No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 6:

Evolution and Genomics

Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Clones

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Timothy J. Johnson1
  • Editor: Edward G. Dudley2
    Affiliations: 1: Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108; 2: Penn State University, University Park, PA
  • Received 21 July 2020 Accepted 12 January 2021 Published 25 February 2021
  • Address correspondence to Timothy J. Johnson, [email protected]
image of Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic <span class="jp-italic">Escherichia coli</span> Clones
    Preview this reference work article:
    Zoom in

    Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Clones, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/2/ESP-0013-2020-1.gif /docserver/preview/fulltext/ecosalplus/9/2/ESP-0013-2020-2.gif
  • Abstract:

    Bacterial plasmids have been linked to virulence in and since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic , or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.

  • Citation: Johnson T. 2021. Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Clones, EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0013-2020


1. Johnson JR, Russo TA. 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E coli”. J Lab Clin Med 139:155–162 http://dx.doi.org/10.1067/mlc.2002.121550. [PubMed]
2. Mathers AJ, Peirano G, Pitout JD. 2015. Escherichia coli ST131: the quintessential example of an international multiresistant high-risk clone. Adv Appl Microbiol 90:109–154 http://dx.doi.org/10.1016/bs.aambs.2014.09.002. [PubMed]
3. Lederberg EM, Lederberg J. 1953. Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51–64.
4. Lederberg J. 1952. Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430 http://dx.doi.org/10.1152/physrev.1952.32.4.403. [PubMed]
5. Fleming A. 1929. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Organ 79:780–790.
6. Lobanovska M, Pilla G. 2017. Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J Biol Med 90:135–145.
7. Bernstein HL. 1958. Fertility factors in Escherichia coli. Symp Soc Exp Biol 12:93–103.
8. Hirota Y, Nishimura Y, Orskov F, Orskov I. 1964. Effect of drug-resistance factor R on the F properties of Escherichia coli. J Bacteriol 87:341–351 http://dx.doi.org/10.1128/JB.87.2.341-351.1964. [PubMed]
9. Sugino Y, Hirota Y. 1962. Conjugal fertility associated with resistance factor R in Escherichia coli. J Bacteriol 84:902–910 http://dx.doi.org/10.1128/JB.84.5.902-910.1962. [PubMed]
10. Watanabe T, Fukasawa T. 1962. Episome-mediated transfer of drug resistance in Enterobacteriaceae. IV. Interactions between resistance transfer factor and F-factor in Escherichia coli K-12. J Bacteriol 83:727–735 http://dx.doi.org/10.1128/JB.83.4.727-735.1962. [PubMed]
11. Fredericq P. 1954. Intervention of the F sexual polarity factor in the transfer of colicinogenic properties of E. coli. C R Seances Soc Biol Fil 148:746–748. (In French.)
12. Fredericq P. 1951. New acquired antibiotic properties of E. coli V strain under the influence of bacteriophages T.1, T.5 and 5.7. Antonie van Leeuwenhoek 17:102–106. (In French.) http://dx.doi.org/10.1007/BF02062253. [PubMed]
13. Fredericq P. 1951. Spontaneous formation of the colicine M producing mutants of Esch. coli V. Antonie van Leeuwenhoek 17:227–231. (In French.) http://dx.doi.org/10.1007/BF02062267. [PubMed]
14. Gillor O, Kirkup BC, Riley MA. 2004. Colicins and microcins: the next generation antimicrobials. Adv Appl Microbiol 54:129–146 http://dx.doi.org/10.1016/S0065-2164(04)54005-4.
15. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. 2006. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 188:745–758 http://dx.doi.org/10.1128/JB.188.2.745-758.2006. [PubMed]
16. Johnson TJ, Johnson SJ, Nolan LK. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J Bacteriol 188:5975–5983 http://dx.doi.org/10.1128/JB.00204-06. [PubMed]
17. Smith HW. 1974. A search for transmissible pathogenic characters in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical, with colicine V. J Gen Microbiol 83:95–111 http://dx.doi.org/10.1099/00221287-83-1-95. [PubMed]
18. Smith HW, Linggood MA. 1971. Observations on the pathogenic properties of the K88, Hly and Ent plasmids of Escherichia coli with particular reference to porcine diarrhoea. J Med Microbiol 4:467–485 http://dx.doi.org/10.1099/00222615-4-4-467. [PubMed]
19. Gyles CL, Stevens JB, Craven JA. 1971. A study of Escherichia coli strains isolated from pigs with gastro-intestinal disease. Can J Comp Med 35:258–266.
20. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. 1998. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464 http://dx.doi.org/10.1128/MMBR.62.2.434-464.1998. [PubMed]
21. Carattoli A. 2013. Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304 http://dx.doi.org/10.1016/j.ijmm.2013.02.001. [PubMed]
22. Novick RP. 1987. Plasmid incompatibility. Microbiol Rev 51:381–395 http://dx.doi.org/10.1128/MR.51.4.381-395.1987. [PubMed]
23. Grohmann E, Christie PJ, Waksman G, Backert S. 2018. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107:455–471 http://dx.doi.org/10.1111/mmi.13896. [PubMed]
24. Zhang S, Meyer R. 1997. The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer. Mol Microbiol 25:509–516 http://dx.doi.org/10.1046/j.1365-2958.1997.4861849.x. [PubMed]
25. Koraimann G. 2018. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. Ecosal Plus 2018. http://dx.doi.org/10.1128/ecosalplus.ESP-0003-2018. [PubMed]
26. Johnson TJ, Lang KS. 2012. IncA/C plasmids: an emerging threat to human and animal health? Mob Genet Elements 2:55–58 http://dx.doi.org/10.4161/mge.19626. [PubMed]
27. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903 http://dx.doi.org/10.1128/AAC.02412-14. [PubMed]
28. Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, Woodford N, Anjum MF, Stoesser N. 2017. Ordering the mob: insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 91:42–52 http://dx.doi.org/10.1016/j.plasmid.2017.03.002. [PubMed]
29. Shintani M, Sanchez ZK, Kimbara K. 2015. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 6:242 http://dx.doi.org/10.3389/fmicb.2015.00242. [PubMed]
30. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73:750–774 http://dx.doi.org/10.1128/MMBR.00015-09. [PubMed]
31. Carattoli A. 2011. Plasmids in Gram negatives: molecular typing of resistance plasmids. Int J Med Microbiol 301:654–658 http://dx.doi.org/10.1016/j.ijmm.2011.09.003. [PubMed]
32. Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, Nolan LK. 2007. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol 73:1976–1983 http://dx.doi.org/10.1128/AEM.02171-06. [PubMed]
33. Bustamante P, Iredell JR. 2017. Carriage of type II toxin-antitoxin systems by the growing group of IncX plasmids. Plasmid 91:19–27 http://dx.doi.org/10.1016/j.plasmid.2017.02.006. [PubMed]
34. Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, Nolan LK, Carattoli A. 2012. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68:43–50 http://dx.doi.org/10.1016/j.plasmid.2012.03.001. [PubMed]
35. Ambrose SJ, Harmer CJ, Hall RM. 2018. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible. Plasmid 96-97:7–12 http://dx.doi.org/10.1016/j.plasmid.2018.02.002. [PubMed]
36. Smalla K, Jechalke S, Top EM. 2015. Plasmid detection, characterization, and ecology. Microbiol Spectr 3:PLAS-0038-2014. [PubMed]
37. Fernández-Alarcón C, Singer RS, Johnson TJ. 2011. Comparative genomics of multidrug resistance-encoding IncA/C plasmids from commensal and pathogenic Escherichia coli from multiple animal sources. PLoS One 6:e23415 http://dx.doi.org/10.1371/journal.pone.0023415. [PubMed]
38. Medaney F, Ellis RJ, Raymond B. 2016. Ecological and genetic determinants of plasmid distribution in Escherichia coli. Environ Microbiol 18:4230–4239 http://dx.doi.org/10.1111/1462-2920.13552. [PubMed]
39. Dionisio F, Conceição IC, Marques AC, Fernandes L, Gordo I. 2005. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 1:250–252 http://dx.doi.org/10.1098/rsbl.2004.0275. [PubMed]
40. Cheng P, Li F, Liu R, Yang Y, Xiao T, Ishfaq M, Xu G, Zhang X. 2019. Prevalence and molecular epidemiology characteristics of carbapenem-resistant Escherichia coli in Heilongjiang Province, China. Infect Drug Resist 12:2505–2518 http://dx.doi.org/10.2147/IDR.S208122. [PubMed]
41. Ranjan A, Scholz J, Semmler T, Wieler LH, Ewers C, Müller S, Pickard DJ, Schierack P, Tedin K, Ahmed N, Schaufler K, Guenther S. 2018. ESBL-plasmid carriage in E. coli enhances in vitro bacterial competition fitness and serum resistance in some strains of pandemic sequence types without overall fitness cost. Gut Pathog 10:24 http://dx.doi.org/10.1186/s13099-018-0243-z. [PubMed]
42. Hamprecht A, Sommer J, Willmann M, Brender C, Stelzer Y, Krause FF, Tsvetkov T, Wild F, Riedel-Christ S, Kutschenreuter J, Imirzalioglu C, Gonzaga A, Nübel U, Göttig S. 2019. Pathogenicity of clinical OXA-48 isolates and impact of the OXA-48 IncL plasmid on virulence and bacterial fitness. Front Microbiol 10:2509 http://dx.doi.org/10.3389/fmicb.2019.02509. [PubMed]
43. Wu R, Yi LX, Yu LF, Wang J, Liu Y, Chen X, Lv L, Yang J, Liu JH. 2018. Fitness advantage of mcr-1-bearing IncI2 and IncX4 plasmids in vitro. Front Microbiol 9:331 http://dx.doi.org/10.3389/fmicb.2018.00331. [PubMed]
44. Lee JY, Lim SK, Choi Y, Moon DC, Shin J, Ko KS. 2018. Whole sequences and characteristics of mcr-1-harboring plasmids of Escherichia coli strains isolated from livestock in South Korea. Microb Drug Resist 24:489–492 http://dx.doi.org/10.1089/mdr.2017.0369. [PubMed]
45. Johnson TJ, Singer RS, Isaacson RE, Danzeisen JL, Lang K, Kobluk K, Rivet B, Borewicz K, Frye JG, Englen M, Anderson J, Davies PR. 2015. In vivo transmission of an IncA/C plasmid in Escherichia coli depends on tetracycline concentration, and acquisition of the plasmid results in a variable cost of fitness. Appl Environ Microbiol 81:3561–3570 http://dx.doi.org/10.1128/AEM.04193-14. [PubMed]
46. Fischer EA, Dierikx CM, van Essen-Zandbergen A, van Roermund HJ, Mevius DJ, Stegeman A, Klinkenberg D. 2014. The IncI1 plasmid carrying the blaCTX-M-1 gene persists in in vitro culture of a Escherichia coli strain from broilers. BMC Microbiol 14:77 http://dx.doi.org/10.1186/1471-2180-14-77. [PubMed]
47. Dahlberg C, Chao L. 2003. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 165:1641–1649.
48. Bouma JE, Lenski RE. 1988. Evolution of a bacteria/plasmid association. Nature 335:351–352 http://dx.doi.org/10.1038/335351a0. [PubMed]
49. Mahérault AC, Kemble H, Magnan M, Gachet B, Roche D, Le Nagard H, Tenaillon O, Denamur E, Branger C, Landraud L. 2019. Advantage of the F2:A1:B- IncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of bla CTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother 63:63 http://dx.doi.org/10.1128/AAC.01130-19. [PubMed]
50. Ma K, Feng Y, Zong Z. 2018. Fitness cost of a mcr-1-carrying IncHI2 plasmid. PLoS One 13:e0209706 http://dx.doi.org/10.1371/journal.pone.0209706. [PubMed]
51. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. 2016. plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32:3380–3387 http://dx.doi.org/10.1093/bioinformatics/btw493. [PubMed]
52. Zhang X, Deatherage DE, Zheng H, Georgoulis SJ, Barrick JE. 2019. Evolution of satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria. Nat Commun 10:5809 http://dx.doi.org/10.1038/s41467-019-13709-x. [PubMed]
53. Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A, MacLean RC, Peña-Miller R, San Millan A. 2018. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat Ecol Evol 2:873–881 http://dx.doi.org/10.1038/s41559-018-0529-z. [PubMed]
54. Dimitriu T, Medaney F, Amanatidou E, Forsyth J, Ellis RJ, Raymond B. 2019. Negative frequency dependent selection on plasmid carriage and low fitness costs maintain extended spectrum β-lactamases in Escherichia coli. Sci Rep 9:17211 http://dx.doi.org/10.1038/s41598-019-53575-7. [PubMed]
55. Tietgen M, Semmler T, Riedel-Christ S, Kempf VAJ, Molinaro A, Ewers C, Göttig S. 2018. Impact of the colistin resistance gene mcr-1 on bacterial fitness. Int J Antimicrob Agents 51:554–561 http://dx.doi.org/10.1016/j.ijantimicag.2017.11.011. [PubMed]
