1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Hamed Mosaei1, and Nikolay Zenkin2
  • Editors: Susan T. Lovett3, Deborah Hinton4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK; 2: Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK; 3: Brandeis University, Waltham, MA; 4: Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MA
  • Received 28 November 2019 Accepted 27 January 2020 Published 27 April 2020
  • Address correspondence to Hamed Mosaei, [email protected]
image of Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules
    Preview this reference work article:
    Zoom in
    Zoomout

    Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/1/ESP-0017-2019-1.gif /docserver/preview/fulltext/ecosalplus/9/1/ESP-0017-2019-2.gif
  • Abstract:

    RNA polymerases (RNAPs) accomplish the first step of gene expression in all living organisms. However, the sequence divergence between bacterial and human RNAPs makes the bacterial RNAP a promising target for antibiotic development. The most clinically important and extensively studied class of antibiotics known to inhibit bacterial RNAP are the rifamycins. For example, rifamycins are a vital element of the current combination therapy for treatment of tuberculosis. Here, we provide an overview of the history of the discovery of rifamycins, their mechanisms of action, the mechanisms of bacterial resistance against them, and progress in their further development.

  • Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019

References

1. Mosaei H, Harbottle J. 2019. Mechanisms of antibiotics inhibiting bacterial RNA polymerase. Biochem Soc Trans 47:339–350 http://dx.doi.org/10.1042/BST20180499. [PubMed]
2. World Health Organization. 2018. Global Tuberculosis Report. https://apps.who.int/iris/bitstream/handle/10665/274453/9789241565646-eng.pdf?ua=1&ua=1.
3. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912 http://dx.doi.org/10.1016/S0092-8674(01)00286-0.
4. Floss HG, Yu T-W. 2005. Rifamycin-mode of action, resistance, and biosynthesis. Chem Rev 105:621–632 http://dx.doi.org/10.1021/cr030112j. [PubMed]
5. Sensi P, Margalith P, Timbal MT. 1959. Rifomycin, a new antibiotic; preliminary report. Farmaco Sci 14:146–147.
6. Thiemann JE, Zucco G, Pelizza G. 1969. A proposal for the transfer of Streptomyces mediterranei Margalith and Beretta 1960 to the genus Nocardia as Nocardia mediterranea (Margalith and Beretta) comb. nov. Arch Mikrobiol 67:147–155 http://dx.doi.org/10.1007/BF00409680. [PubMed]
7. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. 1986. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 36:29–37 http://dx.doi.org/10.1099/00207713-36-1-29.
8. Margalith P, Pagani H. 1961. Rifomycin. XIV. Production of rifomycin B. Appl Microbiol 9:325–334 http://dx.doi.org/10.1128/AEM.9.4.325-334.1961. [PubMed]
9. Sensi P, Timbal MT, Maffii G. 1960. Rifomycin IX. Two new antibiotics of rifomycin family: rifomycin S and rifomycin SV. Preliminary report. Experientia 16:412 http://dx.doi.org/10.1007/BF02178838. [PubMed]
10. Greco AM, Ballotta R, Sensi P. 1961. Activation of rifomycin B and rifomycin 0. Production and properties of rifomycin S and rifomycin S. Farmaco 16:165–180.
11. Fueresz S, Timbal MT. 1963. Antibacterial activity of rifamycins. Chemotherapia (Basel) 257:200–208 http://dx.doi.org/10.1159/000220123. [PubMed]
12. Bergamini N, Fowst G. 1965. Rifamycin SV. A review. Arzneimittelforschung 15(Suppl) :951–1002.
13. Sensi P. 1983. History of the development of rifampin. Rev Infect Dis 5(Suppl 3) :S402–S406 http://dx.doi.org/10.1093/clinids/5.Supplement_3.S402. [PubMed]
14. World Health Organization. 2019. Global tuberculosis report. https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf?ua=1.
15. Hartmann G, Behr W, Beissner K-A, Honikel K, Sippel A. 1968. Antibiotics as inhibitors of nucleic acid and protein synthesis. Angew Chem Int Ed Engl 7:693–701 http://dx.doi.org/10.1002/anie.196806931. [PubMed]
16. Goldstein BP. 2014. Resistance to rifampicin: a review. J Antibiot (Tokyo) 67:625–630 http://dx.doi.org/10.1038/ja.2014.107. [PubMed]
17. Calvori C, Frontali L, Leoni L, Tecce G. 1965. Effect of rifamycin on protein synthesis. Nature 207:417–418 http://dx.doi.org/10.1038/207417a0. [PubMed]
