1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 8:

Pathogenesis

Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Tânia A. T. Gomes1, Tadasuke Ooka2, Rodrigo T. Hernandes3, Denise Yamamoto4,5, and Tetsuya Hayashi6
  • Editor: Michael S. Donnenberg7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; 2: Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan; 3: Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus de Botucatu, São Paulo, Brazil; 4: Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; 5: Universidade Santo Amaro, São Paulo, Brazil; 6: Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; 7: Virginia Commonwealth University School of Medicine, Richmond, VA
  • Received 11 February 2020 Accepted 28 April 2020 Published 29 June 2020
  • Address correspondence to Tânia A. T. Gomes, [email protected]; Tetsuya Hayashi, [email protected]
image of <span class="jp-italic">Escherichia albertii</span> Pathogenesis
    Preview this reference work article:
    Zoom in
    Zoomout

    Pathogenesis, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/1/ESP-0015-2019-1.gif /docserver/preview/fulltext/ecosalplus/9/1/ESP-0015-2019-2.gif
  • Abstract:

    is an emerging enteropathogen of humans and many avian species. This bacterium is a close relative of and has been frequently misidentified as enteropathogenic or enterohemorrhagic due to their similarity in phenotypic and genetic features, such as various biochemical properties and the possession of a type III secretion system encoded by the locus of enterocyte effacement. This pathogen causes outbreaks of gastroenteritis, and some strains produce Shiga toxin. Although many genetic and phenotypic studies have been published and the genome sequences of more than 200 strains are now available, the clinical significance of this species is not yet fully understood. The apparent zoonotic nature of the disease requires a deeper understanding of the transmission routes and mechanisms of to develop effective measures to control its transmission and infection. Here, we review the current knowledge of the phylogenic relationship of with other species and the biochemical and genetic properties of , with particular emphasis on the repertoire of virulence factors and the mechanisms of pathogenicity, and we hope this provides a basis for future studies of this important emerging enteropathogen.

  • Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019

References

1. Albert MJ, Alam K, Islam M, Montanaro J, Rahaman AS, Haider K, Hossain MA, Kibriya AK, Tzipori S. 1991. Hafnia alvei, a probable cause of diarrhea in humans. Infect Immun 59:1507–1513 http://dx.doi.org/10.1128/IAI.59.4.1507-1513.1991. [PubMed]
2. Albert MJ, Faruque SM, Ansaruzzaman M, Islam MM, Haider K, Alam K, Kabir I, Robins-Browne R. 1992. Sharing of virulence-associated properties at the phenotypic and genetic levels between enteropathogenic Escherichia coli and Hafnia alvei. J Med Microbiol 37:310–314 http://dx.doi.org/10.1099/00222615-37-5-310. [PubMed]
3. Ridell J, Siitonen A, Paulin L, Lindroos O, Korkeala H, Albert MJ. 1995. Characterization of Hafnia alvei by biochemical tests, random amplified polymorphic DNA PCR, and partial sequencing of 16S rRNA gene. J Clin Microbiol 33:2372–2376 http://dx.doi.org/10.1128/JCM.33.9.2372-2376.1995. [PubMed]
4. Ismaili A, Bourke B, de Azavedo JC, Ratnam S, Karmali MA, Sherman PM. 1996. Heterogeneity in phenotypic and genotypic characteristics among strains of Hafnia alvei. J Clin Microbiol 34:2973–2979 http://dx.doi.org/10.1128/JCM.34.12.2973-2979.1996. [PubMed]
5. Janda JM, Abbott SL, Albert MJ. 1999. Prototypal diarrheagenic strains of Hafnia alvei are actually members of the genus Escherichia. J Clin Microbiol 37:2399–2401 http://dx.doi.org/10.1128/JCM.37.8.2399-2401.1999. [PubMed]
6. Janda JM, Abbott SL, Khashe S, Probert W. 2002. Phenotypic and genotypic properties of the genus Hafnia. J Med Microbiol 51:575–622 http://dx.doi.org/10.1099/0022-1317-51-7-575. [PubMed]
7. Huys G, Cnockaert M, Janda JM, Swings J. 2003. Escherichia albertii sp. nov., a diarrhoeagenic species isolated from stool specimens of Bangladeshi children. Int J Syst Evol Microbiol 53:807–810 http://dx.doi.org/10.1099/ijs.0.02475-0. [PubMed]
8. Ooka T, Seto K, Kawano K, Kobayashi H, Etoh Y, Ichihara S, Kaneko A, Isobe J, Yamaguchi K, Horikawa K, Gomes TA, Linden A, Bardiau M, Mainil JG, Beutin L, Ogura Y, Hayashi T. 2012. Clinical significance of Escherichia albertii. Emerg Infect Dis 18:488–492 http://dx.doi.org/10.3201/eid1803.111401. [PubMed]
9. Yamamoto D, Hernandes RT, Liberatore AM, Abe CM, Souza RB, Romão FT, Sperandio V, Koh IH, Gomes TA. 2017. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites. PLoS One 12:e0171385 http://dx.doi.org/10.1371/journal.pone.0171385. [PubMed]
10. Lima MP, Yamamoto D, Santos ACM, Ooka T, Hernandes RT, Vieira MAM, Santos FF, Silva RM, Hayashi T, Gomes TAT. 2019. Phenotypic characterization and virulence-related properties of Escherichia albertii strains isolated from children with diarrhea in Brazil. Pathog Dis 77:77 http://dx.doi.org/10.1093/femspd/ftz014. [PubMed]
11. Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB, Burek KA, Haldorson GJ, Bradway DS, Ouellette L, Rurangirwa FR, Davis MA, Dobbin G, Whittam TS. 2010. Escherichia albertii in wild and domestic birds. Emerg Infect Dis 16:638–646 http://dx.doi.org/10.3201/eid1604.090695. [PubMed]
12. Bhatt S, Egan M, Critelli B, Kouse A, Kalman D, Upreti C. 2018. The evasive enemy: insights into the virulence and epidemiology of the emerging attaching and effacing pathogen Escherichia albertii. Infect Immun 87:e00254-18 http://dx.doi.org/10.1128/IAI.00254-18. [PubMed]
13. Hyma KE, Lacher DW, Nelson AM, Bumbaugh AC, Janda JM, Strockbine NA, Young VB, Whittam TS. 2005. Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 187:619–628 http://dx.doi.org/10.1128/JB.187.2.619-628.2005. [PubMed]
14. Ooka T, Ogura Y, Katsura K, Seto K, Kobayashi H, Kawano K, Tokuoka E, Furukawa M, Harada S, Yoshino S, Seto J, Ikeda T, Yamaguchi K, Murase K, Gotoh Y, Imuta N, Nishi J, Gomes TA, Beutin L, Hayashi T. 2015. Defining the genome features of Escherichia albertii, an emerging enteropathogen closely related to Escherichia coli. Genome Biol Evol 7:3170–3179. [PubMed]
15. Walk ST, Alm EW, Gordon DM, Ram JL, Toranzos GA, Tiedje JM, Whittam TS. 2009. Cryptic lineages of the genus Escherichia. Appl Environ Microbiol 75:6534–6544 http://dx.doi.org/10.1128/AEM.01262-09. [PubMed]
16. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. 2011. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci USA 108:7200–7205 http://dx.doi.org/10.1073/pnas.1015622108. [PubMed]
17. Ooka T, Seto K, Ogura Y, Nakamura K, Iguchi A, Gotoh Y, Honda M, Etoh Y, Ikeda T, Sugitani W, Konno T, Kawano K, Imuta N, Yoshiie K, Hara-Kudo Y, Murakami K, Hayashi T, Nishi J. 2019. O-antigen biosynthesis gene clusters of Escherichia albertii: their diversity and similarity to Escherichia coli gene clusters and the development of an O-genotyping method. Microb Genom 5:e000314 http://dx.doi.org/10.1099/mgen.0.000314. [PubMed]
