1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 12: BACTERIOPHAGE

Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens:

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Ariel J. Santiago1, and Rodney M. Donlan2
  • Editor: Deborah Hinton3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 2: Clinical and Environmental Microbiology Branch, Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA; 3: Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
  • Received 17 July 2020 Accepted 23 September 2020 Published 28 October 2020
  • Address correspondence to Rodney M. Donlan, [email protected]
image of Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: <span class="jp-italic">Klebsiella pneumoniae</span>
    Preview this reference work article:
    Zoom in
    Zoomout

    Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/9/1/ESP-0029-2019-1.gif /docserver/preview/fulltext/ecosalplus/9/1/ESP-0029-2019-2.gif
  • Abstract:

    Members of the family , such as , are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.

  • Citation: Santiago A, Donlan R. 2020. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0029-2019

References

1. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890 http://dx.doi.org/10.3201/eid0809.020063. [PubMed]
2. Berlanga M, Guerrero R. 2016. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15:165–165 http://dx.doi.org/10.1186/s12934-016-0569-5. [PubMed]
3. Niba ETE, Naka Y, Nagase M, Mori H, Kitakawa M. 2007. A genome-wide approach to identify the genes involved in biofilm formation in E. coli. DNA Res 14:237–246 http://dx.doi.org/10.1093/dnares/dsm024. [PubMed]
4. Prüss BM, Besemann C, Denton A, Wolfe AJ. 2006. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol 188:3731–3739 http://dx.doi.org/10.1128/JB.01780-05. [PubMed]
5. Bjarnsholt T. 2013. The role of bacterial biofilms in chronic infections. APMIS Suppl 121:1–51 http://dx.doi.org/10.1111/apm.12099. [PubMed]
6. Anderl JN, Zahller J, Roe F, Stewart PS. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256 http://dx.doi.org/10.1128/AAC.47.4.1251-1256.2003. [PubMed]
7. Jones K, Bradshaw SB. 1996. Biofilm formation by the Enterobacteriaceae: a comparison between Salmonella enteritidis, Escherichia coli and a nitrogen-fixing strain of Klebsiella pneumoniae. J Appl Bacteriol 80:458–464 http://dx.doi.org/10.1111/j.1365-2672.1996.tb03243.x. [PubMed]
8. Barnhart MM, Chapman MR. 2006. Curli biogenesis and function. Annu Rev Microbiol 60:131–147 http://dx.doi.org/10.1146/annurev.micro.60.080805.142106. [PubMed]
9. Hanna A, Berg M, Stout V, Razatos A. 2003. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli. Appl Environ Microbiol 69:4474–4481 http://dx.doi.org/10.1128/AEM.69.8.4474-4481.2003. [PubMed]
10. Zogaj X, Bokranz W, Nimtz M, Römling U. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71:4151–4158 http://dx.doi.org/10.1128/IAI.71.7.4151-4158.2003. [PubMed]
11. Birarda G, Delneri A, Lagatolla C, Parisse P, Cescutti P, Vaccari L, Rizzo R. 2019. Multi-technique microscopy investigation on bacterial biofilm matrices: a study on Klebsiella pneumoniae clinical strains. Anal Bioanal Chem 411:7315–7325 http://dx.doi.org/10.1007/s00216-019-02111-7. [PubMed]
12. Cai L, Wang H, Liang L, Wang G, Xu X, Wang H. 2018. Response of formed-biofilm of Enterobacter cloacae, Klebsiella oxytoca, and Citrobacter freundii to chlorite-based disinfectants. J Food Sci 83:1326–1332 http://dx.doi.org/10.1111/1750-3841.14149. [PubMed]
13. Bennour Hennekinne R, Guillier L, Fazeuilh L, Ells T, Forsythe S, Jackson E, Meheut T, Gnanou Besse N. 2018. Survival of Cronobacter in powdered infant formula and their variation in biofilm formation. Lett Appl Microbiol 66:496–505 http://dx.doi.org/10.1111/lam.12879. [PubMed]