56. Di Luca MC, Sørum V, Starikova I, Kloos J, Hülter N, Naseer U, Johnsen PJ, Samuelsen Ø. 2017. Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli. J Antimicrob Chemother 72:85–89 http://dx.doi.org/10.1093/jac/dkw350. [PubMed]
57. Gama JA, Zilhão R, Dionisio F. 2017. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 93:6–16 http://dx.doi.org/10.1016/j.plasmid.2017.08.003. [PubMed]
58. Freire Martín I, Thomas CM, Laing E, AbuOun M, La Ragione RM, Woodward MJ. 2016. Curing vector for IncI1 plasmids and its use to provide evidence for a metabolic burden of IncI1 CTX-M-1 plasmid pIFM3791 on Klebsiella pneumoniae. J Med Microbiol 65:611–618 http://dx.doi.org/10.1099/jmm.0.000271. [PubMed]
59. Lang KS, Johnson TJ. 2015. Transcriptome modulations due to A/C2 plasmid acquisition. Plasmid 80:83–89 http://dx.doi.org/10.1016/j.plasmid.2015.05.005. [PubMed]
60. Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, Pickard DJ, Barthel M, Westendorf AM, Krogfelt KA, Walker AW, Ackermann M, Dobrindt U, Thomson NR, Hardt WD. 2012. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci USA 109:1269–1274 http://dx.doi.org/10.1073/pnas.1113246109. [PubMed]
61. Rozwandowicz M, Brouwer MSM, Mughini-Gras L, Wagenaar JA, Gonzalez-Zorn B, Mevius DJ, Hordijk J. 2019. Successful host adaptation of IncK2 plasmids. Front Microbiol 10:2384 http://dx.doi.org/10.3389/fmicb.2019.02384. [PubMed]
62. Michon A, Allou N, Chau F, Podglajen I, Fantin B, Cambau E. 2011. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure. PLoS One 6:e24552 http://dx.doi.org/10.1371/journal.pone.0024552. [PubMed]
63. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antáo EM, Laturnus C, Diehl I, Glodde S, Homeier T, Böhnke U, Steinrück H, Philipp HC, Wieler LH. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163–176 http://dx.doi.org/10.1016/j.ijmm.2007.01.003. [PubMed]
64. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, Park YJ, Lavigne JP, Pitout J, Johnson JR. 2008. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61:273–281 http://dx.doi.org/10.1093/jac/dkm464. [PubMed]
65. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK. 2005. Characterizing the APEC pathotype. Vet Res 36:241–256 http://dx.doi.org/10.1051/vetres:2004057. [PubMed]
66. Mathers AJ, Peirano G, Pitout JD. 2015. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev 28:565–591 http://dx.doi.org/10.1128/CMR.00116-14. [PubMed]
67. Pitout JD, Church DL, Gregson DB, Chow BL, McCracken M, Mulvey MR, Laupland KB. 2007. Molecular epidemiology of CTX-M-producing Escherichia coli in the Calgary Health Region: emergence of CTX-M-15-producing isolates. Antimicrob Agents Chemother 51:1281–1286 http://dx.doi.org/10.1128/AAC.01377-06. [PubMed]
68. Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D, Johnson AP, Pike R, Warner M, Cheasty T, Pearson A, Harry S, Leach JB, Loughrey A, Lowes JA, Warren RE, Livermore DM. 2004. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. J Antimicrob Chemother 54:735–743 http://dx.doi.org/10.1093/jac/dkh424. [PubMed]
69. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, Baquero F, Cantón R, Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 14:195–200 http://dx.doi.org/10.3201/eid1402.070350. [PubMed]
70. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, Nordstrom L, Billig M, Chattopadhyay S, Stegger M, Andersen PS, Pearson T, Riddell K, Rogers P, Scholes D, Kahl B, Keim P, Sokurenko EV. 2013. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. MBio 4:e00377-e13 http://dx.doi.org/10.1128/mBio.00377-13. [PubMed]
71. Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, Sebra R, Turner P, Anson LW, Kasarskis A, Batty EM, Kos V, Wilson DJ, Phetsouvanh R, Wyllie D, Sokurenko E, Manges AR, Johnson TJ, Price LB, Peto TE, Johnson JR, Didelot X, Walker AS, Crook DW, Modernizing Medical Microbiology Informatics Group (MMMIG). 2016. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. MBio 7:e02162 http://dx.doi.org/10.1128/mBio.02162-15. [PubMed]
72. Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M. 2018. Intestinal colonization traits of pandemic multidrug-resistant Escherichia coli ST131. J Infect Dis 218:979–990 http://dx.doi.org/10.1093/infdis/jiy031. [PubMed]
73. Han JH, Garrigan C, Johnston B, Nachamkin I, Clabots C, Bilker WB, Santana E, Tolomeo P, Maslow J, Myers J, Carson L, Lautenbach E, Johnson JR, Program CDCPE, CDC Prevention Epicenters Program. 2017. Epidemiology and characteristics of Escherichia coli sequence type 131 (ST131) from long-term care facility residents colonized intestinally with fluoroquinolone-resistant Escherichia coli. Diagn Microbiol Infect Dis 87:275–280 http://dx.doi.org/10.1016/j.diagmicrobio.2016.11.016. [PubMed]
74. Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K, Munoz-Aguayo J, Flores-Figueroa C, Aziz M, Stoesser N, Sokurenko E, Price LB, Johnson JR. 2016. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. MSphere 1:e00121-16 http://dx.doi.org/10.1128/mSphere.00121-16. [PubMed]
75. Thingholm KR, Hertz FB, Løbner-Olesen A, Frimodt-Møller N, Nielsen KL. 2019. Escherichia coli belonging to ST131 rarely transfers bla ctx-m-15 to fecal Escherichia coli. Infect Drug Resist 12:2429–2435 http://dx.doi.org/10.2147/IDR.S208536. [PubMed]
76. Decano AG, Downing T. 2019. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 9:17394 http://dx.doi.org/10.1038/s41598-019-54004-5. [PubMed]
77. Forde BM, Roberts LW, Phan MD, Peters KM, Fleming BA, Russell CW, Lenherr SM, Myers JB, Barker AP, Fisher MA, Chong TM, Yin WF, Chan KG, Schembri MA, Mulvey MA, Beatson SA. 2019. Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun 10:3643 http://dx.doi.org/10.1038/s41467-019-11571-5. [PubMed]
78. Johnson JR, Delavari P, Stell AL, Whittam TS, Carlino U, Russo TA. 2001. Molecular comparison of extraintestinal Escherichia coli isolates of the same electrophoretic lineages from humans and domestic animals. J Infect Dis 183:154–159 http://dx.doi.org/10.1086/317662. [PubMed]
79. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, Jones BD, Warren JW. 1990. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58:1281–1289 http://dx.doi.org/10.1128/IAI.58.5.1281-1289.1990. [PubMed]
80. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 99:17020–17024 http://dx.doi.org/10.1073/pnas.252529799. [PubMed]
81. Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 103:5977–5982 http://dx.doi.org/10.1073/pnas.0600938103. [PubMed]
82. DebRoy C, Sidhu MS, Sarker U, Jayarao BM, Stell AL, Bell NP, Johnson TJ. 2010. Complete sequence of pEC14_114, a highly conserved IncFIB/FIIA plasmid associated with uropathogenic Escherichia coli cystitis strains. Plasmid 63:53–60 http://dx.doi.org/10.1016/j.plasmid.2009.10.003. [PubMed]
83. Nataro JP, Seriwatana J, Fasano A, Maneval DR, Guers LD, Noriega F, Dubovsky F, Levine MM, Morris JG Jr. 1995. Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains. Infect Immun 63:4721–4728 http://dx.doi.org/10.1128/IAI.63.12.4721-4728.1995. [PubMed]
84. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–1467 http://dx.doi.org/10.1128/IAI.01260-09. [PubMed]
85. Xie Y, Kolisnychenko V, Paul-Satyaseela M, Elliott S, Parthasarathy G, Yao Y, Plunkett G III, Blattner FR, Kim KS. 2006. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis. J Infect Dis 194:358–364 http://dx.doi.org/10.1086/505429. [PubMed]
86. Wijetunge DS, Karunathilake KH, Chaudhari A, Katani R, Dudley EG, Kapur V, DebRoy C, Kariyawasam S. 2014. Complete nucleotide sequence of pRS218, a large virulence plasmid, that augments pathogenic potential of meningitis-associated Escherichia coli strain RS218. BMC Microbiol 14:203 http://dx.doi.org/10.1186/s12866-014-0203-9. [PubMed]
87. Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. 2018. Context-dependent requirements for FimH and other canonical virulence factors in gut colonization by extraintestinal pathogenic Escherichia coli. Infect Immun 86:86 http://dx.doi.org/10.1128/IAI.00746-17. [PubMed]
88. Porse A, Gumpert H, Kubicek-Sutherland JZ, Karami N, Adlerberth I, Wold AE, Andersson DI, Sommer MOA. 2017. Genome dynamics of Escherichia coli during antibiotic treatment: transfer, loss, and persistence of genetic elements in situ of the infant gut. Front Cell Infect Microbiol 7:126 http://dx.doi.org/10.3389/fcimb.2017.00126. [PubMed]
89. Brolund A, Franzén O, Melefors O, Tegmark-Wisell K, Sandegren L. 2013. Plasmidome-analysis of ESBL-producing Escherichia coli using conventional typing and high-throughput sequencing. PLoS One 8:e65793 http://dx.doi.org/10.1371/journal.pone.0065793. [PubMed]
90. Bai L, Wang L, Yang X, Wang J, Gan X, Wang W, Xu J, Chen Q, Lan R, Fanning S, Li F. 2017. Prevalence and molecular characteristics of extended-spectrum β-lactamase genes in Escherichia coli isolated from diarrheic patients in China. Front Microbiol 8:144 http://dx.doi.org/10.3389/fmicb.2017.00144.
91. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. 2017. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. MSphere 2:e00390-16 http://dx.doi.org/10.1128/mSphere.00390-16. [PubMed]
92. Platell JL, Trott DJ, Johnson JR, Heisig P, Heisig A, Clabots CR, Johnston B, Cobbold RN. 2012. Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob Agents Chemother 56:3898–3904 http://dx.doi.org/10.1128/AAC.06120-11. [PubMed]
93. Tchesnokova VL, Rechkina E, Chan D, Haile HG, Larson L, Ferrier K, Schroeder DW, Solyanik T, Shibuya S, Hansen K, Ralston JD, Riddell K, Scholes D, Sokurenko EV. 2019. Pandemic uropathogenic fluoroquinolone-resistant Escherichia coli have enhanced ability to persist in the gut and cause bacteriuria in healthy women. Clin Infect Dis 70:937–939 http://dx.doi.org/10.1093/cid/ciz547. [PubMed]
94. Johnson TJ, Elnekave E, Miller EA, Munoz-Aguayo J, Flores Figueroa C, Johnston B, Nielson DW, Logue CM, Johnson JR. 2018. Phylogenomic analysis of extraintestinal pathogenic Escherichia coli sequence type 1193, an emerging multidrug-resistant clonal group. Antimicrob Agents Chemother 63:e01913-18 http://dx.doi.org/10.1128/AAC.01913-18. [PubMed]
95. Mora A, Viso S, López C, Alonso MP, García-Garrote F, Dabhi G, Mamani R, Herrera A, Marzoa J, Blanco M, Blanco JE, Moulin-Schouleur M, Schouler C, Blanco J. 2013. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans. Vet Microbiol 167:506–512 http://dx.doi.org/10.1016/j.vetmic.2013.08.007. [PubMed]
96. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW. 2018. Persistent pandemic lineages of uropathogenic Escherichia coli in a college community from 1999 to 2017. J Clin Microbiol 56:e01834-17 http://dx.doi.org/10.1128/JCM.01834-17. [PubMed]
97. Manges AR, Harel J, Masson L, Edens TJ, Portt A, Reid-Smith RJ, Zhanel GG, Kropinski AM, Boerlin P. 2015. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 12:302–310 http://dx.doi.org/10.1089/fpd.2014.1860. [PubMed]
98. Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390 http://dx.doi.org/10.1111/1469-0691.12646. [PubMed]
99. Zhu Ge X, Jiang J, Pan Z, Hu L, Wang S, Wang H, Leung FC, Dai J, Fan H. 2014. Comparative genomic analysis shows that avian pathogenic Escherichia coli isolate IMT5155 (O2:K1:H5; ST complex 95, ST140) shares close relationship with ST95 APEC O1:K1 and human ExPEC O18:K1 strains. PLoS One 9:e112048 http://dx.doi.org/10.1371/journal.pone.0112048. [PubMed]
100. Mora A, López C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J. 2009. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol 9:132 http://dx.doi.org/10.1186/1471-2180-9-132. [PubMed]
101. Johnson TJ, Wannemuehler Y, Kariyawasam S, Johnson JR, Logue CM, Nolan LK. 2012. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates. J Bacteriol 194:2846–2853 http://dx.doi.org/10.1128/JB.06375-11. [PubMed]
102. Jørgensen SL, Stegger M, Kudirkiene E, Lilje B, Poulsen LL, Ronco T, Pires Dos Santos T, Kiil K, Bisgaard M, Pedersen K, Nolan LK, Price LB, Olsen RH, Andersen PS, Christensen H. 2019. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. MSphere 4:e00333-18 http://dx.doi.org/10.1128/mSphere.00333-18. [PubMed]
103. Pors SE, Olsen RH, Christensen JP. 2014. Variations in virulence of avian pathogenic Escherichia coli demonstrated by the use of a new in vivo infection model. Vet Microbiol 170:368–374 http://dx.doi.org/10.1016/j.vetmic.2014.02.043. [PubMed]
