No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 7:

Genetics and Genetic Tools

Prokaryotic Organelles: Bacterial Microcompartments in and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Katie L. Stewart1, Andrew M. Stewart2, and Thomas A. Bobik3
  • Editors: James M. Slauch4, Gregory Phillips5
    Affiliations: 1: The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011; 2: The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011; 3: The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011; 4: The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL; 5: College of Veterinary Medicine, Iowa State University, Ames, IA
  • Received 07 May 2020 Accepted 04 September 2020 Published 06 October 2020
  • Address correspondence to Thomas A. Bobik, [email protected]
image of Prokaryotic Organelles: Bacterial Microcompartments in <span class="jp-italic">E. coli</span> and <span class="jp-italic">Salmonella</span>
    Preview this reference work article:
    Zoom in

    Prokaryotic Organelles: Bacterial Microcompartments in and , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/1/ESP-0025-2019-1.gif /docserver/preview/fulltext/ecosalplus/9/1/ESP-0025-2019-2.gif
  • Abstract:

    Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in and : the propanediol utilization (), ethanolamine utilization (), choline utilization (), and glycyl radical propanediol () MCPs. Although the great majority of work done on catabolic MCPs has been carried out with and , research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.

  • Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019


1. Chowdhury C, Sinha S, Chun S, Yeates TO, Bobik TA. 2014. Diverse bacterial microcompartment organelles. Microbiol Mol Biol Rev 78:438–468 http://dx.doi.org/10.1128/MMBR.00009-14. [PubMed]
2. Kerfeld CA, Aussignargues C, Zarzycki J, Cai F, Sutter M. 2018. Bacterial microcompartments. Nat Rev Microbiol 16:277–290 http://dx.doi.org/10.1038/nrmicro.2018.10. [PubMed]
3. Rae BD, Long BM, Badger MR, Price GD. 2013. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO 2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 77:357–379 http://dx.doi.org/10.1128/MMBR.00061-12. [PubMed]
4. Axen SD, Erbilgin O, Kerfeld CA. 2014. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLOS Comput Biol 10:e1003898 http://dx.doi.org/10.1371/journal.pcbi.1003898. [PubMed]
5. Abdul-Rahman F, Petit E, Blanchard JL. 2013. The distribution of polyhedral bacterial microcompartments suggests frequent horizontal transfer and operon reassembly. J Phylo Evo Bio 01:1–7.
6. Jorda J, Lopez D, Wheatley NM, Yeates TO. 2013. Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria. Protein Sci 22:179–195 http://dx.doi.org/10.1002/pro.2196. [PubMed]
7. Zarzycki J, Erbilgin O, Kerfeld CA. 2015. Bioinformatic characterization of glycyl radical enzyme-associated bacterial microcompartments. Appl Environ Microbiol 81:8315–8329 http://dx.doi.org/10.1128/AEM.02587-15. [PubMed]
8. Bobik TA. 2006. Polyhedral organelles compartmenting bacterial metabolic processes. Appl Microbiol Biotechnol 70:517–525 http://dx.doi.org/10.1007/s00253-005-0295-0. [PubMed]
9. Yeates TO, Jorda J, Bobik TA. 2013. The shells of BMC-type microcompartment organelles in bacteria. J Mol Microbiol Biotechnol 23:290–299 http://dx.doi.org/10.1159/000351347. [PubMed]
10. Roth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B 12): synthesis and biological significance. Annu Rev Microbiol 50:137–181 http://dx.doi.org/10.1146/annurev.micro.50.1.137. [PubMed]
11. Garsin DA. 2010. Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8:290–295 http://dx.doi.org/10.1038/nrmicro2334. [PubMed]
12. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 http://dx.doi.org/10.1038/nature09922. [PubMed]
13. Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L, Brown EC, Cushing-Haugen KL, Zheng Y, Cheng TYD, Miller JW, Green R, Lane DS, Beresford SAA, Caudill MA. 2014. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res 74:7442–7452 http://dx.doi.org/10.1158/0008-5472.CAN-14-1835. [PubMed]
14. Frank S, Lawrence AD, Prentice MB, Warren MJ. 2013. Bacterial microcompartments moving into a synthetic biological world. J Biotechnol 163:273–279 http://dx.doi.org/10.1016/j.jbiotec.2012.09.002. [PubMed]
15. Kim EY, Tullman-Ercek D. 2013. Engineering nanoscale protein compartments for synthetic organelles. Curr Opin Biotechnol 24:627–632 http://dx.doi.org/10.1016/j.copbio.2012.11.012. [PubMed]
16. Plegaria JS, Kerfeld CA. 2018. Engineering nanoreactors using bacterial microcompartment architectures. Curr Opin Biotechnol 51:1–7 http://dx.doi.org/10.1016/j.copbio.2017.09.005. [PubMed]
17. Tsai SJ, Yeates TO. 2011. Bacterial microcompartments: insights into the structure, mechanism, and engineering applications. Prog Mol Biol Transl Sci 103:1–20 http://dx.doi.org/10.1016/B978-0-12-415906-8.00008-X. [PubMed]
18. Drews G, Niklowitz W. 1956. Beiträge zur cytologie der blaualgen. II. Mittelung zentroplasma und granuläre einschlüsse von phormidium uncinatum. Arch Mikrobiol 24:147–162 http://dx.doi.org/10.1007/BF00408629. [PubMed]
19. Badger MR, Price GD. 2003. CO 2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622 http://dx.doi.org/10.1093/jxb/erg076. [PubMed]
20. Cannon GC, Heinhorst S, Bradburne CE, Shively JM. 2002. Carboxysome genomics: a status report. Funct Plant Biol 29:175–182 http://dx.doi.org/10.1071/PP01200. [PubMed]
21. Shively JM, Ball F, Brown DH, Saunders RE. 1973. Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584–586 http://dx.doi.org/10.1126/science.182.4112.584. [PubMed]
22. Bobik TA, Havemann GD, Busch RJ, Williams DS, Aldrich HC. 1999. The propanediol utilization ( pdu) operon of Salmonella enterica serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B( 12)-dependent 1,2-propanediol degradation. J Bacteriol 181:5967–5975 http://dx.doi.org/10.1128/JB.181.19.5967-5975.1999. [PubMed]
23. Kofoid E, Rappleye C, Stojiljkovic I, Roth J. 1999. The 17-gene ethanolamine ( eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 181:5317–5329 http://dx.doi.org/10.1128/JB.181.17.5317-5329.1999. [PubMed]
24. Erbilgin O, McDonald KL, Kerfeld CA. 2014. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol 80:2193–2205 http://dx.doi.org/10.1128/AEM.03887-13. [PubMed]
25. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, Warren MJ, Prentice MB. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190:4559–4567 http://dx.doi.org/10.1128/JB.01535-07. [PubMed]
26. Talarico TL, Axelsson LT, Novotny J, Fiuzat M, Dobrogosz WJ. 1990. Utilization of glycerol as a hydrogen acceptor by Lactobacillus reuteri: purification of 1,3-propanediol:NAD + oxidoreductase. Appl Environ Microbiol 56:943–948 http://dx.doi.org/10.1128/AEM.56.4.943-948.1990. [PubMed]
27. Petit E, LaTouf WG, Coppi MV, Warnick TA, Currie D, Romashko I, Deshpande S, Haas K, Alvelo-Maurosa JG, Wardman C, Schnell DJ, Leschine SB, Blanchard JL. 2013. Involvement of a bacterial microcompartment in the metabolism of fucose and rhamnose by Clostridium phytofermentans. PLoS One 8:e54337 http://dx.doi.org/10.1371/journal.pone.0054337. [PubMed]