18. Abbott SL, O’Connor J, Robin T, Zimmer BL, Janda JM. 2003. Biochemical properties of a newly described Escherichia species, Escherichia albertii. J Clin Microbiol 41:4852–4854 http://dx.doi.org/10.1128/JCM.41.10.4852-4854.2003. [PubMed]
19. Nimri LF. 2013. Escherichia albertii, a newly emerging enteric pathogen with poorly defined properties. Diagn Microbiol Infect Dis 77:91–95 http://dx.doi.org/10.1016/j.diagmicrobio.2013.06.028. [PubMed]
20. Murakami K, Maeda-Mitani E, Kimura H, Honda M, Ikeda T, Sugitani W, Konno T, Kawano K, Etoh Y, Sera N, Mizukoshi F, Saitoh T, Kawamura Y, Ishioka T, Ohnishi M, Oishi K, Fujimoto S. 2019. Non-biogroup 1 or 2 strains of the emerging zoonotic pathogen Escherichia albertii, their proposed assignment to biogroup 3, and their commonly detected characteristics. Front Microbiol 10:1543 http://dx.doi.org/10.3389/fmicb.2019.01543. [PubMed]
21. Nataro JP, Bopp CA, Fields PI, Kaper JB, Strockbine NA. 2007. Escherichia, Shigella, and Salmonella, p 670–687. In Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller MA (ed), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
22. Stenutz R, Weintraub A, Widmalm G. 2006. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30:382–403 http://dx.doi.org/10.1111/j.1574-6976.2006.00016.x. [PubMed]
23. Liu B, Knirel YA, Feng L, Perepelov AV, Senchenkova SN, Reeves PR, Wang L. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 38:56–89 http://dx.doi.org/10.1111/1574-6976.12034. [PubMed]
24. Rahman MZ, Akter S, Azmuda N, Sultana M, Weill FX, Khan SI, Grimont PA, Birkeland NK. 2013. Serological cross-reaction between O-antigens of Shigella dysenteriae type 4 and an environmental Escherichia albertii isolate. Curr Microbiol 67:590–595 http://dx.doi.org/10.1007/s00284-013-0405-7. [PubMed]
25. Zheng H, Naumenko OI, Wang H, Xiong Y, Wang J, Shashkov AS, Li Q, Knirel YA. 2019. Colitose-containing O-polysaccharide structure and O-antigen gene cluster of Escherichia albertii HK18069 related to those of Escherichia coli O55 and E. coli O128. Carbohydr Res 480:73–79 http://dx.doi.org/10.1016/j.carres.2019.05.013. [PubMed]
26. Wang H, Zheng H, Li Q, Xu Y, Wang J, Du P, Li X, Liu X, Zhang L, Zou N, Yan G, Zhang Z, Jing H, Xu J, Xiong Y. 2017. Defining the genetic features of O-antigen biosynthesis gene cluster and performance of an O-antigen serotyping scheme for Escherichia albertii. Front Microbiol 8:1857 http://dx.doi.org/10.3389/fmicb.2017.01857. [PubMed]
27. Zheng H, Shashkov AS, Xiong Y, Naumenko OI, Wang H, Senchenkova SN, Wang J, Knirel YA. 2017. Structure and gene cluster of the O-antigen of Escherichia albertii O1 resembling the O-antigen of Pseudomonas aeruginosa O5. Carbohydr Res 446-447:28–31 http://dx.doi.org/10.1016/j.carres.2017.04.024. [PubMed]
28. Naumenko OI, Zheng H, Senchenkova SN, Wang H, Li Q, Shashkov AS, Wang J, Knirel YA, Xiong Y. 2017. Structures and gene clusters of the O-antigens of Escherichia albertii O3, O4, O6, and O7. Carbohydr Res 449:17–22 http://dx.doi.org/10.1016/j.carres.2017.06.008. [PubMed]
29. Naumenko OI, Zheng H, Wang J, Senchenkova SN, Wang H, Shashkov AS, Chizhov AO, Li Q, Knirel YA, Xiong Y. 2018. Structure elucidation of the O-specific polysaccharide by NMR spectroscopy and selective cleavage and genetic characterization of the O-antigen of Escherichia albertii O5. Carbohydr Res 457:25–31 http://dx.doi.org/10.1016/j.carres.2017.12.010. [PubMed]
30. Naumenko OI, Zheng H, Xiong Y, Senchenkova SN, Wang H, Shashkov AS, Li Q, Wang J, Knirel YA. 2018. Studies on the O-polysaccharide of Escherichia albertii O2 characterized by non-stoichiometric O-acetylation and non-stoichiometric side-chain L-fucosylation. Carbohydr Res 461:80–84 http://dx.doi.org/10.1016/j.carres.2018.02.013. [PubMed]
31. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M, Pathogenic E. coli Working Group in Japan. 2015. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol 53:2427–2432 http://dx.doi.org/10.1128/JCM.00321-15. [PubMed]
32. Zhou Z, Alikhan NF, Mohamed K, Agama Study Group, Achtman M. 2015. The user’s guide to comparative genomics with EnteroBase. Three case studies: micro-clades within Salmonella enterica serovar Agama, ancient and modern populations of Yersinia pestis, and core genomic diversity of all Escherichia. bioRxiv. https://doi.org/10.1101/613554.
33. Konno T, Yatsuyanagi J, Takahashi S, Kumagai Y, Wada E, Chiba M, Saito S. 2012. Isolation and identification of Escherichia albertii from a patient in an outbreak of gastroenteritis. Jpn J Infect Dis 65:203–207 http://dx.doi.org/10.7883/yoken.65.203. [PubMed]
34. Asoshima N, Matsuda M, Shigemura K, Honda M, Yoshida H, Hiwaki H, Ogata K, Oda T. 2014. Identification of Escherichia albertii as a causative agent of a food-borne outbreak occurred in 2003. Jpn J Infect Dis 67:139–140 http://dx.doi.org/10.7883/yoken.67.139. [PubMed]