14. Beuchat LR, Kim H, Gurtler JB, Lin L-C, Ryu J-H, Richards GM. 2009. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int J Food Microbiol 136:204–213 http://dx.doi.org/10.1016/j.ijfoodmicro.2009.02.029. [PubMed]
15. Octavia S, Lan R. 2014. The family Enterobacteriaceae, p 225–286. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (ed), The Prokaryotes: Gammaproteobacteria. Springer, Berlin, Germany. doi:10.1007/978-3-642-38922-1_167.
16. Keynan Y, Rubinstein E. 2007. The changing face of Klebsiella pneumoniae infections in the community. Int J Antimicrob Agents 30:385–389 http://dx.doi.org/10.1016/j.ijantimicag.2007.06.019. [PubMed]
17. Vuotto C, Longo F, Balice MP, Donelli G, Varaldo PE. 2014. Antibiotic resistance related to biofilm formation in Klebsiella pneumoniae. Pathogens 3:743–758 http://dx.doi.org/10.3390/pathogens3030743. [PubMed]
18. Ghasemian A, Mobarez AM, Peerayeh SN, Bezmin Abadi AT. 2018. The association of surface adhesin genes and the biofilm formation among Klebsiella oxytoca clinical isolates. New Microbes New Infect 27:36–39 http://dx.doi.org/10.1016/j.nmni.2018.07.001. [PubMed]
19. Anderl JN, Franklin MJ, Stewart PS. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824 http://dx.doi.org/10.1128/AAC.44.7.1818-1824.2000. [PubMed]
20. Vuotto C, Longo F, Pascolini C, Donelli G, Balice MP, Libori MF, Tiracchia V, Salvia A, Varaldo PE. 2017. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J Appl Microbiol 123:1003–1018 http://dx.doi.org/10.1111/jam.13533. [PubMed]
21. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 http://dx.doi.org/10.1128/CMR.15.2.167-193.2002. [PubMed]
22. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network Team, Participating National Healthcare Safety Network Facilities. 2008. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29:996–1011 http://dx.doi.org/10.1086/591861. [PubMed]
23. CDC. 2019. Antibiotic Resistance Threats in the United States. U.S. Centers for Disease Control and Prevention, Atlanta, GA.
24. Lee C-R, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. 2016. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 7:895–895 http://dx.doi.org/10.3389/fmicb.2016.00895.
25. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. 2008. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106 http://dx.doi.org/10.1086/592412. [PubMed]
26. Nirwati H, Sinanjung K, Fahrunissa F, Wijaya F, Napitupulu S, Hati VP, Hakim MS, Meliala A, Aman AT, Nuryastuti T. 2019. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc 13(Suppl 11) :20–20 http://dx.doi.org/10.1186/s12919-019-0176-7. [PubMed]
27. Yang D, Zhang Z. 2008. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum β-lactamases. J Hosp Infect 68:369–371 http://dx.doi.org/10.1016/j.jhin.2008.02.001. [PubMed]
28. Araújo BF, Ferreira ML, Campos PA, Royer S, Gonçalves IR, da Fonseca Batistão DW, Fernandes MR, Cerdeira LT, Brito CS, Lincopan N, Gontijo-Filho PP, Ribas RM. 2018. Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil. J Med Microbiol 67:523–528 http://dx.doi.org/10.1099/jmm.0.000711. [PubMed]
29. Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A. 2016. Bacteriophage Procurement for therapeutic purposes. Front Microbiol 7:1177.
30. Latz S, Wahida A, Arif A, Häfner H, Hoß M, Ritter K, Horz H-P. 2016. Preliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteria. J Basic Microbiol 56:1117–1123 http://dx.doi.org/10.1002/jobm.201600108. [PubMed]
31. Yu P, Mathieu J, Li M, Dai Z, Alvarez PJJ. 2015. Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol 82:808–815 http://dx.doi.org/10.1128/AEM.02382-15. [PubMed]