28. Jameson E, Fu T, Brown IR, Paszkiewicz K, Purdy KJ, Frank S, Chen Y. 2016. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ Microbiol 18:2886–2898 http://dx.doi.org/10.1111/1462-2920.13059. [PubMed]
29. Lundin AP, Stewart KL, Stewart AM, Herring TI, Chowdhury C, Bobik TA. 2020. Genetic characterization of a glycyl radical microcompartment used for 1,2-propanediol fermentation by uropathogenic Escherichia coli CFT073. J Bacteriol 202:202 http://dx.doi.org/10.1128/JB.00017-20. [PubMed]
30. Herring TI, Harris TN, Chowdhury C, Mohanty SK, Bobik TA. 2018. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J Bacteriol 200:1–13 http://dx.doi.org/10.1128/JB.00764-17. [PubMed]
31. Sampson EM, Bobik TA. 2008. Microcompartments for B 12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. J Bacteriol 190:2966–2971 http://dx.doi.org/10.1128/JB.01925-07. [PubMed]
32. Rondon MR, Horswill AR, Escalante-Semerena JC. 1995. DNA polymerase I function is required for the utilization of ethanolamine, 1,2-propanediol, and propionate by Salmonella typhimurium LT2. J Bacteriol 177:7119–7124 http://dx.doi.org/10.1128/JB.177.24.7119-7124.1995. [PubMed]
33. Penrod JT, Roth JR. 2006. Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica. J Bacteriol 188:2865–2874 http://dx.doi.org/10.1128/JB.188.8.2865-2874.2006. [PubMed]
34. Brinsmade SR, Paldon T, Escalante-Semerena JC. 2005. Minimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome. J Bacteriol 187:8039–8046 http://dx.doi.org/10.1128/JB.187.23.8039-8046.2005. [PubMed]
35. Jakobson CM, Tullman-Ercek D, Slininger MF, Mangan NM. 2017. A systems-level model reveals that 1,2-propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLOS Comput Biol 13:e1005525 http://dx.doi.org/10.1371/journal.pcbi.1005525. [PubMed]
36. Kendall MM, Gruber CC, Parker CT, Sperandio V. 2012. Ethanolamine controls expression of genes encoding components involved in interkingdom signaling and virulence in enterohemorrhagic Escherichia coli O157:H7. MBio 3:1–10 http://dx.doi.org/10.1128/mBio.00050-12. [PubMed]
37. Maadani A, Fox KA, Mylonakis E, Garsin DA. 2007. Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host. Infect Immun 75:2634–2637 http://dx.doi.org/10.1128/IAI.01372-06. [PubMed]
38. Ormsby MJ, Logan M, Johnson SA, McIntosh A, Fallata G, Papadopoulou R, Papachristou E, Hold GL, Hansen R, Ijaz UZ, Russell RK, Gerasimidis K, Wall DM. 2019. Inflammation associated ethanolamine facilitates infection by Crohn’s disease-linked adherent-invasive Escherichia coli. EBioMedicine 43:325–332 http://dx.doi.org/10.1016/j.ebiom.2019.03.071. [PubMed]
39. Dadswell K, Creagh S, McCullagh E, Liang M, Brown IR, Warren MJ, McNally A, MacSharry J, Prentice MB. 2019. Bacterial microcompartment-mediated ethanolamine metabolism in Escherichia coli urinary tract infection. Infect Immun 87:e00211–e00219 http://dx.doi.org/10.1128/IAI.00211-19. [PubMed]
40. Klumpp J, Fuchs TM. 2007. Identification of novel genes in genomic islands that contribute to Salmonella typhimurium replication in macrophages. Microbiol (Read) 153:1207–1220 http://dx.doi.org/10.1099/mic.0.2006/004747-0. [PubMed]
41. Harvey PC, Watson M, Hulme S, Jones MA, Lovell M, Berchieri A Jr, Young J, Bumstead N, Barrow P. 2011. Salmonella enterica serovar Typhimurium colonizing the lumen of the chicken intestine grows slowly and upregulates a unique set of virulence and metabolism genes. Infect Immun 79:4105–4121 http://dx.doi.org/10.1128/IAI.01390-10. [PubMed]
42. Thiennimitr P, Winter SE, Winter MG, Xavier MN, Tolstikov V, Huseby DL, Sterzenbach T, Tsolis RM, Roth JR, Bäumler AJ. 2011. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc Natl Acad Sci USA 108:17480–17485 http://dx.doi.org/10.1073/pnas.1107857108. [PubMed]
43. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, Russell JM, Bevins CL, Adams LG, Tsolis RM, Roth JR, Bäumler AJ. 2010. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467:426–429 http://dx.doi.org/10.1038/nature09415. [PubMed]
44. Jakobson CM, Tullman-Ercek D. 2016. Dumpster diving in the gut: bacterial microcompartments as part of a host-associated lifestyle. PLoS Pathog 12:e1005558 http://dx.doi.org/10.1371/journal.ppat.1005558. [PubMed]
45. Joseph B, Przybilla K, Stühler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W. 2006. Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568 http://dx.doi.org/10.1128/JB.188.2.556-568.2006.
46. Faber F, Thiennimitr P, Spiga L, Byndloss MX, Litvak Y, Lawhon S, Andrews-Polymenis HL, Winter SE, Bäumler AJ. 2017. Respiration of microbiota-derived 1,2-propanediol drives Salmonella expansion during colitis. PLoS Pathog 13:e1006129. [PubMed]
47. Romano KA, Martinez-Del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, Balskus EP, Rey FE. 2017. Metabolic, epigenetic, and transgenerational effects of gut bacterial choline consumption. Cell Host Microbe 22:279–290.e7 http://dx.doi.org/10.1016/j.chom.2017.07.021. [PubMed]
48. Tang WHW, Kitai T, Hazen SL. 2017. Gut microbiota in cardiovascular health and disease. Circ Res 120:1183–1196 http://dx.doi.org/10.1161/CIRCRESAHA.117.309715. [PubMed]
49. Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, Zhu HL. 2016. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6:19076 http://dx.doi.org/10.1038/srep19076. [PubMed]
50. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, Zhang D, Su Z, Fang Z, Lan Z, Li J, Xiao L, Li J, Li R, Li X, Li F, Ren H, Huang Y, Peng Y, Li G, Wen B, Dong B, Chen JY, Geng QS, Zhang ZW, Yang H, Wang J, Wang J, Zhang X, Madsen L, Brix S, Ning G, Xu X, Liu X, Hou Y, Jia H, He K, Kristiansen K. 2017. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun 8:845 http://dx.doi.org/10.1038/s41467-017-00900-1. [PubMed]
51. Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, Aakhus S, Gude E, Bjørndal B, Halvorsen B, Karlsen TH, Aukrust P, Gullestad L, Berge RK, Yndestad A. 2015. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med 277:717–726 http://dx.doi.org/10.1111/joim.12328. [PubMed]
52. Moraes C, Fouque D, Amaral ACF, Mafra D.2015. Trimethylamine N-oxide from gut microbiota in chronic kidney disease patients: focus on diet. J Ren Nutr 25:459–465. [PubMed]
53. Xu KY, Xia GH, Lu JQ, Chen MX, Zhen X, Wang S, You C, Nie J, Zhou HW, Yin J. 2017. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep 7:1445 http://dx.doi.org/10.1038/s41598-017-01387-y. [PubMed]
54. Tang WHW, Wang Z, Li XS, Fan Y, Li DS, Wu Y, Hazen SL. 2017. Increased trimethylamine N-oxide portends high mortality risk independent of glycemic control in patients with type 2 diabetes mellitus. Clin Chem 63:297–306 http://dx.doi.org/10.1373/clinchem.2016.263640. [PubMed]
55. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S, Hartmane D, Pugovics O, Erglis A, Liepinsh E. 2016. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol Diabetes 124:251–256 http://dx.doi.org/10.1055/s-0035-1569330. [PubMed]
56. Obradors N, Badía J, Baldomà L, Aguilar J. 1988. Anaerobic metabolism of the l-rhamnose fermentation product 1,2-propanediol in Salmonella Typhimurium. J Bacteriol 170:2159–2162 http://dx.doi.org/10.1128/JB.170.5.2159-2162.1988. [PubMed]
57. Lawrence JG, Roth JR. 1996. Evolution of coenzyme B 12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics 142:11–24.