35. Ooka T, Tokuoka E, Furukawa M, Nagamura T, Ogura Y, Arisawa K, Harada S, Hayashi T. 2013. Human gastroenteritis outbreak associated with Escherichia albertii, Japan. Emerg Infect Dis 19:144–146 http://dx.doi.org/10.3201/eid1901.120646. [PubMed]
36. Baba A, Ebuchi S, Uryu K, Hiwaki H, Ogata K, Washimi E, Hasegawa A, Utiyama S. 2006. An outbreak of water-borne gastroenteritis caused by diarrheagenic Escherichia coli possessing eae gene. Jpn J Infect Dis 59:59–60.
37. Inglis TJ, Merritt AJ, Bzdyl N, Lansley S, Urosevic MN. 2015. First bacteraemic human infection with Escherichia albertii. New Microbes New Infect 8:171–173 http://dx.doi.org/10.1016/j.nmni.2015.07.003. [PubMed]
38. Gordon DM. 2011. Reservoirs of Infection: the Epidemiological Characteristics of an Emerging Pathogen, Escherichia albertii. Research School of Biology, Australian National University, Canberra, Australia.
39. Masuda K, Ooka T, Akita H, Hiratsuka T, Takao S, Fukada M, Inoue K, Honda M, Toda J, Sugitani W, Narimatsu H, Ishioka T, Hirai S, Sekizuka T, Kuroda M, Morita Y, Hayashi T, Kimura H, Oishi K, Ohnishi M, Fujimoto S, Murakami K. 2020. Epidemiological aspects of Escherichia albertii outbreaks in Japan and genetic characteristics of the causative pathogen. Foodborne Pathog Dis 17:144–150 http://dx.doi.org/10.1089/fpd.2019.2654. [PubMed]
40. Maeda E, Murakami K, Sera N, Ito K, Fujimoto S. 2015. Detection of Escherichia albertii from chicken meat and giblets. J Vet Med Sci 77:871–873 http://dx.doi.org/10.1292/jvms.14-0640. [PubMed]
41. Wang H, Li Q, Bai X, Xu Y, Zhao A, Sun H, Deng J, Xiao B, Liu X, Sun S, Zhou Y, Wang B, Fan Z, Chen X, Zhang Z, Xu J, Xiong Y. 2016. Prevalence of eae-positive, lactose non-fermenting Escherichia albertii from retail raw meat in China. Epidemiol Infect 144:45–52 http://dx.doi.org/10.1017/S0950268815001120. [PubMed]
42. Maheux AF, Boudreau DK, Bergeron MG, Rodriguez MJ. 2014. Characterization of Escherichia fergusonii and Escherichia albertii isolated from water. J Appl Microbiol 117:597–609 http://dx.doi.org/10.1111/jam.12551. [PubMed]
43. Tokuoka E, Furukawa K, Nagamura T, Harada F, Ekinaga K, Tokunaga H. 2012. Food poisoning outbreak due to atypical EPEC OUT:HNM, May 2011–Kumamoto. Infect Agents Surveill Rep 33:8–9.
44. Romão FT, Hernandes RT, Ooka T, Hayashi T, Sperandio V, Gomes TAT. 2018. Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen. Genome Announc 6:e00075-e18 http://dx.doi.org/10.1128/genomeA.00075-18. [PubMed]
45. Fiedoruk K, Daniluk T, Swiecicka I, Murawska E, Sciepuk M, Leszczynska K. 2014. First complete genome sequence of Escherichia albertii Strain KF1, a new potential human enteric pathogen. Genome Announc 2:e00004-14 http://dx.doi.org/10.1128/genomeA.00004-14. [PubMed]
46. Schroeder MR, Juieng P, Batra D, Knipe K, Rowe LA, Sheth M, Smith P, Garcia-Toledo L, Loparev VN, Lindsey RL. 2018. High-quality complete and draft genome sequences for three Escherichia spp. and three Shigella spp. generated with Pacific Biosciences and Illumina sequencing and optical mapping. Genome Announc 6:e01384-17 http://dx.doi.org/10.1128/genomeA.01384-17. [PubMed]
47. Lindsey RL, Rowe LA, Batra D, Smith P, Strockbine NA. 2019. PacBio Genome Sequences of Eight Escherichia albertii strains isolated from humans in the United States. Microbiol Resour Announc 8:e01663-18. doi:10.1128/MRA.01663-18. [PubMed]
48. Janakiraman A, Slauch JM. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155 http://dx.doi.org/10.1046/j.1365-2958.2000.01783.x. [PubMed]
49. Moll A, Manning PA, Timmis KN. 1980. Plasmid-determined resistance to serum bactericidal activity: a major outer membrane protein, the traT gene product, is responsible for plasmid-specified serum resistance in Escherichia coli. Infect Immun 28:359–367.
50. Lacher DW, Steinsland H, Whittam TS. 2006. Allelic subtyping of the intimin locus ( eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett 261:80–87 http://dx.doi.org/10.1111/j.1574-6968.2006.00328.x. [PubMed]
51. Deng W, Puente JL, Gruenheid S, Li Y, Vallance BA, Vázquez A, Barba J, Ibarra JA, O’Donnell P, Metalnikov P, Ashman K, Lee S, Goode D, Pawson T, Finlay BB. 2004. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci USA 101:3597–3602 http://dx.doi.org/10.1073/pnas.0400326101. [PubMed]
52. Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R, Matthews S, Marches O, Frankel G, Hayashi T, Pallen MJ. 2006. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103:14941–14946 http://dx.doi.org/10.1073/pnas.0604891103. [PubMed]
53. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, Kodama T, Abe H, Nakayama K, Kurokawa K, Tobe T, Hattori M, Hayashi T. 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci USA 106:17939–17944 http://dx.doi.org/10.1073/pnas.0903585106. [PubMed]
54. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, Han CG, Ohtsubo E, Nakayama K, Murata T, Tanaka M, Tobe T, Iida T, Takami H, Honda T, Sasakawa C, Ogasawara N, Yasunaga T, Kuhara S, Shiba T, Hattori M, Shinagawa H. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 8:11–22 http://dx.doi.org/10.1093/dnares/8.1.11. [PubMed]
55. Ren CP, Chaudhuri RR, Fivian A, Bailey CM, Antonio M, Barnes WM, Pallen MJ. 2004. The ETT2 gene cluster, encoding a second type III secretion system from Escherichia coli, is present in the majority of strains but has undergone widespread mutational attrition. J Bacteriol 186:3547–3560 http://dx.doi.org/10.1128/JB.186.11.3547-3560.2004. [PubMed]
56. Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Strockbine NA, Melton-Celsa AR, Sanchez M, Persson S, O’Brien AD. 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951–2963 http://dx.doi.org/10.1128/JCM.00860-12. [PubMed]
57. Murakami K, Etoh Y, Tanaka E, Ichihara S, Horikawa K, Kawano K, Ooka T, Kawamura Y, Ito K. 2014. Shiga toxin 2f-producing Escherichia albertii from a symptomatic human. Jpn J Infect Dis 67:204–208 http://dx.doi.org/10.7883/yoken.67.204. [PubMed]
58. Iyoda S, Ishijima N, LEE K, Ishihara T, Ohnishi M. 2016. Stx2f-positive Escherichia albertii isolated from a patient with hemolytic uremic syndrome, August 2016. Infect Agents Surveill Rep 37:255.
59. Hinenoya A, Yasuda N, Hibino T, Shima A, Nagita A, Tsukamoto T, Yamasaki S. 2017. Isolation and characterization of an Escherichia albertii strain producing three different toxins from a child with diarrhea. Jpn J Infect Dis 70:252–257 http://dx.doi.org/10.7883/yoken.JJID.2016.186. [PubMed]
60. Ori EL, Takagi EH, Andrade TS, Miguel BT, Cergole-Novella MC, Guth BEC, Hernandes RT, Dias RCB, Pinheiro SRS, Camargo CH, Romero EC, Dos Santos LF. 2019. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol Infect 147:e10 http://dx.doi.org/10.1017/S0950268818002595. [PubMed]
61. Brandal LT, Tunsjø HS, Ranheim TE, Løbersli I, Lange H, Wester AL. 2015. Shiga toxin 2a in Escherichia albertii. J Clin Microbiol 53:1454–1455 http://dx.doi.org/10.1128/JCM.03378-14. [PubMed]
62. Scott DA, Kaper JB. 1994. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun 62:244–251 http://dx.doi.org/10.1128/IAI.62.1.244-251.1994. [PubMed]
63. Lara-Tejero M, Galán JE. 2001. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 69:4358–4365 http://dx.doi.org/10.1128/IAI.69.7.4358-4365.2001. [PubMed]
64. Tóth I, Nougayrède JP, Dobrindt U, Ledger TN, Boury M, Morabito S, Fujiwara T, Sugai M, Hacker J, Oswald E. 2009. Cytolethal distending toxin type I and type IV genes are framed with lambdoid prophage genes in extraintestinal pathogenic Escherichia coli. Infect Immun 77:492–500 http://dx.doi.org/10.1128/IAI.00962-08. [PubMed]
65. Hinenoya A, Yasuda N, Mukaizawa N, Sheikh S, Niwa Y, Awasthi SP, Asakura M, Tsukamoto T, Nagita A, Albert MJ, Yamasaki S. 2017. Association of cytolethal distending toxin-II gene-positive Escherichia coli with Escherichia albertii, an emerging enteropathogen. Int J Med Microbiol 307:564–571 http://dx.doi.org/10.1016/j.ijmm.2017.08.008. [PubMed]
66. An H, Fairbrother JM, Desautels C, Harel J. 1999. Distribution of a novel locus called Paa (porcine attaching and effacing associated) among enteric Escherichia coli. Adv Exp Med Biol 473:179–184 http://dx.doi.org/10.1007/978-1-4615-4143-1_17. [PubMed]
67. Murakami K, Kimura S, Nagafuchi O, Sekizuka T, Onozuka D, Mizukoshi F, Tsukagoshi H, Ishioka T, Asai T, Hirai S, Musashi M, Suzuki M, Ohnishi M, Oishi K, Saruki N, Kimura H, Iyoda S, Kuroda M, Fujimoto S. 2020. Flagellum expression and swimming activity by the zoonotic pathogen Escherichia albertii. Environ Microbiol Rep 12:92–96 http://dx.doi.org/10.1111/1758-2229.12818. [PubMed]
68. Ikeda T, Shinagawa T, Ito T, Ohno Y, Kubo A, Nishi J, Gotoh Y, Ogura Y, Ooka T, Hayashi T. 2020. Hypoosmotic stress induces flagellar biosynthesis and swimming motility in Escherichia albertii. Commun Biol 3:87 http://dx.doi.org/10.1038/s42003-020-0816-5. [PubMed]
69. Spira WM, Sack RB, Froehlich JL. 1981. Simple adult rabbit model for Vibrio cholerae and enterotoxigenic Escherichia coli diarrhea. Infect Immun 32:739–747 http://dx.doi.org/10.1128/IAI.32.2.739-747.1981. [PubMed]
70. Pazzaglia G, Sack RB, Bourgeois AL, Froehlich J, Eckstein J. 1990. Diarrhea and intestinal invasiveness of Aeromonas strains in the removable intestinal tie rabbit model. Infect Immun 58:1924–1931 http://dx.doi.org/10.1128/IAI.58.6.1924-1931.1990. [PubMed]
71. Rodrigues J, Scaletsky IC, Campos LC, Gomes TA, Whittam TS, Trabulsi LR. 1996. Clonal structure and virulence factors in strains of Escherichia coli of the classic serogroup O55. Infect Immun 64:2680–2686 http://dx.doi.org/10.1128/IAI.64.7.2680-2686.1996. [PubMed]
72. Scaletsky IC, Silva ML, Trabulsi LR. 1984. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536 http://dx.doi.org/10.1128/IAI.45.2.534-536.1984. [PubMed]