18. Hartmann G, Honikel KO, Knüsel F, Nüesch J. 1967. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta 145:843–844 http://dx.doi.org/10.1016/0005-2787(67)90147-5.
19. Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG. 2005. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122:351–363 http://dx.doi.org/10.1016/j.cell.2005.07.014. [PubMed]
20. Gill SK, Garcia GA. 2011. Rifamycin inhibition of WT and Rif-resistant Mycobacterium tuberculosis and Escherichia coli RNA polymerases in vitro. Tuberculosis (Edinb) 91:361–369 http://dx.doi.org/10.1016/j.tube.2011.05.002. [PubMed]
21. Wehrli W, Knüsel F, Schmid K, Staehelin M. 1968. Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci USA 61:667–673 http://dx.doi.org/10.1073/pnas.61.2.667. [PubMed]
22. Ezekiel DH, Hutchins JE. 1968. Mutations affecting RNA polymerase associated with rifampicin resistance in Escherichia coli. Nature 220:276–277 http://dx.doi.org/10.1038/220276a0. [PubMed]
23. Wehrli W, Knüsel F, Staehelin M. 1968. Action of rifamycin on RNA-polymerase from sensitive and resistant bacteria. Biochem Biophys Res Commun 32:284–288 http://dx.doi.org/10.1016/0006-291X(68)90382-3.
24. Sippel AE, Hartmann GR. 1970. Rifampicin resistance of RNA polymerase in the binary complex with DNA. Eur J Biochem 16:152–157 http://dx.doi.org/10.1111/j.1432-1033.1970.tb01066.x. [PubMed]
25. Wehrli W, Handschin J, Wunderli W. 1976. Interaction between rifampicin and DNA-dependent RNA polymerase of E. coli, p 397–412. In Losick R, Chamberlin M (ed), RNA Polymerase. Cold Spring Harbor Press, Cold Spring Harbor, NY.
26. McClure WR, Cech CL. 1978. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem 253:8949–8956.
27. Nolte O. 1997. Rifampicin resistance in Neisseria meningitidis: evidence from a study of sibling strains, description of new mutations and notes on population genetics. J Antimicrob Chemother 39:747–755 http://dx.doi.org/10.1093/jac/39.6.747. [PubMed]
28. Ramaswamy S, Musser JM. 1998. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79:3–29 http://dx.doi.org/10.1054/tuld.1998.0002. [PubMed]
29. Zhang Y, Yew W-W. 2015. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 19:1276–1289 http://dx.doi.org/10.5588/ijtld.15.0389. [PubMed]
30. Morse R, O’Hanlon K, Virji M, Collins MD. 1999. Isolation of rifampin-resistant mutants of Listeria monocytogenes and their characterization by rpoB gene sequencing, temperature sensitivity for growth, and interaction with an epithelial cell line. J Clin Microbiol 37:2913–2919 http://dx.doi.org/10.1128/JCM.37.9.2913-2919.1999. [PubMed]
31. Mustaev A, Zaychikov E, Severinov K, Kashlev M, Polyakov A, Nikiforov V, Goldfarb A. 1994. Topology of the RNA polymerase active center probed by chimeric rifampicin-nucleotide compounds. Proc Natl Acad Sci USA 91:12036–12040 http://dx.doi.org/10.1073/pnas.91.25.12036. [PubMed]
32. Severinov K, Mustaev A, Severinova E, Kozlov M, Darst SA, Goldfarb A. 1995. The beta subunit Rif-cluster I is only angstroms away from the active center of Escherichia coli RNA polymerase. J Biol Chem 270:29428–29432 http://dx.doi.org/10.1074/jbc.270.49.29428. [PubMed]
33. Williams DL, Spring L, Collins L, Miller LP, Heifets LB, Gangadharam PR, Gillis TP. 1998. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42:1853–1857 http://dx.doi.org/10.1128/AAC.42.7.1853. [PubMed]
34. Artsimovitch I, Vassylyev DG. 2006. Is it easy to stop RNA polymerase? Cell Cycle 5:399–404 http://dx.doi.org/10.4161/cc.5.4.2466. [PubMed]
35. Feklistov A, Mekler V, Jiang Q, Westblade LF, Irschik H, Jansen R, Mustaev A, Darst SA, Ebright RH. 2008. Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. Proc Natl Acad Sci USA 105:14820–14825 http://dx.doi.org/10.1073/pnas.0802822105. [PubMed]
36. Molodtsov V, Nawarathne IN, Scharf NT, Kirchhoff PD, Showalter HD, Garcia GA, Murakami KS. 2013. X-ray crystal structures of the Escherichia coli RNA polymerase in complex with benzoxazinorifamycins. J Med Chem 56:4758–4763 http://dx.doi.org/10.1021/jm4004889. [PubMed]
37. Zenkin N, Severinov K. 2004. The role of RNA polymerase σ subunit in promoter-independent initiation of transcription. Proc Natl Acad Sci USA 101:4396–4400 http://dx.doi.org/10.1073/pnas.0400886101.