58. Kaval KG, Gebbie M, Goodson JR, Cruz MR, Winkler WC, Garsin DA. 2019. Ethanolamine utilization and bacterial microcompartment formation are subject to carbon catabolite repression. J Bacteriol 201:1–13 http://dx.doi.org/10.1128/JB.00703-18. [PubMed]
59. Martínez-del Campo A, Bodea S, Hamer HA, Marks JA, Haiser HJ, Turnbaugh PJ, Balskus EP. 2015. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. MBio 6:1–12 http://dx.doi.org/10.1128/mBio.00042-15. [PubMed]
60. Ochman H, Selander RK. 1984. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157:690–693 http://dx.doi.org/10.1128/JB.157.2.690-693.1984. [PubMed]
61. Zarzycki J, Sutter M, Cortina NS, Erb TJ, Kerfeld CA. 2017. In vitro characterization and concerted function of three core enzymes of a glycyl radical enzyme-associated bacterial microcompartment. Sci Rep 7:42757 http://dx.doi.org/10.1038/srep42757. [PubMed]
62. Jeter RM. 1990. Cobalamin-dependent 1,2-propanediol utilization by Salmonella Typhimurium. J Gen Microbiol 136:887–896 http://dx.doi.org/10.1099/00221287-136-5-887. [PubMed]
63. Price-Carter M, Tingey J, Bobik TA, Roth JR. 2001. The alternative electron acceptor tetrathionate supports B 12-dependent anaerobic growth of Salmonella enterica serovar Typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 183:2463–2475 http://dx.doi.org/10.1128/JB.183.8.2463-2475.2001. [PubMed]
64. Bobik TA, Xu Y, Jeter RM, Otto KE, Roth JR. 1997. Propanediol utilization genes ( pdu) of Salmonella Typhimurium: three genes for the propanediol dehydratase. J Bacteriol 179:6633–6639 http://dx.doi.org/10.1128/JB.179.21.6633-6639.1997. [PubMed]
65. Abeles RH, Lee HA Jr. 1961. An intramolecular oxidation-reduction requiring a cobamide coenzyme. J Biol Chem 236:2347–2350.
66. Cheng S, Fan C, Sinha S, Bobik TA. 2012. The PduQ enzyme is an alcohol dehydrogenase used to recycle NAD + internally within the Pdu microcompartment of Salmonella enterica. PLoS One 7:e47144 http://dx.doi.org/10.1371/journal.pone.0047144. [PubMed]
67. Leal NA, Havemann GD, Bobik TA. 2003. PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B 12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol 180:353–361 http://dx.doi.org/10.1007/s00203-003-0601-0. [PubMed]
68. Liu Y, Leal NA, Sampson EM, Johnson CLV, Havemann GD, Bobik TA. 2007. PduL is an evolutionarily distinct phosphotransacylase involved in B 12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. J Bacteriol 189:1589–1596 http://dx.doi.org/10.1128/JB.01151-06. [PubMed]
69. Palacios S, Starai VJ, Escalante-Semerena JC. 2003. Propionyl coenzyme A is a common intermediate in the 1,2-propanediol and propionate catabolic pathways needed for expression of the prpBCDE operon during growth of Salmonella enterica on 1,2-propanediol. J Bacteriol 185:2802–2810 http://dx.doi.org/10.1128/JB.185.9.2802-2810.2003. [PubMed]
70. Horswill AR, Escalante-Semerena JC. 1999. Salmonella Typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181:5615–5623 http://dx.doi.org/10.1128/JB.181.18.5615-5623.1999. [PubMed]
71. Cheng S, Bobik TA. 2010. Characterization of the PduS cobalamin reductase of Salmonella enterica and its role in the Pdu microcompartment. J Bacteriol 192:5071–5080 http://dx.doi.org/10.1128/JB.00575-10. [PubMed]
72. Johnson CLV, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA. 2001. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584 http://dx.doi.org/10.1128/JB.183.5.1577-1584.2001. [PubMed]
73. Walter D, Ailion M, Roth J. 1997. Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella Typhimurium. J Bacteriol 179:1013–1022 http://dx.doi.org/10.1128/JB.179.4.1013-1022.1997. [PubMed]
74. Sinha S, Cheng S, Fan C, Bobik TA. 2012. The PduM protein is a structural component of the microcompartments involved in coenzyme B( 12)-dependent 1,2-propanediol degradation by Salmonella enterica. J Bacteriol 194:1912–1918 http://dx.doi.org/10.1128/JB.06529-11. [PubMed]
75. Liu Y, Jorda J, Yeates TO, Bobik TA. 2015. The PduL phosphotransacylase is used to recycle coenzyme A within the Pdu microcompartment. J Bacteriol 197:2392–2399 http://dx.doi.org/10.1128/JB.00056-15. [PubMed]
76. Cheng S, Sinha S, Fan C, Liu Y, Bobik TA. 2011. Genetic analysis of the protein shell of the microcompartments involved in coenzyme B 12-dependent 1,2-propanediol degradation by Salmonella. J Bacteriol 193:1385–1392 http://dx.doi.org/10.1128/JB.01473-10. [PubMed]
77. Havemann GD, Sampson EM, Bobik TA. 2002. PduA is a shell protein of polyhedral organelles involved in coenzyme B( 12)-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 184:1253–1261 http://dx.doi.org/10.1128/JB.184.5.1253-1261.2002. [PubMed]
78. Parsons JB, Frank S, Bhella D, Liang M, Prentice MB, Mulvihill DP, Warren MJ. 2010. Synthesis of empty bacterial microcompartments, directed organelle protein incorporation, and evidence of filament-associated organelle movement. Mol Cell 38:305–315 http://dx.doi.org/10.1016/j.molcel.2010.04.008. [PubMed]
79. Fan C, Fromm HJ, Bobik TA. 2009. Kinetic and functional analysis of l-threonine kinase, the PduX enzyme of Salmonella enterica. J Biol Chem 284:20240–20248 http://dx.doi.org/10.1074/jbc.M109.027425.
80. Fan C, Bobik TA. 2008. The PduX enzyme of Salmonella enterica is an l-threonine kinase used for coenzyme B 12 synthesis. J Biol Chem 283:11322–11329 http://dx.doi.org/10.1074/jbc.M800287200. [PubMed]
81. Rondon MR, Escalante-Semerena JC. 1996. In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic ( cob) operon of Salmonella Typhimurium LT2. J Bacteriol 178:2196–2203 http://dx.doi.org/10.1128/JB.178.8.2196-2203.1996. [PubMed]
82. Bobik TA, Ailion M, Roth JR. 1992. A single regulatory gene integrates control of vitamin B 12 synthesis and propanediol degradation. J Bacteriol 174:2253–2266 http://dx.doi.org/10.1128/JB.174.7.2253-2266.1992. [PubMed]
83. Ailion M, Bobik TA, Roth JR. 1993. Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium. J Bacteriol 175:7200–7208 http://dx.doi.org/10.1128/JB.175.22.7200-7208.1993. [PubMed]
84. Andersson DI. 1992. Involvement of the Arc system in redox regulation of the Cob operon in Salmonella typhimurium. Mol Microbiol 6:1491–1494 http://dx.doi.org/10.1111/j.1365-2958.1992.tb00869.x. [PubMed]
85. Lawhon SD, Frye JG, Suyemoto M, Porwollik S, McClelland M, Altier C. 2003. Global regulation by CsrA in Salmonella Typhimurium. Mol Microbiol 48:1633–1645 http://dx.doi.org/10.1046/j.1365-2958.2003.03535.x. [PubMed]
86. Wang Z, Sun J, Tian M, Xu Z, Liu Y, Fu J, Yan A, Liu X. 2019. Proteomic analysis of FNR-regulated anaerobiosis in Salmonella Typhimurium. J Am Soc Mass Spectrom 30:1001–1012 http://dx.doi.org/10.1007/s13361-019-02145-2. [PubMed]
87. Roof DM, Roth JR. 1988. Ethanolamine utilization in Salmonella Typhimurium. J Bacteriol 170:3855–3863 http://dx.doi.org/10.1128/JB.170.9.3855-3863.1988. [PubMed]
88. Roof DM, Roth JR. 1989. Functions required for vitamin B 12-dependent ethanolamine utilization in Salmonella Typhimurium. J Bacteriol 171:3316–3323 http://dx.doi.org/10.1128/JB.171.6.3316-3323.1989. [PubMed]
89. Jeter RM, Olivera BM, Roth JR. 1984. Salmonella Typhimurium synthesizes cobalamin (vitamin B 12) de novo under anaerobic growth conditions. J Bacteriol 159:206–213 http://dx.doi.org/10.1128/JB.159.1.206-213.1984. [PubMed]