73. Girón JA, Ho AS, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713 http://dx.doi.org/10.1126/science.1683004. [PubMed]
74. Donnenberg MS, Girón JA, Nataro JP, Kaper JB. 1992. A plasmid-encoded type IV fimbrial gene of enteropathogenic Escherichia coli associated with localized adherence. Mol Microbiol 6:3427–3437 http://dx.doi.org/10.1111/j.1365-2958.1992.tb02210.x. [PubMed]
75. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520 http://dx.doi.org/10.1016/S0092-8674(00)80437-7.
76. Pelayo JS, Scaletsky ICA, Pedroso MZ, Sperandio V, Girón JA, Frankel G, Trabulsi LR. 1999. Virulence properties of atypical EPEC strains. J Med Microbiol 48:41–49 http://dx.doi.org/10.1099/00222615-48-1-41. [PubMed]
77. Carvalho HM, Teel LD, Kokai-Kun JF, O’Brien AD. 2005. Antibody against the carboxyl terminus of intimin alpha reduces enteropathogenic Escherichia coli adherence to tissue culture cells and subsequent induction of actin polymerization. Infect Immun 73:2541–2546 http://dx.doi.org/10.1128/IAI.73.4.2541-2546.2005. [PubMed]
78. Hernandes RT, Vieira MA, Carneiro SM, Salvador FA, Gomes TA. 2006. Characterization of atypical enteropathogenic Escherichia coli strains that express typical localized adherence in HeLa cells in the absence of the bundle-forming pilus. J Clin Microbiol 44:4214–4217 http://dx.doi.org/10.1128/JCM.01022-06. [PubMed]
79. Hernandes RT, Silva RM, Carneiro SM, Salvador FA, Fernandes MC, Padovan AC, Yamamoto D, Mortara RA, Elias WP, da Silva Briones MR, Gomes TA. 2008. The localized adherence pattern of an atypical enteropathogenic Escherichia coli is mediated by intimin omicron and unexpectedly promotes HeLa cell invasion. Cell Microbiol 10:415–425.
80. Pacheco VC, Yamamoto D, Abe CM, Hernandes RT, Mora A, Blanco J, Gomes TA. 2014. Invasion of differentiated intestinal Caco-2 cells is a sporadic property among atypical enteropathogenic Escherichia coli strains carrying common intimin subtypes. Pathog Dis 70:167–175 http://dx.doi.org/10.1111/2049-632X.12112. [PubMed]
81. Yamamoto D, Hernandes RT, Blanco M, Greune L, Schmidt MA, Carneiro SM, Dahbi G, Blanco JE, Mora A, Blanco J, Gomes TA. 2009. Invasiveness as a putative additional virulence mechanism of some atypical enteropathogenic Escherichia coli strains with different uncommon intimin types. BMC Microbiol 9:146 http://dx.doi.org/10.1186/1471-2180-9-146. [PubMed]
82. Vieira MA, Andrade JR, Trabulsi LR, Rosa AC, Dias AM, Ramos SR, Frankel G, Gomes TA. 2001. Phenotypic and genotypic characteristics of Escherichia coli strains of non-enteropathogenic E. coli (EPEC) serogroups that carry EAE and lack the EPEC adherence factor and Shiga toxin DNA probe sequences. J Infect Dis 183:762–772 http://dx.doi.org/10.1086/318821. [PubMed]
83. Hernandes RT, De la Cruz MA, Yamamoto D, Girón JA, Gomes TA. 2013. Dissection of the role of pili and type 2 and 3 secretion systems in adherence and biofilm formation of an atypical enteropathogenic Escherichia coli strain. Infect Immun 81:3793–3802 http://dx.doi.org/10.1128/IAI.00620-13. [PubMed]
84. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176 http://dx.doi.org/10.1093/emboj/17.8.2166. [PubMed]
85. Nataro JP, Kaper JB, Robins-Browne R, Prado V, Vial P, Levine MM. 1987. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831 http://dx.doi.org/10.1097/00006454-198709000-00008. [PubMed]
86. Romão FT, Hernandes RT, Yamamoto D, Osugui L, Popi AF, Gomes TA. 2014. Influence of environmental factors in the adherence of an atypical enteropathogenic Escherichia coli strain to epithelial cells. BMC Microbiol 14:299 http://dx.doi.org/10.1186/s12866-014-0299-y. [PubMed]
87. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41:1340–1351 http://dx.doi.org/10.1128/IAI.41.3.1340-1351.1983. [PubMed]
88. Knutton S, Lloyd DR, McNeish AS. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun 55:69–77 http://dx.doi.org/10.1128/IAI.55.1.69-77.1987. [PubMed]
89. Knutton S, Baldwin T, Williams PH, McNeish AS. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun 57:1290–1298 http://dx.doi.org/10.1128/IAI.57.4.1290-1298.1989. [PubMed]
90. La Ragione RM, McLaren IM, Foster G, Cooley WA, Woodward MJ. 2002. Phenotypic and genotypic characterization of avian Escherichia coli O86:K61 isolates possessing a gamma-like intimin. Appl Environ Microbiol 68:4932–4942 http://dx.doi.org/10.1128/AEM.68.10.4932-4942.2002. [PubMed]
91. McCormick BA, Siber AM, Maurelli AT. 1998. Requirement of the Shigella flexneri virulence plasmid in the ability to induce trafficking of neutrophils across polarized monolayers of the intestinal epithelium. Infect Immun 66:4237–4243 http://dx.doi.org/10.1128/IAI.66.9.4237-4243.1998. [PubMed]