38. Bochkareva A, Zenkin N. 2013. The σ70 region 1.2 regulates promoter escape by unwinding DNA downstream of the transcription start site. Nucleic Acids Res 41:4565–4572 http://dx.doi.org/10.1093/nar/gkt116. [PubMed]
39. Pupov D, Kuzin I, Bass I, Kulbachinskiy A. 2014. Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape. Nucleic Acids Res 42:4494–4504 http://dx.doi.org/10.1093/nar/gkt1384. [PubMed]
40. Lin W, Mandal S, Degen D, Liu Y, Ebright YW, Li S, Feng Y, Zhang Y, Mandal S, Jiang Y, Liu S, Gigliotti M, Talaue M, Connell N, Das K, Arnold E, Ebright RH. 2017. Structural basis of Mycobacterium tuberculosis transcription and transcription inhibition. Mol Cell 66:169–179.e8 http://dx.doi.org/10.1016/j.molcel.2017.03.001. [PubMed]
41. Mosaei H, Molodtsov V, Kepplinger B, Harbottle J, Moon CWCW, Jeeves RERE, Ceccaroni L, Shin Y, Morton-Laing S, Marrs ECL, Wills C, Clegg W, Yuzenkova Y, Perry JDJD, Bacon J, Errington J, Allenby NEE, Hall MJMJ, Murakami KSKS, Zenkin N. 2018. Mode of Action of kanglemycin A, an ansamycin natural product that is active against rifampicin-resistant Mycobacterium tuberculosis. Mol Cell 72:263–274.e5 http://dx.doi.org/10.1016/j.molcel.2018.08.028. [PubMed]
42. Peek J, Lilic M, Montiel D, Milshteyn A, Woodworth I, Biggins JB, Ternei MA, Calle PY, Danziger M, Warrier T, Saito K, Braffman N, Fay A, Glickman MS, Darst SA, Campbell EA, Brady SF. 2018. Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun 9:4147 http://dx.doi.org/10.1038/s41467-018-06587-2. [PubMed]
43. Zenkin N, Kulbachinskiy A, Bass I, Nikiforov V. 2005. Different rifampin sensitivities of Escherichia coli and Mycobacterium tuberculosis RNA polymerases are not explained by the difference in the β-subunit rifampin regions I and II. Antimicrob Agents Chemother 49:1587–1590 http://dx.doi.org/10.1128/AAC.49.4.1587-1590.2005. [PubMed]
44. Harshey RM, Ramakrishnan T. 1976. Purification and properties of DNA-dependent RNA polymerase from Mycobacterium tuberculosis H37RV. Biochim Biophys Acta 432:49–59 http://dx.doi.org/10.1016/0005-2787(76)90040-X.
45. Fujii K, Saito H, Tomioka H, Mae T, Hosoe K. 1995. Mechanism of action of antimycobacterial activity of the new benzoxazinorifamycin KRM-1648. Antimicrob Agents Chemother 39:1489–1492 http://dx.doi.org/10.1128/AAC.39.7.1489. [PubMed]
46. Fábry M, Sümegi J, Venetianer P. 1976. Purification and properties of the RNA polymerase of an extremely thermophilic bacterium: Thermus aquaticus T2. Biochim Biophys Acta 435:228–235 http://dx.doi.org/10.1016/0005-2787(76)90104-0.
47. Minakhin L, Nechaev S, Campbell EA, Severinov K. 2001. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription. J Bacteriol 183:71–76 http://dx.doi.org/10.1128/JB.183.1.71-76.2001. [PubMed]
48. Molodtsov V, Scharf NT, Stefan MA, Garcia GA, Murakami KS. 2017. Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis. Mol Microbiol 103:1034–1045 http://dx.doi.org/10.1111/mmi.13606. [PubMed]
49. Wehrli W, Staehelin M. 1969. The rifamycins: relation of chemical structure and action on RNA polymerase. Biochim Biophys Acta 182:24–29 http://dx.doi.org/10.1016/0005-2787(69)90516-4.
50. Wehrli W. 1977. Ansamycins. Chemistry, biosynthesis and biological activity. Top Curr Chem 72:21–49 http://dx.doi.org/10.1007/BFb0048448. [PubMed]
51. Rastogi N, Goh KS, Berchel M, Bryskier A. 2000. Activity of rifapentine and its metabolite 25- O-desacetylrifapentine compared with rifampicin and rifabutin against Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium bovis and M. bovis BCG. J Antimicrob Chemother 46:565–570 http://dx.doi.org/10.1093/jac/46.4.565. [PubMed]
52. Nigam A, Almabruk KH, Saxena A, Yang J, Mukherjee U, Kaur H, Kohli P, Kumari R, Singh P, Zakharov LN, Singh Y, Mahmud T, Lal R. 2014. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. J Biol Chem 289:21142–21152 http://dx.doi.org/10.1074/jbc.M114.572636. [PubMed]
53. Wilhelm JM, Oleinick NL, Corcoran JW. 1968. The inhibition of bacterial RNA synthesis by the rifamycin antibiotics. Biochim Biophys Acta 166:268–271 http://dx.doi.org/10.1016/0005-2787(68)90515-7.
54. Maggi N, Furesz S, Sensi P. 1968. Rifomycins. XLIX. Influence of the carboxyl group on the antibacterial activity of rifomycins. J Med Chem 11:368–369 http://dx.doi.org/10.1021/jm00308a042. [PubMed]