90. Bobik TA, Lehman BP, Yeates TO. 2015. Bacterial microcompartments: widespread prokaryotic organelles for isolation and optimization of metabolic pathways. Mol Microbiol 98:193–207 http://dx.doi.org/10.1111/mmi.13117. [PubMed]
91. Shibata N, Tamagaki H, Hieda N, Akita K, Komori H, Shomura Y, Terawaki S, Mori K, Yasuoka N, Higuchi Y, Toraya T. 2010. Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B 12 analogs and substrates. J Biol Chem 285:26484–26493 http://dx.doi.org/10.1074/jbc.M110.125112. [PubMed]
92. Zhu H, Gonzalez R, Bobik TA. 2011. Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli. Appl Environ Microbiol 77:6441–6450 http://dx.doi.org/10.1128/AEM.05358-11. [PubMed]
93. Huseby DL, Roth JR. 2013. Evidence that a metabolic microcompartment contains and recycles private cofactor pools. J Bacteriol 195:2864–2879 http://dx.doi.org/10.1128/JB.02179-12. [PubMed]
94. Buan NR, Suh SJ, Escalante-Semerena JC. 2004. The eutT gene of Salmonella enterica encodes an oxygen-labile, metal-containing ATP:corrinoid adenosyltransferase enzyme. J Bacteriol 186:5708–5714 http://dx.doi.org/10.1128/JB.186.17.5708-5714.2004. [PubMed]
95. Sheppard DE, Penrod JT, Bobik T, Kofoid E, Roth JR. 2004. Evidence that a B 12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica. J Bacteriol 186:7635–7644 http://dx.doi.org/10.1128/JB.186.22.7635-7644.2004. [PubMed]
96. Mori K, Bando R, Hieda N, Toraya T. 2004. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J Bacteriol 186:6845–6854 http://dx.doi.org/10.1128/JB.186.20.6845-6854.2004. [PubMed]
97. Moore TC, Escalante-Semerena JC. 2016. The EutQ and EutP proteins are novel acetate kinases involved in ethanolamine catabolism: physiological implications for the function of the ethanolamine metabolosome in Salmonella enterica. Mol Microbiol 99:497–511 http://dx.doi.org/10.1111/mmi.13243. [PubMed]
98. Stojiljkovic I, Bäumler AJ, Heffron F. 1995. Ethanolamine utilization in Salmonella Typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J Bacteriol 177:1357–1366 http://dx.doi.org/10.1128/JB.177.5.1357-1366.1995. [PubMed]
99. Bandarian V, Poyner RR, Reed GH. 1999. Hydrogen atom exchange between 5′-deoxyadenosine and hydroxyethylhydrazine during the single turnover inactivation of ethanolamine ammonia-lyase. Biochemistry 38:12403–12407 http://dx.doi.org/10.1021/bi9906219. [PubMed]
100. Bandarian V, Reed GH. 1999. Hydrazine cation radical in the active site of ethanolamine ammonia-lyase: mechanism-based inactivation by hydroxyethylhydrazine. Biochemistry 38:12394–12402 http://dx.doi.org/10.1021/bi990620g. [PubMed]
101. Bologna FP, Campos-Bermudez VA, Saavedra DD, Andreo CS, Drincovich MF. 2010. Characterization of Escherichia coli EutD: a phosphotransacetylase of the ethanolamine operon. J Microbiol 48:629–636 http://dx.doi.org/10.1007/s12275-010-0091-0. [PubMed]
102. Buan NR, Escalante-Semerena JC. 2006. Purification and initial biochemical characterization of ATP:Cob(I)alamin adenosyltransferase (EutT) enzyme of Salmonella enterica. J Biol Chem 281:16971–16977 http://dx.doi.org/10.1074/jbc.M603069200. [PubMed]
103. Held M, Kolb A, Perdue S, Hsu SY, Bloch SE, Quin MB, Schmidt-Dannert C. 2016. Engineering formation of multiple recombinant Eut protein nanocompartments in E. coli. Sci Rep 6:24359 http://dx.doi.org/10.1038/srep24359. [PubMed]
104. Penrod JT, Mace CC, Roth JR. 2004. A pH-sensitive function and phenotype: evidence that EutH facilitates diffusion of uncharged ethanolamine in Salmonella enterica. J Bacteriol 186:6885–6890 http://dx.doi.org/10.1128/JB.186.20.6885-6890.2004. [PubMed]
105. Roof DM, Roth JR. 1992. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella Typhimurium. J Bacteriol 174:6634–6643 http://dx.doi.org/10.1128/JB.174.20.6634-6643.1992. [PubMed]
106. Sheppard DE, Roth JR. 1994. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella Typhimurium. J Bacteriol 176:1287–1296 http://dx.doi.org/10.1128/JB.176.5.1287-1296.1994. [PubMed]
107. Shimada T, Fujita N, Yamamoto K, Ishihama A. 2011. Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. PLoS One 6:e20081 http://dx.doi.org/10.1371/journal.pone.0020081. [PubMed]
108. Busby S, Ebright RH. 1999. Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 http://dx.doi.org/10.1006/jmbi.1999.3161. [PubMed]
109. Sturms R, Streauslin NA, Cheng S, Bobik TA. 2015. In Salmonella enterica, ethanolamine utilization is repressed by 1,2-propanediol to prevent detrimental mixing of components of two different bacterial microcompartments. J Bacteriol 197:2412–2421 http://dx.doi.org/10.1128/JB.00215-15. [PubMed]
110. Jakobson CM, Kim EY, Slininger MF, Chien A, Tullman-Ercek D. 2015. Localization of proteins to the 1,2-propanediol utilization microcompartment by non-native signal sequences is mediated by a common hydrophobic motif. J Biol Chem 290:24519–24533 http://dx.doi.org/10.1074/jbc.M115.651919. [PubMed]
111. Slininger Lee MF, Jakobson CM, Tullman-Ercek D. 2017. Evidence for improved encapsulated pathway behavior in a bacterial microcompartment through shell protein engineering. ACS Synth Biol 6:1880–1891 http://dx.doi.org/10.1021/acssynbio.7b00042. [PubMed]
112. Craciun S, Balskus EP. 2012. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci USA 109:21307–21312 http://dx.doi.org/10.1073/pnas.1215689109. [PubMed]
113. Kalnins G, Kuka J, Grinberga S, Makrecka-Kuka M, Liepinsh E, Dambrova M, Tars K. 2015. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. J Biol Chem 290:21732–21740 http://dx.doi.org/10.1074/jbc.M115.670471. [PubMed]
114. Dobrindt U, Blum-Oehler G, Nagy G, Schneider G, Johann A, Gottschalk G, Hacker J. 2002. Genetic structure and distribution of four pathogenicity islands (PAI I( 536) to PAI IV( 536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70:6365–6372 http://dx.doi.org/10.1128/IAI.70.11.6365-6372.2002. [PubMed]
115. Schindel HS, Karty JA, McKinlay JB, Bauer CE. 2019. Characterization of a glycyl radical enzyme bacterial microcompartment pathway in Rhodobacter capsulatus. J Bacteriol 201:e00343-18. [PubMed]
116. Fan C, Cheng S, Liu Y, Escobar CM, Crowley CS, Jefferson RE, Yeates TO, Bobik TA. 2010. Short N-terminal sequences package proteins into bacterial microcompartments. Proc Natl Acad Sci USA 107:7509–7514 http://dx.doi.org/10.1073/pnas.0913199107. [PubMed]
117. Fan C, Bobik TA. 2011. The N-terminal region of the medium subunit (PduD) packages adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu microcompartment. J Bacteriol 193:5623–5628 http://dx.doi.org/10.1128/JB.05661-11. [PubMed]
118. Choudhary S, Quin MB, Sanders MA, Johnson ET, Schmidt-Dannert C. 2012. Engineered protein nano-compartments for targeted enzyme localization. PLoS One 7:e33342 http://dx.doi.org/10.1371/journal.pone.0033342. [PubMed]
119. Fan C, Cheng S, Sinha S, Bobik TA. 2012. Interactions between the termini of lumen enzymes and shell proteins mediate enzyme encapsulation into bacterial microcompartments. Proc Natl Acad Sci USA 109:14995–15000 http://dx.doi.org/10.1073/pnas.1207516109. [PubMed]