92. Donato KA, Zareie M, Jassem AN, Jandu N, Alingary N, Carusone SC, Johnson-Henry KC, Sherman PM. 2008. Escherichia albertii and Hafnia alvei are candidate enteric pathogens with divergent effects on intercellular tight junctions. Microb Pathog 45:377–385 http://dx.doi.org/10.1016/j.micpath.2008.09.004. [PubMed]
93. Deitch EA. 1990. Bacterial translocation of the gut flora. J Trauma 30(Suppl) :S184–S189 http://dx.doi.org/10.1097/00005373-199012001-00037. [PubMed]
94. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. 2011. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438 http://dx.doi.org/10.1111/j.1365-2958.2011.07661.x. [PubMed]
95. McNamara BP, Koutsouris A, O’Connell CB, Nougayréde JP, Donnenberg MS, Hecht G. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J Clin Invest 107:621–629 http://dx.doi.org/10.1172/JCI11138. [PubMed]
96. Peralta-Ramírez J, Hernandez JM, Manning-Cela R, Luna-Muñoz J, Garcia-Tovar C, Nougayréde JP, Oswald E, Navarro-Garcia F. 2008. EspF interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun 76:3854–3868 http://dx.doi.org/10.1128/IAI.00072-08. [PubMed]
97. Martinez-Argudo I, Sands C, Jepson MA. 2007. Translocation of enteropathogenic Escherichia coli across an in vitro M cell model is regulated by its type III secretion system. Cell Microbiol 9:1538–1546 http://dx.doi.org/10.1111/j.1462-5822.2007.00891.x. [PubMed]
98. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S, Yabashi A, Waguri S, Nakato G, Kimura S, Murakami T, Iimura M, Hamura K, Fukuoka S, Lowe AW, Itoh K, Kiyono H, Ohno H. 2009. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 462:226–230 http://dx.doi.org/10.1038/nature08529. [PubMed]
99. Cieza RJ, Hu J, Ross BN, Sbrana E, Torres AG. 2015. The IbeA invasin of adherent-invasive Escherichia coli mediates interaction with intestinal epithelia and macrophages. Infect Immun 83:1904–1918 http://dx.doi.org/10.1128/IAI.03003-14. [PubMed]
100. Okuda J, Kurazono H, Takeda Y. 1995. Distribution of the cytolethal distending toxin A gene ( cdtA) among species of Shigella and Vibrio, and cloning and sequencing of the cdt gene from Shigella dysenteriae. Microb Pathog 18:167–172 http://dx.doi.org/10.1016/S0882-4010(95)90022-5.
101. Pickett CL, Pesci EC, Cottle DL, Russell G, Erdem AN, Zeytin H. 1996. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect Immun 64:2070–2078 http://dx.doi.org/10.1128/IAI.64.6.2070-2078.1996.
102. Cope LD, Lumbley S, Latimer JL, Klesney-Tait J, Stevens MK, Johnson LS, Purven M, Munson RS Jr, Lagergard T, Radolf JD, Hansen EJ. 1997. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci USA 94:4056–4061 http://dx.doi.org/10.1073/pnas.94.8.4056.
103. Mayer MP, Bueno LC, Hansen EJ, DiRienzo JM. 1999. Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 67:1227–1237 http://dx.doi.org/10.1128/IAI.67.3.1227-1237.1999.
104. Chien CC, Taylor NS, Ge Z, Schauer DB, Young VB, Fox JG. 2000. Identification of cdtB homologues and cytolethal distending toxin activity in enterohepatic Helicobacter spp. J Med Microbiol 49:525–534 http://dx.doi.org/10.1099/0022-1317-49-6-525.
105. Jinadasa RN, Bloom SE, Weiss RS, Duhamel GE. 2011. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages. Microbiology 157:1851–1875 http://dx.doi.org/10.1099/mic.0.049536-0.
106. Grasso F, Frisan T. 2015. Bacterial genotoxins: merging the DNA damage response into infection biology. Biomolecules 5:1762–1782 http://dx.doi.org/10.3390/biom5031762.
107. Taieb F, Petit C, Nougayrède JP, Oswald E. 2016. The enterobacterial genotoxins: cytolethal distending toxin and colibactin. Ecosal Plus 2016. doi:10.1128/ecosalplus.ESP-0008-2016. http://dx.doi.org/10.1128/ecosalplus.ESP-0008-2016.
108. Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G. 2013. From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the Escherichia coli cytolethal distending toxin. Cell Microbiol 15:1–15 http://dx.doi.org/10.1111/cmi.12028.
109. Hinenoya A, Ichimura H, Awasthi SP, Yasuda N, Yatsuyanagi J, Yamasaki S. 2019. Phenotypic and molecular characterization of Escherichia albertii: further surrogates to avoid potential laboratory misidentification. Int J Med Microbiol 309:108–115 http://dx.doi.org/10.1016/j.ijmm.2018.12.003.
110. Shiga K. 1898. Ueber den Dysenterie-bacillus ( Bacillus dysenteriae). Zentralbl Bakteriol Orig 24:913–918.
111. O’Brien AD, LaVeck GD. 1983. Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infect Immun 40:675–683 http://dx.doi.org/10.1128/IAI.40.2.675-683.1983.
112. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 http://dx.doi.org/10.1126/science.284.5418.1318.
113. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623–633 http://dx.doi.org/10.1038/nrmicro2415.
114. Beloin C, Roux A, Ghigo JM. 2008. Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289 http://dx.doi.org/10.1007/978-3-540-75418-3_12.
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0015-2019
2020-06-29
2021-04-19