55. Sensi P, Maggi N, Ballotta R, Fueresz S, Pallanza R, Arioli V. 1964. Rifamycins. XXXV. Amides and hydrazides of rifamycin B. J Med Chem 7:596–602 http://dx.doi.org/10.1021/jm00335a005. [PubMed]
56. Pallanza R, Fürész S, Timbal MT, Carniti G. 1965. In vitro bacteriological studies on rifamycin B diethylamide (rifamide). Arzneimittelforschung 15:800–802.
57. Stanzani L, Venturini AP, Mantovani V. 1978. A new tolypomycin-Y derivative: in vitro and in vivo antimicrobial activity. J Antibiot (Tokyo) 31:1195–1200 http://dx.doi.org/10.7164/antibiotics.31.1195. [PubMed]
58. Brufani M, Cellai L, Cerrini S, Fedeli W, Segre A, Vaciago A. 1982. Structure-activity relationships in the ansamycins. Molecular structure and activity of 3-carbomethoxy rifamycin S. Mol Pharmacol 21:394–399.
59. Bellomo P, Marchi E, Mascellani G, Brufani M. 1981. Synthesis and antibacterial activity of some ester, amides, and hydrazides of 3-carboxyrifamycin S. Relationship between structure and activity of ansamycins. J Med Chem 24:1310–1314 http://dx.doi.org/10.1021/jm00143a010. [PubMed]
60. Dampier MF, Whitlock HW Jr. 1975. Letter: electronegative groups at C-3 of rifamycin S enhance its activity toward DNA-dependent RNA polymerase. J Am Chem Soc 97:6254–6256 http://dx.doi.org/10.1021/ja00854a057. [PubMed]
61. Arora SK. 1983. Correlation of structure and activity in ansamycins. Molecular structure of sodium rifamycin SV. Mol Pharmacol 23:133–140.
62. Bartolucci C, Cellai L, Di Filippo P, Lamba D, Segre AL, Bianco AD, Guiso M, Pasquali V, Brufani M. 2018. Hydrogenation of the ansa-chain of rifamycins. X-ray crystal structure of (16S)-16,17,18,19-tetrahydrorifamycin S. Helv Chim Acta 76:1459–1468 http://dx.doi.org/10.1002/hlca.19930760406.
63. Brufani M, Cerrini S, Fedeli W, Vaciago A. 1974. Rifamycins: an insight into biological activity based on structural investigations. J Mol Biol 87:409–435 http://dx.doi.org/10.1016/0022-2836(74)90094-1.
64. Bacchi A, Pelizzi G. 1999. Conformational variety for the ansa chain of rifamycins: comparison of observed crystal structures and molecular dynamics simulations. J Comput Aided Mol Des 13:385–396 http://dx.doi.org/10.1023/A:1008070316079. [PubMed]
65. Bacchi A, Pelizzi G, Nebuloni M, Ferrari P. 1998. Comprehensive study on structure-activity relationships of rifamycins: discussion of molecular and crystal structure and spectroscopic and thermochemical properties of rifamycin O. J Med Chem 41:2319–2332 http://dx.doi.org/10.1021/jm970791o. [PubMed]
66. Aristoff PA, Garcia GA, Kirchhoff PD, Showalter HD. 2010. Rifamycins: obstacles and opportunities. Tuberculosis (Edinb) 90:94–118 http://dx.doi.org/10.1016/j.tube.2010.02.001. [PubMed]
67. Temple ME, Nahata MC. 1999. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother 33:1203–1210 http://dx.doi.org/10.1345/aph.18450. [PubMed]
68. Arioli V, Berti M, Carniti G, Randisi E, Rossi E, Scotti R. 1981. Antibacterial activity of DL 473, a new semisynthetic rifamycin derivative. J Antibiot (Tokyo) 34:1026–1032 http://dx.doi.org/10.7164/antibiotics.34.1026. [PubMed]
69. Bemer-Melchior P, Bryskier A, Drugeon HB. 2000. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother 46:571–576 http://dx.doi.org/10.1093/jac/46.4.571. [PubMed]
70. Knoll BM, Nog R, Wu Y, Dhand A. 2017. Three months of weekly rifapentine plus isoniazid for latent tuberculosis treatment in solid organ transplant candidates. Infection 45:335–339 http://dx.doi.org/10.1007/s15010-017-1004-5. [PubMed]
71. Maggi N, Pallanza R, Sensi P. 1965. New derivatives of rifamycin SV. Antimicrob Agents Chemother 5:765–769.
72. Kradolfer F, Neipp L, Sackmann W. 1966. Chemotherapeutic activity of new derivatives of rifamycin. Antimicrob Agents Chemother 6:359–364.
73. Villain-Guillot P, Gualtieri M, Bastide L, Leonetti J-P. 2007. In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 51:3117–3121 http://dx.doi.org/10.1128/AAC.00343-07. [PubMed]
74. Cellai L, Cerrini S, Segre A, Battistoni C, Cossu G, Mattogno G, Brufani M, Marchi E. 1985. A study of structure-activity relationships in 4-deoxypyrido[1′,2′-1,2]imidazo[5,4-c]rifamycin SV derivatives by electron spectroscopy for chemical analysis and 1H NMR. Mol Pharmacol 27:103–108.
75. Adachi JA, DuPont HL. 2006. Rifaximin: a novel nonabsorbed rifamycin for gastrointestinal disorders. Clin Infect Dis 42:541–547 http://dx.doi.org/10.1086/499950. [PubMed]