120. Quin MB, Perdue SA, Hsu SY, Schmidt-Dannert C. 2016. Encapsulation of multiple cargo proteins within recombinant Eut nanocompartments. Appl Microbiol Biotechnol 100:9187–9200 http://dx.doi.org/10.1007/s00253-016-7737-8. [PubMed]
121. Kinney JN, Salmeen A, Cai F, Kerfeld CA. 2012. Elucidating essential role of conserved carboxysomal protein CcmN reveals common feature of bacterial microcompartment assembly. J Biol Chem 287:17729–17736 http://dx.doi.org/10.1074/jbc.M112.355305. [PubMed]
122. Kim EY, Tullman-Ercek D. 2014. A rapid flow cytometry assay for the relative quantification of protein encapsulation into bacterial microcompartments. Biotechnol J 9:348–354 http://dx.doi.org/10.1002/biot.201300391. [PubMed]
123. Lawrence AD, Frank S, Newnham S, Lee MJ, Brown IR, Xue WF, Rowe ML, Mulvihill DP, Prentice MB, Howard MJ, Warren MJ. 2014. Solution structure of a bacterial microcompartment targeting peptide and its application in the construction of an ethanol bioreactor. ACS Synth Biol 3:454–465 http://dx.doi.org/10.1021/sb4001118. [PubMed]
124. Yang M, Simpson DM, Wenner N, Brownridge P, Harman VM, Hinton JCD, Beynon RJ, Liu L-N. 2020. Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Nat Commun 11:1976 http://dx.doi.org/10.1038/s41467-020-15888-4. [PubMed]
125. Toraya T. 2014. Cobalamin-dependent dehydratases and a deaminase: radical catalysis and reactivating chaperones. Arch Biochem Biophys 544:40–57 http://dx.doi.org/10.1016/j.abb.2013.11.002. [PubMed]
126. Akita K, Hieda N, Baba N, Kawaguchi S, Sakamoto H, Nakanishi Y, Yamanishi M, Mori K, Toraya T. 2010. Purification and some properties of wild-type and N-terminal-truncated ethanolamine ammonia-lyase of Escherichia coli. J Biochem 147:83–93 http://dx.doi.org/10.1093/jb/mvp145. [PubMed]
127. Toraya T. 2003. Radical catalysis in coenzyme B 12-dependent isomerization (eliminating) reactions. Chem Rev 103:2095–2127 http://dx.doi.org/10.1021/cr020428b. [PubMed]
128. Johnson CLV, Buszko ML, Bobik TA. 2004. Purification and initial characterization of the Salmonella enterica PduO ATP:Cob(I)alamin adenosyltransferase. J Bacteriol 186:7881–7887 http://dx.doi.org/10.1128/JB.186.23.7881-7887.2004. [PubMed]
129. Wagner OW, Lee HA Jr, Frey PA, Abeles RH. 1966. Studies on the mechanism of action of cobamide coenzymes. Chemical properties of the enzyme-coenzyme complex. J Biol Chem 241:1751–1762.
130. Bachovchin WW, Eagar RG Jr, Moore KW, Richards JH. 1977. Mechanism of action of adenosylcobalamin: glycerol and other substrate analogues as substrates and inactivators for propanediol dehydratase: kinetics, stereospecificity, and mechanism. Biochemistry 16:1082–1092 http://dx.doi.org/10.1021/bi00625a009. [PubMed]
131. Yamanishi M, Kinoshita K, Fukuoka M, Saito T, Tanokuchi A, Ikeda Y, Obayashi H, Mori K, Shibata N, Tobimatsu T, Toraya T. 2012. Redesign of coenzyme B( 12) dependent diol dehydratase to be resistant to the mechanism-based inactivation by glycerol and act on longer chain 1,2-diols. FEBS J 279:793–804 http://dx.doi.org/10.1111/j.1742-4658.2012.08470.x. [PubMed]
132. Daniel R, Bobik TA, Gottschalk G. 1998. Biochemistry of coenzyme B 12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev 22:553–566 http://dx.doi.org/10.1111/j.1574-6976.1998.tb00387.x. [PubMed]
133. Toraya T. 2000. Radical catalysis of B 12 enzymes: structure, mechanism, inactivation, and reactivation of diol and glycerol dehydratases. Cell Mol Life Sci 57:106–127 http://dx.doi.org/10.1007/s000180050502. [PubMed]
134. Mori K, Hosokawa Y, Yoshinaga T, Toraya T. 2010. Diol dehydratase-reactivating factor is a reactivase: evidence for multiple turnovers and subunit swapping with diol dehydratase. FEBS J 277:4931–4943 http://dx.doi.org/10.1111/j.1742-4658.2010.07898.x. [PubMed]
135. Mori K, Obayashi K, Hosokawa Y, Yamamoto A, Yano M, Yoshinaga T, Toraya T. 2013. Essential roles of nucleotide-switch and metal-coordinating residues for chaperone function of diol dehydratase-reactivase. Biochemistry 52:8677–8686 http://dx.doi.org/10.1021/bi401290j. [PubMed]
136. Sampson EM, Johnson CLV, Bobik TA. 2005. Biochemical evidence that the pduS gene encodes a bifunctional cobalamin reductase. Microbiol Read 151:1169–1177 http://dx.doi.org/10.1099/mic.0.27755-0. [PubMed]
137. Fonseca MV, Escalante-Semerena JC. 2001. An in vitro reducing system for the enzymic conversion of cobalamin to adenosylcobalamin. J Biol Chem 276:32101–32108 http://dx.doi.org/10.1074/jbc.M102510200. [PubMed]
138. Fonseca MV, Escalante-Semerena JC. 2000. Reduction of Cob(III)alamin to Cob(II)alamin in Salmonella enterica serovar typhimurium LT2. J Bacteriol 182:4304–4309 http://dx.doi.org/10.1128/JB.182.15.4304-4309.2000. [PubMed]
139. Bovell AM, Warncke K. 2013. The structural model of Salmonella Typhimurium ethanolamine ammonia-lyase directs a rational approach to the assembly of the functional [(EutB-EutC) 2] 3 oligomer from isolated subunits. Biochemistry 52:1419–1428 http://dx.doi.org/10.1021/bi301651n. [PubMed]
140. Shibata N, Masuda J, Tobimatsu T, Toraya T, Suto K, Morimoto Y, Yasuoka N. 1999. A new mode of B 12 binding and the direct participation of a potassium ion in enzyme catalysis: x-ray structure of diol dehydratase. Structure 7:997–1008 http://dx.doi.org/10.1016/S0969-2126(99)80126-9.
141. Havemann GD, Bobik TA. 2003. Protein content of polyhedral organelles involved in coenzyme B 12-dependent degradation of 1,2-propanediol in Salmonella enterica serovar Typhimurium LT2. J Bacteriol 185:5086–5095 http://dx.doi.org/10.1128/JB.185.17.5086-5095.2003. [PubMed]
142. Frey PA. 2001. Radical mechanisms of enzymatic catalysis. Annu Rev Biochem 70:121–148 http://dx.doi.org/10.1146/annurev.biochem.70.1.121. [PubMed]
143. Backman LRF, Funk MA, Dawson CD, Drennan CL. 2017. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 52:674–695 http://dx.doi.org/10.1080/10409238.2017.1373741. [PubMed]
144. Shisler KA, Broderick JB. 2014. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions. Arch Biochem Biophys 546:64–71 http://dx.doi.org/10.1016/j.abb.2014.01.020. [PubMed]
145. Bowman SEJ, Backman LRF, Bjork RE, Andorfer MC, Yori S, Caruso A, Stultz CM, Drennan CL. 2019. Solution structure and biochemical characterization of a spare part protein that restores activity to an oxygen-damaged glycyl radical enzyme. J Biol Inorg Chem 24:817–829 http://dx.doi.org/10.1007/s00775-019-01681-2. [PubMed]
146. Bodea S, Balskus EP. 2018. Purification and characterization of the choline trimethylamine-lyase (CutC)-activating protein CutD. Methods Enzymol 606:73–94 http://dx.doi.org/10.1016/bs.mie.2018.04.012. [PubMed]
147. Kalnins G, Cesle E-E, Jansons J, Liepins J, Filimonenko A, Tars K. 2020. Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles. Nat Commun 11:388 http://dx.doi.org/10.1038/s41467-019-14205-y. [PubMed]
148. Starai VJ, Garrity J, Escalante-Semerena JC. 2005. Acetate excretion during growth of Salmonella enterica on ethanolamine requires phosphotransacetylase (EutD) activity, and acetate recapture requires acetyl-CoA synthetase (Acs) and phosphotransacetylase (Pta) activities. Microbiol (Reading) 151:3793–3801 http://dx.doi.org/10.1099/mic.0.28156-0. [PubMed]
149. Erbilgin O, Sutter M, Kerfeld CA. 2016. The structural basis of coenzyme A recycling in a bacterial organelle. PLoS Biol 14:e1002399 http://dx.doi.org/10.1371/journal.pbio.1002399. [PubMed]