Abstract:

is an emerging enteropathogen of humans and many avian species. This bacterium is a close relative of and has been frequently misidentified as enteropathogenic or enterohemorrhagic due to their similarity in phenotypic and genetic features, such as various biochemical properties and the possession of a type III secretion system encoded by the locus of enterocyte effacement. This pathogen causes outbreaks of gastroenteritis, and some strains produce Shiga toxin. Although many genetic and phenotypic studies have been published and the genome sequences of more than 200 strains are now available, the clinical significance of this species is not yet fully understood. The apparent zoonotic nature of the disease requires a deeper understanding of the transmission routes and mechanisms of to develop effective measures to control its transmission and infection. Here, we review the current knowledge of the phylogenic relationship of with other species and the biochemical and genetic properties of , with particular emphasis on the repertoire of virulence factors and the mechanisms of pathogenicity, and we hope this provides a basis for future studies of this important emerging enteropathogen.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The neighbor-joining tree was constructed using the sequences of 111 single-copy genes that are fully conserved in the analyzed genomes of ( = 34), ( = 44), ( = 5), and other species ( = 15). These genes show a low probability of recombination. The labels “A, B1, B2, D, and E” in indicate the major phylogroups of . These phylogroups include strains of various pathotypes. The figure was taken from our published article ( 14 ) with modifications.

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The maximum-likelihood tree was reconstructed based on the core gene sequences ( 17 ). Strain names are indicated at each tip, and 14 completely sequenced strains are indicated. The information on the geographic distribution and isolation sources of the strains and the distribution of 40 EAOgs and virulence-related genes are also shown. The 7 EAOgs identified in both clades are indicated by triangles. The presence of LEE and ETT2 regions were determined by a tblastn search of the and genes, respectively, as marker genes for each region.

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Shading and numbers between O-AGCs indicate the nucleotide sequence identities (%) of each gene. The figure was taken from our published article ( 17 ) with modifications.

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The amino acid sequence identities (A and C) and the nucleotide sequence identities (B) are presented. The dashed lines in (A) indicate the regions missing in each strain. The figure was taken from our published article ( 14 ) with modifications.

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

After 8 hours of inoculation, microvilli effacement and pedestal-like structures (asterisk) underneath adherent bacteria were demonstrated, thus confirming the ability of strain 1551-2 to induce AE lesion formation .

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Summary of the genome information of 14 completely genome-sequenced strains

Citation: Gomes T, Ooka T, Hernandes R, Yamamoto D, Hayashi T. 2020. Pathogenesis, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0015-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error