76. Ruiz J, Mensa L, Pons MJ, Vila J, Gascon J. 2008. Development of Escherichia coli rifaximin-resistant mutants: frequency of selection and stability. J Antimicrob Chemother 61:1016–1019 http://dx.doi.org/10.1093/jac/dkn078. [PubMed]
77. Kothary V, Scherl EJ, Bosworth B, Jiang Z-D, Dupont HL, Harel J, Simpson KW, Dogan B. 2013. Rifaximin resistance in Escherichia coli associated with inflammatory bowel disease correlates with prior rifaximin use, mutations in rpoB, and activity of Phe-Arg-β-naphthylamide-inhibitable efflux pumps. Antimicrob Agents Chemother 57:811–817 http://dx.doi.org/10.1128/AAC.02163-12. [PubMed]
78. Sanfilippo A, Della Bruna C, Marsili L, Morvillo E, Pasqualucci CR, Schioppacassi G, Ungheri D. 1980. Biological activity of a new class of rifamycins. Spiro-piperidyl-rifamycins. J Antibiot (Tokyo) 33:1193–1198 http://dx.doi.org/10.7164/antibiotics.33.1193. [PubMed]
79. Yang B, Koga H, Ohno H, Ogawa K, Fukuda M, Hirakata Y, Maesaki S, Tomono K, Tashiro T, Kohno S. 1998. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J Antimicrob Chemother 42:621–628 http://dx.doi.org/10.1093/jac/42.5.621. [PubMed]
80. Berrada ZL, Lin S-YG, Rodwell TC, Nguyen D, Schecter GF, Pham L, Janda JM, Elmaraachli W, Catanzaro A, Desmond E. 2016. Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 85:177–181 http://dx.doi.org/10.1016/j.diagmicrobio.2016.01.019. [PubMed]
81. Whitfield MG, Warren RM, Mathys V, Scott L, De Vos E, Stevens W, Streicher EM, Groenen G, Sirgel FA, Van Rie A. 2018. The potential use of rifabutin for treatment of patients diagnosed with rifampicin-resistant tuberculosis. J Antimicrob Chemother 73:2667–2674 http://dx.doi.org/10.1093/jac/dky248. [PubMed]
82. Ungheri D, Della Bruna C, Sanfilippo A. 1984. Studies on the mechanism of action of the spiropiperidylrifamycin LM 427 on rifampicin-resistant M. tuberculosis. Drugs Exp Clin Res 10:681–689.
83. Baciewicz AM, Chrisman CR, Finch CK, Self TH. 2008. Update on rifampin and rifabutin drug interactions. Am J Med Sci 335:126–136 http://dx.doi.org/10.1097/MAJ.0b013e31814a586a. [PubMed]
84. Barluenga J, Aznar F, García A-B, Cabal M-P, Palacios JJ, Menéndez M-A. 2006. New rifabutin analogs: synthesis and biological activity against Mycobacterium tuberculosis. Bioorg Med Chem Lett 16:5717–5722 http://dx.doi.org/10.1016/j.bmcl.2006.08.090. [PubMed]
85. García A-B, Palacios JJ, Ruiz M-J, Barluenga J, Aznar F, Cabal M-P, García JM, Díaz N. 2010. Strong in vitro activities of two new rifabutin analogs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 54:5363–5365 http://dx.doi.org/10.1128/AAC.00149-10. [PubMed]
86. Yamane T, Hashizume T, Yamashita K, Konishi E, Hosoe K, Hidaka T, Watanabe K, Kawaharada H, Yamamoto T, Kuze F. 1993. Synthesis and biological activity of 3′-hydroxy-5′-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 41:148–155 http://dx.doi.org/10.1248/cpb.41.148. [PubMed]
87. Fujii K, Tsuji A, Miyazaki S, Yamaguchi K, Goto S. 1994. In vitro and in vivo antibacterial activities of KRM-1648 and KRM-1657, new rifamycin derivatives. Antimicrob Agents Chemother 38:1118–1122 http://dx.doi.org/10.1128/AAC.38.5.1118. [PubMed]
88. Luna-Herrera J, Reddy MV, Gangadharam PR. 1995. In vitro activity of the benzoxazinorifamycin KRM-1648 against drug-susceptible and multidrug-resistant tubercle bacilli. Antimicrob Agents Chemother 39:440–444 http://dx.doi.org/10.1128/AAC.39.2.440. [PubMed]
89. Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN. 1996. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 40:2655–2657 http://dx.doi.org/10.1128/AAC.40.11.2655. [PubMed]
90. Rothstein DM, Suchland RJ, Xia M, Murphy CK, Stamm WE, Murphy CK, Stamm WE. 2008. Rifalazil retains activity against rifampin-resistant mutants of Chlamydia pneumoniae. J Antibiot (Tokyo) 61:489–495 http://dx.doi.org/10.1038/ja.2008.65. [PubMed]
91. Lounis N, Roscigno G. 2004. In vitro and in vivo activities of new rifamycin derivatives against mycobacterial infections. Curr Pharm Des 10:3229–3238 http://dx.doi.org/10.2174/1381612043383287. [PubMed]
92. Global Alliance for TB Drug Development (TB Alliance). 2008. Rifalazil. Tuberculosis (Edinb) 88:148–150 http://dx.doi.org/10.1016/S1472-9792(08)70023-4.