150. Yeates TO, Thompson MC, Bobik TA. 2011. The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 21:223–231 http://dx.doi.org/10.1016/j.sbi.2011.01.006. [PubMed]
151. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO. 2008. Atomic-level models of the bacterial carboxysome shell. Science 319:1083–1086 http://dx.doi.org/10.1126/science.1151458.
152. Sinha S, Cheng S, Sung YW, McNamara DE, Sawaya MR, Yeates TO, Bobik TA. 2014. Alanine scanning mutagenesis identifies an asparagine-arginine-lysine triad essential to assembly of the shell of the Pdu microcompartment. J Mol Biol 426:2328–2345 http://dx.doi.org/10.1016/j.jmb.2014.04.012.
153. Takenoya M, Nikolakakis K, Sagermann M. 2010. Crystallographic insights into the pore structures and mechanisms of the EutL and EutM shell proteins of the ethanolamine-utilizing microcompartment of Escherichia coli. J Bacteriol 192:6056–6063 http://dx.doi.org/10.1128/JB.00652-10.
154. Crowley CS, Sawaya MR, Bobik TA, Yeates TO. 2008. Structure of the PduU shell protein from the Pdu microcompartment of Salmonella. Structure 16:1324–1332 http://dx.doi.org/10.1016/j.str.2008.05.013.
155. Crowley CS, Cascio D, Sawaya MR, Kopstein JS, Bobik TA, Yeates TO. 2010. Structural insight into the mechanisms of transport across the Salmonella enterica Pdu microcompartment shell. J Biol Chem 285:37838–37846 http://dx.doi.org/10.1074/jbc.M110.160580.
156. Pang A, Warren MJ, Pickersgill RW. 2011. Structure of PduT, a trimeric bacterial microcompartment protein with a 4Fe-4S cluster-binding site. Acta Crystallogr D Biol Crystallogr 67:91–96 http://dx.doi.org/10.1107/S0907444910050201.
157. Thompson MC, Wheatley NM, Jorda J, Sawaya MR, Gidaniyan SD, Ahmed H, Yang Z, McCarty KN, Whitelegge JP, Yeates TO. 2014. Identification of a unique Fe-S cluster binding site in a glycyl-radical type microcompartment shell protein. J Mol Biol 426:3287–3304 http://dx.doi.org/10.1016/j.jmb.2014.07.018.
158. Wheatley NM, Gidaniyan SD, Liu Y, Cascio D, Yeates TO. 2013. Bacterial microcompartment shells of diverse functional types possess pentameric vertex proteins. Protein Sci 22:660–665 http://dx.doi.org/10.1002/pro.2246.
159. Tanaka S, Sawaya MR, Yeates TO. 2010. Structure and mechanisms of a protein-based organelle in Escherichia coli. Science 327:81–84 http://dx.doi.org/10.1126/science.1179513.
160. Sagermann M, Ohtaki A, Nikolakakis K. 2009. Crystal structure of the EutL shell protein of the ethanolamine ammonia lyase microcompartment. Proc Natl Acad Sci USA 106:8883–8887 http://dx.doi.org/10.1073/pnas.0902324106.
161. Pang A, Liang M, Prentice MB, Pickersgill RW. 2012. Substrate channels revealed in the trimeric Lactobacillus reuteri bacterial microcompartment shell protein PduB. Acta Crystallogr D Biol Crystallogr 68:1642–1652 http://dx.doi.org/10.1107/S0907444912039315.
162. Chowdhury C, Chun S, Sawaya MR, Yeates TO, Bobik TA. 2016. The function of the PduJ microcompartment shell protein is determined by the genomic position of its encoding gene. Mol Microbiol 101:770–783 http://dx.doi.org/10.1111/mmi.13423.
163. Chowdhury C, Chun S, Pang A, Sawaya MR, Sinha S, Yeates TO, Bobik TA. 2015. Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci USA 112:2990–2995 http://dx.doi.org/10.1073/pnas.1423672112.
164. Thompson MC, Cascio D, Leibly DJ, Yeates TO. 2015. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein. Protein Sci 24:956–975 http://dx.doi.org/10.1002/pro.2672.
165. Sutter M, Greber B, Aussignargues C, Kerfeld CA. 2017. Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Science 356:1293–1297 http://dx.doi.org/10.1126/science.aan3289.
166. Greber BJ, Sutter M, Kerfeld CA. 2019. The plasticity of molecular interactions governs bacterial microcompartment shell assembly. Structure 27:749–763.e4 http://dx.doi.org/10.1016/j.str.2019.01.017.
167. Sutter M, Laughlin TG, Sloan NB, Serwas D, Davies KM, Kerfeld CA. 2019. Structure of a synthetic β-carboxysome shell. Plant Physiol 181:1050–1058 http://dx.doi.org/10.1104/pp.19.00885.
168. Garcia-Alles LF, Lesniewska E, Root K, Aubry N, Pocholle N, Mendoza CI, Bourillot E, Barylyuk K, Pompon D, Zenobi R, Reguera D, Truan G. 2017. Spontaneous non-canonical assembly of CcmK hexameric components from β-carboxysome shells of cyanobacteria. PLoS One 12:e0185109 http://dx.doi.org/10.1371/journal.pone.0185109.
169. Yeates TO, Crowley CS, Tanaka S. 2010. Bacterial microcompartment organelles: protein shell structure and evolution. Annu Rev Biophys 39:185–205 http://dx.doi.org/10.1146/annurev.biophys.093008.131418.
170. Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, Phillips M, Beeby M, Yeates TO. 2005. Protein structures forming the shell of primitive bacterial organelles. Science 309:936–938 http://dx.doi.org/10.1126/science.1113397.
171. Pang A, Frank S, Brown I, Warren MJ, Pickersgill RW. 2014. Structural insights into higher order assembly and function of the bacterial microcompartment protein PduA. J Biol Chem 289:22377–22384 http://dx.doi.org/10.1074/jbc.M114.569285.
172. Sutter M, Faulkner M, Aussignargues C, Paasch BC, Barrett S, Kerfeld CA, Liu LN. 2016. Visualization of bacterial microcompartment facet assembly using high-speed atomic force microscopy. Nano Lett 16:1590–1595 http://dx.doi.org/10.1021/acs.nanolett.5b04259.
173. Faulkner M, Zhao LS, Barrett S, Liu LN. 2019. Self-assembly, stability, and variability of bacterial microcompartment shell proteins in response to environmental change. Nano Res Lett 14:54.
174. Park J, Chun S, Bobik TA, Houk KN, Yeates TO. 2017. Molecular dynamics simulations of selective metabolite transport across the propanediol bacterial microcompartment shell. J Phys Chem B 121:8149–8154 http://dx.doi.org/10.1021/acs.jpcb.7b07232.
175. Lehman BP, Chowdhury C, Bobik TA. 2017. The N-terminus of the PduB protein binds the protein shell of the Pdu microcompartment to its enzymatic core. J Bacteriol 199:1–13 http://dx.doi.org/10.1128/JB.00785-16.
176. Cai F, Sutter M, Cameron JC, Stanley DN, Kinney JN, Kerfeld CA. 2013. The structure of CcmP, a tandem bacterial microcompartment domain protein from the β-carboxysome, forms a subcompartment within a microcompartment. J Biol Chem 288:16055–16063 http://dx.doi.org/10.1074/jbc.M113.456897.
177. Larsson AM, Hasse D, Valegård K, Andersson I. 2017. Crystal structures of β-carboxysome shell protein CcmP: ligand binding correlates with the closed or open central pore. J Exp Bot 68:3857–3867 http://dx.doi.org/10.1093/jxb/erx070.
178. Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC, Kerfeld CA. 2009. Identification and structural analysis of a novel carboxysome shell protein with implications for metabolite transport. J Mol Biol 392:319–333 http://dx.doi.org/10.1016/j.jmb.2009.03.056.
179. Chowdhury C, Bobik TA. 2019. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella. Microbiol Read 165:1355–1364 http://dx.doi.org/10.1099/mic.0.000872.
180. Cannon GC, Shively JM. 1983. Characterization of a homogenous preparation of carboxysomes from Thiobacillus neapolitanus. Arch Microbiol 134:52–59 http://dx.doi.org/10.1007/BF00429407.