104. Pires-dos-Santos T, Bisgaard M, Kyvsgaard N, Christensen H. 2014. Occurrence of weak mutators among avian pathogenic Escherichia coli (APEC) isolates causing salpingitis and peritonitis in broiler breeders. Vet Microbiol 168:141–147 http://dx.doi.org/10.1016/j.vetmic.2013.10.008. [PubMed]
105. Heidemann Olsen R, Bisgaard M, Christensen JP, Kabell S, Christensen H. 2016. Pathology and molecular characterization of Escherichia coli associated with the avian salpingitis-peritonitis disease syndrome. Avian Dis 60:1–7 http://dx.doi.org/10.1637/11237-071715-Reg.1. [PubMed]
106. Schaufler K, Semmler T, Wieler LH, Wöhrmann M, Baddam R, Ahmed N, Müller K, Kola A, Fruth A, Ewers C, Guenther S. 2016. Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410: another successful pandemic clone? FEMS Microbiol Ecol 92:92 http://dx.doi.org/10.1093/femsec/fiv155. [PubMed]
107. Falgenhauer L, Imirzalioglu C, Ghosh H, Gwozdzinski K, Schmiedel J, Gentil K, Bauerfeind R, Kämpfer P, Seifert H, Michael GB, Schwarz S, Pfeifer Y, Werner G, Pietsch M, Roesler U, Guerra B, Fischer J, Sharp H, Käsbohrer A, Goesmann A, Hille K, Kreienbrock L, Chakraborty T. 2016. Circulation of clonal populations of fluoroquinolone-resistant CTX-M-15-producing Escherichia coli ST410 in humans and animals in Germany. Int J Antimicrob Agents 47:457–465 http://dx.doi.org/10.1016/j.ijantimicag.2016.03.019. [PubMed]
108. Ortega-Paredes D, Barba P, Mena-López S, Espinel N, Zurita J. 2018. Escherichia coli hyperepidemic clone ST410-A harboring bla CTX-M-15 isolated from fresh vegetables in a municipal market in Quito-Ecuador. Int J Food Microbiol 280:41–45 http://dx.doi.org/10.1016/j.ijfoodmicro.2018.04.037. [PubMed]
109. Timofte D, Maciuca IE, Williams NJ, Wattret A, Schmidt V. 2016. Veterinary hospital dissemination of CTX-M-15 extended-spectrum beta-lactamase-producing Escherichia coli ST410 in the United Kingdom. Microb Drug Resist 22:609–615 http://dx.doi.org/10.1089/mdr.2016.0036. [PubMed]
110. Irrgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E, Guerra B, Schmoger S, Imirzalioglu C, Chakraborty T, Hammerl JA, Käsbohrer A. 2017. CTX-M-15-producing E. coli isolates from food products in Germany are mainly associated with an IncF-type plasmid and belong to two predominant clonal E. coli lineages. Front Microbiol 8:2318 http://dx.doi.org/10.3389/fmicb.2017.02318. [PubMed]
111. Piazza A, Comandatore F, Romeri F, Pagani C, Floriano AM, Ridolfo A, Antona C, Brilli M, Mattioni Marchetti V, Bandi C, Gismondo MR, Rimoldi SG. 2018. First report of an ST410 OXA-181 and CTX-M-15 coproducing Escherichia coli clone in Italy: a whole-genome sequence characterization. Microb Drug Resist 24:1207–1209 http://dx.doi.org/10.1089/mdr.2017.0366. [PubMed]
112. Reynolds ME, Phan HTT, George S, Hubbard ATM, Stoesser N, Maciuca IE, Crook DW, Timofte D. 2019. Occurrence and characterization of Escherichia coli ST410 co-harbouring blaNDM-5, blaCMY-42 and blaTEM-190 in a dog from the UK. J Antimicrob Chemother 74:1207–1211 http://dx.doi.org/10.1093/jac/dkz017. [PubMed]
113. Feng Y, Liu L, Lin J, Ma K, Long H, Wei L, Xie Y, McNally A, Zong Z. 2019. Key evolutionary events in the emergence of a globally disseminated, carbapenem resistant clone in the Escherichia coli ST410 lineage. Commun Biol 2:322 http://dx.doi.org/10.1038/s42003-019-0569-1. [PubMed]
114. Kahn P, Helinski DR. 1964. Relationship between colicinogenic factors E1 and V and an F factor in Escherichia coli. J Bacteriol 88:1573–1579 http://dx.doi.org/10.1128/JB.88.6.1573-1579.1964. [PubMed]
115. Zhang LH, Fath MJ, Mahanty HK, Tai PC, Kolter R. 1995. Genetic analysis of the colicin V secretion pathway. Genetics 141:25–32.
116. Smith HW, Huggins MB. 1976. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J Gen Microbiol 92:335–350 http://dx.doi.org/10.1099/00221287-92-2-335. [PubMed]
117. Binns MM, Davies DL, Hardy KG. 1979. Cloned fragments of the plasmid ColV,I-K94 specifying virulence and serum resistance. Nature 279:778–781 http://dx.doi.org/10.1038/279778a0. [PubMed]
118. Williams PH. 1979. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun 26:925–932 http://dx.doi.org/10.1128/IAI.26.3.925-932.1979. [PubMed]
119. de Lorenzo V, Neilands JB. 1986. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. J Bacteriol 167:350–355 http://dx.doi.org/10.1128/JB.167.1.350-355.1986. [PubMed]
120. Hicks SJ, Rowbury RJ. 1986. Virulence plasmid-associated adhesion of Escherichia coli and its significance for chlorine resistance. J Appl Bacteriol 61:209–218 http://dx.doi.org/10.1111/j.1365-2672.1986.tb04278.x. [PubMed]
121. Cooper GE, Rowbury RJ. 1986. Virulence plasmid-associated sensitivity to acid in Escherichia coli and its possible significance in human infections. J Med Microbiol 22:231–236 http://dx.doi.org/10.1099/00222615-22-3-231. [PubMed]
122. Goodson M, Rowbury RJ. 1987. Altered phage P1 attachment to strains of Escherichia coli carrying the plasmid ColV,I-K94. J Gen Virol 68:1785–1789 http://dx.doi.org/10.1099/0022-1317-68-7-1785. [PubMed]
123. Dozois CM, Dho-Moulin M, Brée A, Fairbrother JM, Desautels C, Curtiss R III. 2000. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun 68:4145–4154 http://dx.doi.org/10.1128/IAI.68.7.4145-4154.2000. [PubMed]
124. Warner PJ, Williams PH, Bindereif A, Neilands JB. 1981. ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun 33:540–545 http://dx.doi.org/10.1128/IAI.33.2.540-545.1981. [PubMed]
125. Tivendale KA, Allen JL, Browning GF. 2009. Plasmid-borne virulence-associated genes have a conserved organization in virulent strains of avian pathogenic Escherichia coli. J Clin Microbiol 47:2513–2519 http://dx.doi.org/10.1128/JCM.00391-09. [PubMed]
126. Provence DL, Curtiss R III. 1992. Role of crl in avian pathogenic Escherichia coli: a knockout mutation of crl does not affect hemagglutination activity, fibronectin binding, or Curli production. Infect Immun 60:4460–4467 http://dx.doi.org/10.1128/IAI.60.11.4460-4467.1992. [PubMed]
127. Johnson TJ, Wannemuehler Y, Doetkott C, Johnson SJ, Rosenberger SC, Nolan LK. 2008. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J Clin Microbiol 46:3987–3996 http://dx.doi.org/10.1128/JCM.00816-08. [PubMed]