93. Mae T, Hosoe K, Yamamoto T, Hidaka T, Ohashi T, Kleeman JM, Adams PE. 1998. Effect of a new rifamycin derivative, rifalazil, on liver microsomal enzyme induction in rat and dog. Xenobiotica 28:759–766 http://dx.doi.org/10.1080/004982598239173. [PubMed]
94. Gill SK, Xu H, Kirchhoff PD, Cierpicki T, Turbiak AJ, Wan B, Zhang N, Peng K-W, Franzblau SG, Garcia GA, Showalter HDH. 2012. Structure-based design of novel benzoxazinorifamycins with potent binding affinity to wild-type and rifampin-resistant mutant Mycobacterium tuberculosis RNA polymerases. J Med Chem 55:3814–3826 http://dx.doi.org/10.1021/jm201716n. [PubMed]
95. Sensi P, Ballotta R, Greco AM, Gallo GG. 1961. Rifomycin. XV. Activation of rifomycin B and Rifomycin O. Production and properties of rifomycin S and rifomycin SV. Farm Ed Sci 16:165–180.
96. Malmborg A-S, Molin L, Nyström B. 1971. Rifampicin compared with penicillin in the treatment of gonorrhea. Chemotherapy 16:319–325 http://dx.doi.org/10.1159/000220742. [PubMed]
97. DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. 1970. Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442–447 http://dx.doi.org/10.7164/antibiotics.23.442. [PubMed]
98. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T. 1993. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650 http://dx.doi.org/10.1016/0140-6736(93)90417-F.
99. Heil A, Zillig W. 1970. Reconstitution of bacterial DNA-dependent RNA-polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Lett 11:165–168 http://dx.doi.org/10.1016/0014-5793(70)80519-1.
100. Heep M, Rieger U, Beck D, Lehn N. 2000. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob Agents Chemother 44:1075–1077 http://dx.doi.org/10.1128/AAC.44.4.1075-1077.2000. [PubMed]
101. Heep M, Beck D, Bayerdörffer E, Lehn N. 1999. Rifampin and rifabutin resistance mechanism in Helicobacter pylori. Antimicrob Agents Chemother 43:1497–1499 http://dx.doi.org/10.1128/AAC.43.6.1497. [PubMed]
102. Cai X-C, Xi H, Liang L, Liu J-D, Liu C-H, Xue Y-R, Yu X-Y. 2017. Rifampicin-resistance mutations in the rpoB gene in Bacillus velezensis CC09 have pleiotropic effects. Front Microbiol 8:178 http://dx.doi.org/10.3389/fmicb.2017.00178.
103. Severinov K, Soushko M, Goldfarb A, Nikiforov V. 1994. Rif R mutations in the beginning of the Escherichia coli rpoB gene. Mol Gen Genet 244:120–126 http://dx.doi.org/10.1007/BF00283512. [PubMed]
104. Severinov K, Soushko M, Goldfarb A, Nikiforov V. 1993. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem 268:14820–14825.
105. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB. 2009. Tuberculosis drug resistance mutation database. PLoS Med 6:e2 http://dx.doi.org/10.1371/journal.pmed.1000002. [PubMed]
106. Sutherland C, Murakami KS. 2018. An introduction to the structure and function of the catalytic core enzyme of Escherichia coli RNA polymerase. Ecosal Plus 2018 http://dx.doi.org/10.1128/ecosalplus.ESP-0004-2018.
107. Maffioli SI, Zhang Y, Degen D, Carzaniga T, Del Gatto G, Serina S, Monciardini P, Mazzetti C, Guglierame P, Candiani G, Chiriac AI, Facchetti G, Kaltofen P, Sahl H-G, Dehò G, Donadio S, Ebright RH. 2017. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell 169:1240–1248.e23 http://dx.doi.org/10.1016/j.cell.2017.05.042. [PubMed]
108. Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon H-S, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung C-S, Theiler J, Via LE, Boshoff HIM, Murakami KS, Korber B, Barry CE III, Cho S-N. 2014. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β′ subunit of RNA polymerase. Mol Microbiol 91:1106–1119 http://dx.doi.org/10.1111/mmi.12520. [PubMed]
109. Kim H, Kim S-H, Ying Y-H, Kim H-JH, Koh Y-H, Kim C-J, Lee S-H, Cha C-Y, Kook Y-H, Kim B-J. 2005. Mechanism of natural rifampin resistance of Streptomyces spp. Syst Appl Microbiol 28:398–404 http://dx.doi.org/10.1016/j.syapm.2005.02.009. [PubMed]
110. Piddock LJV, Williams KJ, Ricci V. 2000. Accumulation of rifampicin by Mycobacterium aurum, Mycobacterium smegmatis and Mycobacterium tuberculosis. J Antimicrob Chemother 45:159–165 http://dx.doi.org/10.1093/jac/45.2.159. [PubMed]
111. Li G, Zhang J, Guo Q, Wei J, Jiang Y, Zhao X, Zhao LL, Liu Z, Lu J, Wan K. 2015. Study of efflux pump gene expression in rifampicin-monoresistant Mycobacterium tuberculosis clinical isolates. J Antibiot (Tokyo) 68:431–435 http://dx.doi.org/10.1038/ja.2015.9. [PubMed]
