186/gb-2010-11-10-r106. [PubMed][CrossRef]

Article metrics loading...



Phosphorus is required for many biological molecules and essential functions, including DNA replication, transcription of RNA, protein translation, posttranslational modifications, and numerous facets of metabolism. In order to maintain the proper level of phosphate for these processes, many bacteria adapt to changes in environmental phosphate levels. The mechanisms for sensing phosphate levels and adapting to changes have been extensively studied for multiple organisms. The phosphate response of alters the expression of numerous genes, many of which are involved in the acquisition and scavenging of phosphate more efficiently. This review shares findings on the mechanisms by which cells sense and respond to changes in environmental inorganic phosphate concentrations by reviewing the genes and proteins that regulate this response. The PhoR/PhoB two-component signal transduction system is central to this process and works in association with the high-affinity phosphate transporter encoded by the genes and the PhoU protein. Multiple models to explain how this process is regulated are discussed.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Comment moderation successfully completed


Image of Figure 1

Click to view

Figure 1

PhoR, like other SHKs, is a dimer that is composed of multiple domains. It autophosphorylates on His-213. TM, transmembrane domain; CR, charged region; PAS domain; DHp, dimerization and histidine phosphorylation domain; CA, catalytic and ATP-binding domain.

Citation: Gardner S, McCleary W. 2019. Control of the Regulon in , EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2

Click to view

Figure 2

The PstS protein is the periplasmic phosphate-binding protein that binds and presents P to the transmembrane components PstC and PstA. PstB binds ATP, which stabilizes a closed nucleotide-binding domain with PstC and PstA adopting an outward-facing conformation. P-loaded PstS triggers ATP hydrolysis, which causes a conformational change between the PstB protomers that switch the PstC/PstA proteins into an inward-facing structure. ATP binding resets the system to the outward-facing structure.

Citation: Gardner S, McCleary W. 2019. Control of the Regulon in , EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3

Click to view

Figure 3

The output of this signal transduction system is based upon the amount and phosphorylation state of the response regulator PhoB. Phospho-PhoB forms a dimer and binds to DNA sequences containing a Pho box. The phosphorylation state of PhoB is, in turn, controlled by the opposing autokinase/phosphotransferase and phosphatase activities of PhoR, the SHK of the system. The activities of PhoR are ultimately controlled by the PstSCAB transporter and PhoU. When environmental P levels are high, the transporter signals through PhoU to favor PhoR in its phosphatase conformation. When environmental P levels are low, the transporter and PhoU signal PhoR to favor its autokinase conformation. In an alternate (or supplementary) mechanism, the PstSCAB transporter may also signal P sufficiency to PhoR through a process in which its conformation is sensitive to intracellular P levels by binding P at a low-affinity, cytoplasm-accessible site.

Citation: Gardner S, McCleary W. 2019. Control of the Regulon in , EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0006-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Click to view

Table 1

Members of the Pho regulon in K-12 MG1655 identified by RNA-seq

Citation: Gardner S, McCleary W. 2019. Control of the Regulon in , EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0006-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error