128. Olschläger T, Schramm E, Braun V. 1984. Cloning and expression of the activity and immunity genes of colicins B and M on ColBM plasmids. Mol Gen Genet 196:482–487 http://dx.doi.org/10.1007/BF00436196. [PubMed]
129. Collingwood C, Kemmett K, Williams N, Wigley P. 2014. Is the concept of avian pathogenic Escherichia coli as a single pathotype fundamentally flawed? Front Vet Sci 1:5 http://dx.doi.org/10.3389/fvets.2014.00005. [PubMed]
130. Morales C, Lee MD, Hofacre C, Maurer JJ. 2004. Detection of a novel virulence gene and a Salmonella virulence homologue among Escherichia coli isolated from broiler chickens. Foodborne Pathog Dis 1:160–165 http://dx.doi.org/10.1089/fpd.2004.1.160. [PubMed]
131. Murase K, Martin P, Porcheron G, Houle S, Helloin E, Pénary M, Nougayrède JP, Dozois CM, Hayashi T, Oswald E. 2016. HlyF produced by extraintestinal pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. J Infect Dis 213:856–865 http://dx.doi.org/10.1093/infdis/jiv506. [PubMed]
132. Wooley RE, Gibbs PS, Dickerson HW, Brown J, Nolan LK. 1996. Analysis of plasmids cloned from a virulent avian Escherichia coli and transformed into Escherichia coli DH5 alpha. Avian Dis 40:533–539 http://dx.doi.org/10.2307/1592260. [PubMed]
133. Mellata M, Ameiss K, Mo H, Curtiss R III. 2010. Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli chi7122 (O78:K80:H9). Infect Immun 78:1528–1541 http://dx.doi.org/10.1128/IAI.00981-09. [PubMed]
134. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Médigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S. 2009. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun 77:2272–2284 http://dx.doi.org/10.1128/IAI.01333-08. [PubMed]
135. Lemaître C, Bidet P, Bingen E, Bonacorsi S. 2012. Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine. BMC Microbiol 12:115 http://dx.doi.org/10.1186/1471-2180-12-115. [PubMed]
136. Lemaître C, Mahjoub-Messai F, Dupont D, Caro V, Diancourt L, Bingen E, Bidet P, Bonacorsi S. 2013. A conserved virulence plasmidic region contributes to the virulence of the multiresistant Escherichia coli meningitis strain S286 belonging to phylogenetic group C. PLoS One 8:e74423 http://dx.doi.org/10.1371/journal.pone.0074423. [PubMed]
137. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP, Wannemuehler YM, Alarcón CF, Li G, Tivendale KA, Logue CM, Nolan LK. 2010. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931–1942 http://dx.doi.org/10.1128/IAI.01174-09. [PubMed]
138. Lemaître C, Bidet P, Benoist JF, Schlemmer D, Sobral E, d’Humières C, Bonacorsi S. 2014. The ssbL gene harbored by the ColV plasmid of an Escherichia coli neonatal meningitis strain is an auxiliary virulence factor boosting the production of siderophores through the shikimate pathway. J Bacteriol 196:1343–1349 http://dx.doi.org/10.1128/JB.01153-13. [PubMed]
139. Genuini M, Bidet P, Benoist JF, Schlemmer D, Lemaitre C, Birgy A, Bonacorsi S. 2019. ShiF acts as an auxiliary factor of aerobactin secretion in meningitis Escherichia coli strain S88. BMC Microbiol 19:298 http://dx.doi.org/10.1186/s12866-019-1677-2. [PubMed]
140. McKinnon J, Roy Chowdhury P, Djordjevic SP. 2018. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int J Antimicrob Agents 52:430–435 http://dx.doi.org/10.1016/j.ijantimicag.2018.06.017. [PubMed]
141. Goldstone RJ, Popat R, Schuberth HJ, Sandra O, Sheldon IM, Smith DG. 2014. Genomic characterisation of an endometrial pathogenic Escherichia coli strain reveals the acquisition of genetic elements associated with extra-intestinal pathogenicity. BMC Genomics 15:1075 http://dx.doi.org/10.1186/1471-2164-15-1075. [PubMed]
142. Navarro-Garcia F. 2014. Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli/Shiga toxin-producing E. coli explosive cocktail of high virulence. Microbiol Spectr 2:EHEC-0008-2013 http://dx.doi.org/10.1128/microbiolspec.EHEC-0008-2013. [PubMed]
143. Mariani-Kurkdjian P, Lemaître C, Bidet P, Perez D, Boggini L, Kwon T, Bonacorsi S. 2014. Haemolytic-uraemic syndrome with bacteraemia caused by a new hybrid Escherichia coli pathotype. New Microbes New Infect 2:127–131 http://dx.doi.org/10.1002/nmi2.49. [PubMed]
144. Nüesch-Inderbinen M, Cernela N, Wüthrich D, Egli A, Stephan R. 2018. Genetic characterization of Shiga toxin producing Escherichia coli belonging to the emerging hybrid pathotype O80:H2 isolated from humans 2010-2017 in Switzerland. Int J Med Microbiol 308:534–538 http://dx.doi.org/10.1016/j.ijmm.2018.05.007. [PubMed]
145. Cointe A, Birgy A, Mariani-Kurkdjian P, Liguori S, Courroux C, Blanco J, Delannoy S, Fach P, Loukiadis E, Bidet P, Bonacorsi S. 2018. Emerging multidrug-resistant hybrid pathotype Shiga toxin-producing Escherichia coli O80 and related strains of clonal complex 165, Europe. Emerg Infect Dis 24:2262–2269 http://dx.doi.org/10.3201/eid2412.180272. [PubMed]
146. Soysal N, Mariani-Kurkdjian P, Smail Y, Liguori S, Gouali M, Loukiadis E, Fach P, Bruyand M, Blanco J, Bidet P, Bonacorsi S. 2016. Enterohemorrhagic Escherichia coli hybrid pathotype O80:H2 as a new therapeutic challenge. Emerg Infect Dis 22:1604–1612 http://dx.doi.org/10.3201/eid2209.160304. [PubMed]
147. Ingelbeen B, Bruyand M, Mariani-Kurkjian P, Le Hello S, Danis K, Sommen C, Bonacorsi S, de Valk H. 2018. Emerging Shiga-toxin-producing Escherichia coli serogroup O80 associated hemolytic and uremic syndrome in France, 2013-2016: differences with other serogroups. PLoS One 13:e0207492 http://dx.doi.org/10.1371/journal.pone.0207492. [PubMed]
148. Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. 2018. A comprehensive review of non- enterica subspecies of Salmonella enterica. Microbiol Res 206:60–73 http://dx.doi.org/10.1016/j.micres.2017.09.010. [PubMed]
149. Zhao L, Gao S, Huan H, Xu X, Zhu X, Yang W, Gao Q, Liu X. 2009. Comparison of virulence factors and expression of specific genes between uropathogenic Escherichia coli and avian pathogenic E. coli in a murine urinary tract infection model and a chicken challenge model. Microbiol Read 155:1634–1644 http://dx.doi.org/10.1099/mic.0.024869-0. [PubMed]
150. Jakobsen L, Spangholm DJ, Pedersen K, Jensen LB, Emborg HD, Agersø Y, Aarestrup FM, Hammerum AM, Frimodt-Møller N. 2010. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int J Food Microbiol 142:264–272 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.025. [PubMed]