112. Hoshino Y, Fujii S, Shinonaga H, Arai K, Saito F, Fukai T, Satoh H, Miyazaki Y, Ishikawa J. 2010. Monooxygenation of rifampicin catalyzed by the rox gene product of Nocardia farcinica: structure elucidation, gene identification and role in drug resistance. J Antibiot (Tokyo) 63:23–28 http://dx.doi.org/10.1038/ja.2009.116. [PubMed]
113. Rominski A, Roditscheff A, Selchow P, Böttger EC, Sander P. 2017. Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 72:376–384 http://dx.doi.org/10.1093/jac/dkw466. [PubMed]
114. Combrink KD, Denton DA, Harran S, Ma Z, Chapo K, Yan D, Bonventre E, Roche ED, Doyle TB, Robertson GT, Lynch AS. 2007. New C25 carbamate rifamycin derivatives are resistant to inactivation by ADP-ribosyl transferases. Bioorg Med Chem Lett 17:522–526 http://dx.doi.org/10.1016/j.bmcl.2006.10.016. [PubMed]
115. Andersson DI, Levin BR. 1999. The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493 http://dx.doi.org/10.1016/S1369-5274(99)00005-3.
116. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271 http://dx.doi.org/10.1038/nrmicro2319. [PubMed]
117. Mariam DH, Mengistu Y, Hoffner SE, Andersson DI. 2004. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob Agents Chemother 48:1289–1294 http://dx.doi.org/10.1128/AAC.48.4.1289-1294.2004. [PubMed]
118. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJM. 2006. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312:1944–1946 http://dx.doi.org/10.1126/science.1124410. [PubMed]
119. Björkman J, Hughes D, Andersson DI. 1998. Virulence of antibiotic-resistant Salmonella typhimurium. Proc Natl Acad Sci USA 95:3949–3953 http://dx.doi.org/10.1073/pnas.95.7.3949. [PubMed]
120. Billington OJ, McHugh TD, Gillespie SH. 1999. Physiological cost of rifampin resistance induced in vitro in Mycobacterium tuberculosis. Antimicrob Agents Chemother 43:1866–1869 http://dx.doi.org/10.1128/AAC.43.8.1866. [PubMed]
121. Reynolds MG. 2000. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156:1471–1481.
122. Brandis G, Wrande M, Liljas L, Hughes D. 2012. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 85:142–151 http://dx.doi.org/10.1111/j.1365-2958.2012.08099.x. [PubMed]
123. Heep M, Brandstätter B, Rieger U, Lehn N, Richter E, Rüsch-Gerdes S, Niemann S. 2001. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 39:107–110 http://dx.doi.org/10.1128/JCM.39.1.107-110.2001. [PubMed]
124. Taddei F, Matic I, Radman M. 1995. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations. Proc Natl Acad Sci USA 92:11736–11740 http://dx.doi.org/10.1073/pnas.92.25.11736. [PubMed]
125. Rodríguez-Verdugo A, Gaut BS, Tenaillon O. 2013. Evolution of Escherichia coli rifampicin resistance in an antibiotic-free environment during thermal stress. BMC Evol Biol 13:50 http://dx.doi.org/10.1186/1471-2148-13-50. [PubMed]
126. Hughes D, Brandis G. 2013. Rifampicin resistance: fitness costs and the significance of compensatory evolution. Antibiotics (Basel) 2:206–216 http://dx.doi.org/10.3390/antibiotics2020206. [PubMed]
127. Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S. 2011. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44:106–110 http://dx.doi.org/10.1038/ng.1038. [PubMed]
128. Brandis G, Hughes D. 2013. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J Antimicrob Chemother 68:2493–2497 http://dx.doi.org/10.1093/jac/dkt224. [PubMed]
129. Brandis G, Pietsch F, Alemayehu R, Hughes D. 2015. Comprehensive phenotypic characterization of rifampicin resistance mutations in Salmonella provides insight into the evolution of resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 70:680–685 http://dx.doi.org/10.1093/jac/dku434. [PubMed]
130. O’Neill AJ, Huovinen T, Fishwick CWG, Chopra I. 2006. Molecular genetic and structural modeling studies of Staphylococcus aureus RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. Antimicrob Agents Chemother 50:298–309 http://dx.doi.org/10.1128/AAC.50.1.298-309.2006. [PubMed]
131. de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC. 2013. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57:827–832 http://dx.doi.org/10.1128/AAC.01541-12. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0017-2019
2020-04-27
2020-08-12