181. Lassila JK, Bernstein SL, Kinney JN, Axen SD, Kerfeld CA. 2014. Assembly of robust bacterial microcompartment shells using building blocks from an organelle of unknown function. J Mol Biol 426:2217–2228 http://dx.doi.org/10.1016/j.jmb.2014.02.025.
182. Mohajerani F, Hagan MF. 2018. The role of the encapsulated cargo in microcompartment assembly. PLOS Comput Biol 14:e1006351 http://dx.doi.org/10.1371/journal.pcbi.1006351.
183. Rotskoff GM, Geissler PL. 2018. Robust nonequilibrium pathways to microcompartment assembly. Proc Natl Acad Sci USA 115:6341–6346 http://dx.doi.org/10.1073/pnas.1802499115.
184. Kerfeld CA, Melnicki MR. 2016. Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75 http://dx.doi.org/10.1016/j.pbi.2016.03.009.
185. Dai W, Chen M, Myers C, Ludtke SJ, Pettitt BM, King JA, Schmid MF, Chiu W. 2018. Visualizing individual RuBisCO and its assembly into carboxysomes in marine cyanobacteria by cryo-electron tomography. J Mol Biol 430:4156–4167 http://dx.doi.org/10.1016/j.jmb.2018.08.013.
186. Hagen A, Sutter M, Sloan N, Kerfeld CA. 2018. Programmed loading and rapid purification of engineered bacterial microcompartment shells. Nat Commun 9:2881 http://dx.doi.org/10.1038/s41467-018-05162-z.
187. Jorda J, Liu Y, Bobik TA, Yeates TO. 2015. Exploring bacterial organelle interactomes: a model of the protein-protein interaction network in the Pdu microcompartment. PLOS Comput Biol 11:e1004067 http://dx.doi.org/10.1371/journal.pcbi.1004067.
188. Kennedy NW, Hershewe JM, Nichols TM, Roth EW, Wilke CD, Mills CE, Jewett MC, Tullman-Ercek D. 2020. Apparent size and morphology of bacterial microcompartments varies with technique. PLoS One 15:e0226395 http://dx.doi.org/10.1371/journal.pone.0226395.
189. Parsons JB, Dinesh SD, Deery E, Leech HK, Brindley AA, Heldt D, Frank S, Smales CM, Lünsdorf H, Rambach A, Gass MH, Bleloch A, McClean KJ, Munro AW, Rigby SEJ, Warren MJ, Prentice MB. 2008. Biochemical and structural insights into bacterial organelle form and biogenesis. J Biol Chem 283:14366–14375 http://dx.doi.org/10.1074/jbc.M709214200.
190. Graf L, Wu K, Wilson JW. 2018. Transfer and analysis of Salmonella pdu genes in a range of Gram-negative bacteria demonstrate exogenous microcompartment expression across a variety of species. Microb Biotechnol 11:199–210 http://dx.doi.org/10.1111/1751-7915.12863.
191. Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN. 2018. Engineering and modulating functional cyanobacterial CO 2-fixing organelles. Front Plant Sci 9:739 http://dx.doi.org/10.3389/fpls.2018.00739.
192. Bonacci W, Teng PK, Afonso B, Niederholtmeyer H, Grob P, Silver PA, Savage DF. 2012. Modularity of a carbon-fixing protein organelle. Proc Natl Acad Sci USA 109:478–483 http://dx.doi.org/10.1073/pnas.1108557109.
193. Long BM, Hee WY, Sharwood RE, Rae BD, Kaines S, Lim YL, Nguyen ND, Massey B, Bala S, von Caemmerer S, Badger MR, Price GD. 2018. Carboxysome encapsulation of the CO 2-fixing enzyme Rubisco in tobacco chloroplasts. Nature Coms 9.
194. Lee MJ, Palmer DJ, Warren MJ. 2019. Biotechnological advances in bacterial microcompartment technology. Trends Biotechnol 37:325–336 http://dx.doi.org/10.1016/j.tibtech.2018.08.006.
195. Young EJ, Burton R, Mahalik JP, Sumpter BG, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. 2017. Engineering the bacterial microcompartment domain for molecular scaffolding applications. Front Microbiol 8:1441 http://dx.doi.org/10.3389/fmicb.2017.01441.
196. Chessher A, Breitling R, Takano E. 2015. Bacterial microcompartments: biomaterials for synthetic biology-based compartmentalization strategies. ACS Biomater Sci Eng 1:345–351 http://dx.doi.org/10.1021/acsbiomaterials.5b00059.
197. Corchero JL, Cedano J. 2011. Self-assembling, protein-based intracellular bacterial organelles: emerging vehicles for encapsulating, targeting and delivering therapeutical cargoes. Microb Cell Fact 10:92 http://dx.doi.org/10.1186/1475-2859-10-92.
198. Planamente S, Frank S. 2019. Bio-engineering of bacterial microcompartments: a mini review. Biochem Soc Trans 47:765–777 http://dx.doi.org/10.1042/BST20170564.
199. Bari NK, Kumar G, Hazra JP, Kaur S, Sinha S. 2020. Functional protein shells fabricated from the self-assembling protein sheets of prokaryotic organelles. J Mater Chem B Mater Biol Med 8:523–533 http://dx.doi.org/10.1039/C9TB02224D.
200. Jorda J, Leibly DJ, Thompson MC, Yeates TO. 2016. Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Chem Commun (Camb) 52:5041–5044 http://dx.doi.org/10.1039/C6CC00851H.
201. Sutter M, McGuire S, Ferlez B, Kerfeld CA. 2019. Structural characterization of a synthetic tandem-domain bacterial microcompartment shell protein capable of forming icosahedral shell assemblies. ACS Synth Biol 8:668–674 http://dx.doi.org/10.1021/acssynbio.9b00011. [PubMed]
202. Ferlez B, Sutter M, Kerfeld CA. 2019. A designed bacterial microcompartment shell with tunable composition and precision cargo loading. Metab Eng 54:286–291 http://dx.doi.org/10.1016/j.ymben.2019.04.011. [PubMed]
203. Liang M, Frank S, Lünsdorf H, Warren MJ, Prentice MB. 2017. Bacterial microcompartment-directed polyphosphate kinase promotes stable polyphosphate accumulation in E. coli. Biotechnol J 12:12 http://dx.doi.org/10.1002/biot.201600415. [PubMed]
204. Huber I, Palmer DJ, Ludwig KN, Brown IR, Warren MJ, Frunzke J. 2017. Construction of recombinant Pdu metabolosome shells for small molecule production in Corynebacterium glutamicum. ACS Synth Biol 6:2145–2156 http://dx.doi.org/10.1021/acssynbio.7b00167. [PubMed]
205. Nichols TM, Kennedy NW, Tullman-Ercek D. 2019. Cargo encapsulation in bacterial microcompartments: methods and analysis. Methods Enzymol 617:155–186 http://dx.doi.org/10.1016/bs.mie.2018.12.009. [PubMed]
206. Wade Y, Daniel RA, Leak DJ. 2019. Heterologous microcompartment assembly in Bacillaceae: establishing the components necessary for scaffold formation. ACS Synth Biol 8:1642–1654 http://dx.doi.org/10.1021/acssynbio.9b00155. [PubMed]
207. Yung MC, Bourguet FA, Carpenter TS, Coleman MA. 2017. Re-directing bacterial microcompartment systems to enhance recombinant expression of lysis protein E from bacteriophage ϕX174 in Escherichia coli. Microb Cell Fact 16:71 http://dx.doi.org/10.1186/s12934-017-0685-x. [PubMed]
208. Lee MJ, Mantell J, Brown IR, Fletcher JM, Verkade P, Pickersgill RW, Woolfson DN, Frank S, Warren MJ. 2018. De novo targeting to the cytoplasmic and luminal side of bacterial microcompartments. Nat Commun 9:3413 http://dx.doi.org/10.1038/s41467-018-05922-x. [PubMed]
209. Bari NK, Kumar G, Bhatt A, Hazra JP, Garg A, Ali ME, Sinha S. 2018. Nanoparticle fabrication on bacterial microcompartment surface for the development of hybrid enzyme-inorganic catalyst. ACS Catal 8:7742–7748 http://dx.doi.org/10.1021/acscatal.8b02322.
210. Cameron JC, Wilson SC, Bernstein SL, Kerfeld CA. 2013. Biogenesis of a bacterial organelle: the carboxysome assembly pathway. Cell 155:1131–1140 http://dx.doi.org/10.1016/j.cell.2013.10.044. [PubMed]
211. Iancu CV, Morris DM, Dou Z, Heinhorst S, Cannon GC, Jensen GJ. 2010. Organization, structure, and assembly of α-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 396:105–117 http://dx.doi.org/10.1016/j.jmb.2009.11.019. [PubMed]