151. Bergeron CR, Prussing C, Boerlin P, Daignault D, Dutil L, Reid-Smith RJ, Zhanel GG, Manges AR. 2012. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg Infect Dis 18:415–421 http://dx.doi.org/10.3201/eid1803.111099. [PubMed]
152. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiol Read 151:2097–2110 http://dx.doi.org/10.1099/mic.0.27499-0. [PubMed]
153. Johnson TJ, Logue CM, Wannemuehler Y, Kariyawasam S, Doetkott C, DebRoy C, White DG, Nolan LK. 2009. Examination of the source and extended virulence genotypes of Escherichia coli contaminating retail poultry meat. Foodborne Pathog Dis 6:657–667 http://dx.doi.org/10.1089/fpd.2009.0266. [PubMed]
154. Johnson JR, Delavari P, O’Bryan TT, Smith KE, Tatini S. 2005. Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999-2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 2:38–49 http://dx.doi.org/10.1089/fpd.2005.2.38. [PubMed]
155. Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK. 2008. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 74:7043–7050 http://dx.doi.org/10.1128/AEM.01395-08. [PubMed]
156. Nicolas-Chanoine MH, Petitjean M, Mora A, Mayer N, Lavigne JP, Boulet O, Leflon-Guibout V, Blanco J, Hocquet D. 2017. The ST131 Escherichia coli H22 subclone from human intestinal microbiota: comparison of genomic and phenotypic traits with those of the globally successful H30 subclone. BMC Microbiol 17:71 http://dx.doi.org/10.1186/s12866-017-0984-8. [PubMed]
157. Johnson JR, Porter SB, Johnston B, Thuras P, Clock S, Crupain M, Rangan U. 2017. Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts in the United States in 2013. Appl Environ Microbiol 83:e02956-16 http://dx.doi.org/10.1128/AEM.02956-16. [PubMed]
158. Zhuge X, Jiang M, Tang F, Sun Y, Ji Y, Xue F, Ren J, Zhu W, Dai J. 2019. Avian-source mcr-1-positive Escherichia coli is phylogenetically diverse and shares virulence characteristics with E. coli causing human extra-intestinal infections. Vet Microbiol 239:108483 http://dx.doi.org/10.1016/j.vetmic.2019.108483. [PubMed]
159. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K, Nordstrom L, Gauld L, Weaver B, Rolland D, Statham S, Horwinski J, Sariya S, Davis GS, Sokurenko E, Keim P, Johnson JR, Price LB. 2018. Escherichia coli ST131- H22 as a foodborne uropathogen. MBio 9:e00470-18 http://dx.doi.org/10.1128/mBio.00470-18. [PubMed]
160. Lindblom A, Kk S, Müller V, Öz R, Sandström H, Åhrén C, Westerlund F, Karami N. 2019. Interspecies plasmid transfer appears rare in sequential infections with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 93:380–385 http://dx.doi.org/10.1016/j.diagmicrobio.2018.10.014. [PubMed]
161. Bosch T, Schade R, Landman F, Schouls L, Dijk KV. 2019. A blaVIM-1 positive Aeromonas hydrophila strain in a near-drowning patient: evidence for interspecies plasmid transfer within the patient. Future Microbiol 14:1191–1197 http://dx.doi.org/10.2217/fmb-2019-0091. [PubMed]
162. Bosch T, Lutgens SPM, Hermans MHA, Wever PC, Schneeberger PM, Renders NHM, Leenders ACAP, Kluytmans JAJW, Schoffelen A, Notermans D, Witteveen S, Bathoorn E, Schouls LM. 2017. Outbreak of NDM-1-producing Klebsiella pneumoniae in a Dutch hospital, with interspecies transfer of the resistance plasmid and unexpected occurrence in unrelated health care centers. J Clin Microbiol 55:2380–2390 http://dx.doi.org/10.1128/JCM.00535-17. [PubMed]
163. Yamamoto M, Matsumura Y, Gomi R, Matsuda T, Tanaka M, Nagao M, Takakura S, Uemoto S, Ichiyama S. 2016. Interspecies dissemination of a mobilizable plasmid harboring bla IMP-19 and the possibility of horizontal gene transfer in a single patient. Antimicrob Agents Chemother 60:5412–5419 http://dx.doi.org/10.1128/AAC.00933-16. [PubMed]
164. Sidjabat HE, Heney C, George NM, Nimmo GR, Paterson DL. 2014. Interspecies transfer of bla IMP-4 in a patient with prolonged colonization by IMP-4-producing Enterobacteriaceae. J Clin Microbiol 52:3816–3818 http://dx.doi.org/10.1128/JCM.01491-14. [PubMed]
165. Goren MG, Carmeli Y, Schwaber MJ, Chmelnitsky I, Schechner V, Navon-Venezia S. 2010. Transfer of carbapenem-resistant plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in patient. Emerg Infect Dis 16:1014–1017 http://dx.doi.org/10.3201/eid1606.091671. [PubMed]
166. Hadziabdic S, Fischer J, Malorny B, Borowiak M, Guerra B, Kaesbohrer A, Gonzalez-Zorn B, Szabo I. 2018. In vivo transfer and microevolution of avian native IncA/C 2 bla NDM-1-carrying plasmid pRH-1238 during a broiler chicken infection study. Antimicrob Agents Chemother 62:e02128-17. [PubMed]
167. Gelbíčová T, Baráková A, Florianová M, Jamborová I, Zelendová M, Pospíšilová L, Koláčková I, Karpíšková R. 2019. Dissemination and comparison of genetic determinants of mcr-mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front Microbiol 10:2824 http://dx.doi.org/10.3389/fmicb.2019.02824. [PubMed]
168. Hargreaves ML, Shaw KM, Dobbins G, Snippes Vagnone PM, Harper JE, Boxrud D, Lynfield R, Aziz M, Price LB, Silverstein KA, Danzeisen JL, Youmans B, Case K, Sreevatsan S, Johnson TJ. 2015. Clonal dissemination of Enterobacter cloacae harboring bla KPC-3 in the upper midwestern United States. Antimicrob Agents Chemother 59:7723–7734 http://dx.doi.org/10.1128/AAC.01291-15. [PubMed]
169. Fricke WF, McDermott PF, Mammel MK, Zhao S, Johnson TJ, Rasko DA, Fedorka-Cray PJ, Pedroso A, Whichard JM, Leclerc JE, White DG, Cebula TA, Ravel J. 2009. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry. Appl Environ Microbiol 75:5963–5971 http://dx.doi.org/10.1128/AEM.00786-09. [PubMed]
170. Johnson TJ, Thorsness JL, Anderson CP, Lynne AM, Foley SL, Han J, Fricke WF, McDermott PF, White DG, Khatri M, Stell AL, Flores C, Singer RS. 2010. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One 5:e15524 http://dx.doi.org/10.1371/journal.pone.0015524. [PubMed]
171. Foley SL, Nayak R, Hanning IB, Johnson TJ, Han J, Ricke SC. 2011. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl Environ Microbiol 77:4273–4279 http://dx.doi.org/10.1128/AEM.00598-11. [PubMed]