Abstract:

RNA polymerases (RNAPs) accomplish the first step of gene expression in all living organisms. However, the sequence divergence between bacterial and human RNAPs makes the bacterial RNAP a promising target for antibiotic development. The most clinically important and extensively studied class of antibiotics known to inhibit bacterial RNAP are the rifamycins. For example, rifamycins are a vital element of the current combination therapy for treatment of tuberculosis. Here, we provide an overview of the history of the discovery of rifamycins, their mechanisms of action, the mechanisms of bacterial resistance against them, and progress in their further development.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

The ansa chain and naphthalene moiety of molecules are shown in black and blue, respectively.

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

A RIF (with or without groups at C-3/C-4 or KglA) bound at the RIF-binding pocket either sterically blocks progression of the growing RNA chain, resulting in abortive synthesis (left), or inhibits the first phosphodiester bond formation by interfering with initiating NTP or with σ region 3.2 that stabilizes the template DNA.

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Chemical structures of KglA (in red with C-20 and C-27 side chains highlighted in yellow) and RMP (black). (B) A close-up view of KglA in the RIF-binding pocket of RNAP (PDB: 6CUU). KglA is shown as a stick model (red) with its deoxysugar and succinate groups shown in yellow. RNAP is shown as a transparent surface model (gray), and RNAP β residues, which form the RIF-binding pocket, are shown as stick models. KglA binds to the same residues that RMP binds (cyan) to, with the exception of βF514 (green). KglA makes additional binding with βR143 (blue). (C) A side view of KglA in the RIF-binding pocket shown in panel B (PDB: 1YNN and 6CUU). The RNAP β subunit is shown in cyan. KglA (red and yellow) is overlaid on RMP (gray). Compared with RMP, KglA maintains a larger distance from the RIF-binding pocket (depicted by the two-headed arrow) ( 41 ).

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

The ansa chain and naphthalene moiety of the molecules are shown in black and blue, respectively.

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

(A) Schematic representation of RMP in the stick model (green) bound to residues of RIF-binding pocket (gray stick model; PDBID: 5UAC) ( 48 ). The hydrogen bonds between RMP and residues are shown as dashed lines. Amino acid residues that are mutated in clinical RIF isolates are highlighted in red. The three residues which are most frequently mutated to confer RIF clinical isolates of are marked by an asterisk. (B) The schematic on top represents the primary sequence of the β subunit. The amino acid numbering is depicted. Gray boxes represent the four clusters (RMP resistance-determining regions; RRDRs) where RIF mutations occur. A sequence alignment showing these clusters in , , , , , and is depicted below the schematic bar. Amino acids that are identical to are highlighted in gray. Mutations that confer RIF in are indicated above the sequence.

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

The RNAP core enzyme is illustrated as a transparent surface (α subunits, gray; β subunit, cyan; β′ subunit, bright orange; ω subunit, gray). The active center of RNAP, marked by the presence of catalytic Mg (magenta sphere) is circled. The RMP molecule is depicted as red spheres. Compensatory mutations found on the α, β, and β′ subunits of RNAP are shown as gray, blue, and orange spheres, respectively.

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

List of secondary mutations in different RIF bacteria

Citation: Mosaei H, Zenkin N. 2020. Inhibition of RNA Polymerase by Rifampicin and Rifamycin-Like Molecules, EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0017-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error