Article metrics loading...



Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in and : the propanediol utilization (), ethanolamine utilization (), choline utilization (), and glycyl radical propanediol () MCPs. Although the great majority of work done on catabolic MCPs has been carried out with and , research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Comment moderation successfully completed


Image of Figure 1
Figure 1

Representative operons from LT2 (, ), 536 (), and CFT073 () are shown using one-letter abbreviations for genes and protein products. Gene sizes and spacing are roughly to scale. Note that in the operon, shell proteins are named with a different acronym, to - to avoid redundancy with prior work.

Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Pdu MCP; (B) Eut MCP; (C) Cut MCP; (D) Grp MCP. Shell protein names are shown in brown, signature enzymes in green, accessory enzymes (where applicable) in light green, aldehyde dehydrogenase in purple, alcohol dehydrogenase in red, phosphotransacetylase in blue, and acetate kinase in gold.

Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(A) Cut MCPs from 536; (B) Grp MCPs from CFT073; (C) Pdu MCPs from . Scale bars are located on each image. Images were obtained as described ( 76 ).

Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) PduA BMC-H protein from (PDB ID: 3NGK) ( 155 ); (B) EutM, the orthologous BMC-H protein from K-12 (3I6P) ( 159 ); (C) PduU permuted BMC-H protein from serovar Typhimurium (3CGI) ( 154 ); (D) EutL BMC-T closed form from K12 (3GFH) ( 160 ); (E) EutL BMC-T open form from K12 (3I87) ( 159 ); (F) PduT [Fe-S]-containing BMC-T protein from (3PAC) [ 156 ]; (G) GrpN BMV pentamer from (4I7A) ( 158 ).

Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

MCP operons found in and , taken from genomic studies ( 4 )

Citation: Stewart K, Stewart A, Bobik T. 2020. Prokaryotic Organelles: Bacterial Microcompartments in and , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0025-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error