Article metrics loading...



Bacterial plasmids have been linked to virulence in and since their initial discovery. Though the plasmid repertoire of these bacterial species is extremely diverse, virulence-associated attributes tend to be limited to a small subset of plasmid types. This is particularly true for extraintestinal pathogenic , or ExPEC, where a handful of plasmids have been recognized to confer virulence- and fitness-associated traits. The purpose of this review is to highlight the biological and genomic attributes of ExPEC virulence-associated plasmids, with an emphasis on high-risk dominant ExPEC clones. Two specific plasmid types are highlighted to illustrate the independently evolved commonalities of these clones relative to plasmid content. Furthermore, the dissemination of these plasmids within and between bacterial species is examined. These examples demonstrate the evolution of high-risk clones toward common goals, and they show that rare transfer events can shape the ecological landscape of dominant clones within a pathotype.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Comment moderation successfully completed


Image of Figure 1
Figure 1

Note that there is evidence for ColV plasmid carriage among and evidence for bidirectional transfer of these clones between poultry and humans.

Citation: Johnson T. 2021. Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Clones, EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0013-2020
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table
Table 1

Characteristics of high-risk clones of ExPEC

Citation: Johnson T. 2021. Role of Plasmids in the Ecology and Evolution of “High-Risk” Extraintestinal Pathogenic Clones, EcoSal Plus 2021; doi:10.1128/ecosalplus.ESP-0013-2020

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error