32. Anand T, Vaid RK, Bera BC, Barua S, Riyesh T, Virmani N, Yadav N, Malik P. 2015. Isolation and characterization of a bacteriophage with broad host range, displaying potential in preventing bovine diarrhoea. Virus Genes 51:315–321 http://dx.doi.org/10.1007/s11262-015-1222-9. [PubMed]
33. Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783 http://dx.doi.org/10.2217/fmb.13.47. [PubMed]
34. Kumari S, Harjai K, Chhibber S. 2010. Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 20:935–941 http://dx.doi.org/10.4014/jmb.0909.09010. [PubMed]
35. Hung C-H, Kuo C-F, Wang C-H, Wu C-M, Tsao N. 2011. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 55:1358–1365 http://dx.doi.org/10.1128/AAC.01123-10. [PubMed]
36. Galtier M, De Sordi L, Maura D, Arachchi H, Volant S, Dillies M-A, Debarbieux L. 2016. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition. Environ Microbiol 18:2237–2245 http://dx.doi.org/10.1111/1462-2920.13284. [PubMed]
37. Dufour N, Debarbieux L, Fromentin M, Ricard J-D. 2015. Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit Care Med 43:e190–e198 http://dx.doi.org/10.1097/CCM.0000000000000968. [PubMed]
38. Marraffini LA, Sontheimer EJ. 2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190 http://dx.doi.org/10.1038/nrg2749. [PubMed]
39. Yosef I, Manor M, Kiro R, Qimron U. 2015. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci USA 112:7267–7272 http://dx.doi.org/10.1073/pnas.1500107112. [PubMed]
40. Abedon ST. 2015. Ecology of anti-biofilm agents. I. Antibiotics versus bacteriophages. Pharmaceuticals (Basel) 8:525–558 http://dx.doi.org/10.3390/ph8030525. [PubMed]
41. Doolittle MM, Cooney JJ, Caldwell DE. 1995. Lytic infection of Escherichia coli biofilms by bacteriophage T4. Can J Microbiol 41:12–18 http://dx.doi.org/10.1139/m95-002. [PubMed]
42. Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K. 2018. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol 3:26–31 http://dx.doi.org/10.1038/s41564-017-0050-1. [PubMed]
43. Simmons M, Drescher K, Nadell CD, Bucci V. 2018. Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. ISME J 12:531–543 http://dx.doi.org/10.1038/ismej.2017.190. [PubMed]
44. Łoś M, Golec P, Łoś JM, Węglewska-Jurkiewicz A, Czyż A, Węgrzyn A, Węgrzyn G, Neubauer P. 2007. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol 7:13 http://dx.doi.org/10.1186/1472-6750-7-13. [PubMed]
45. Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. 2016. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol 7:1391 http://dx.doi.org/10.3389/fmicb.2016.01391.
46. Woods DR. 1976. Bacteriophage growth on stationary phase Achromobacter cells. J Gen Virol 32:45–50 http://dx.doi.org/10.1099/0022-1317-32-1-45. [PubMed]
47. Schrader HS, Schrader JO, Walker JJ, Wolf TA, Nickerson KW, Kokjohn TA. 1997. Bacteriophage infection and multiplication occur in Pseudomonas aeruginosa starved for 5 years. Can J Microbiol 43:1157–1163 http://dx.doi.org/10.1139/m97-164. [PubMed]
48. Azeredo J, Sutherland IW. 2008. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266 http://dx.doi.org/10.2174/138920108785161604. [PubMed]
49. Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ. 2013. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234 http://dx.doi.org/10.1097/PRS.0b013e31827e47cd. [PubMed]
50. Domenech M, García E, Moscoso M. 2011. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother 55:4144–4148 http://dx.doi.org/10.1128/AAC.00492-11. [PubMed]
51. Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA 104:11197–11202 http://dx.doi.org/10.1073/pnas.0704624104. [PubMed]
52. Hughes KA, Sutherland IW, Jones MV. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology (Reading) 144:3039–3047 http://dx.doi.org/10.1099/00221287-144-11-3039. [PubMed]
53. Majkowska-Skrobek G, Latka A, Berisio R, Squeglia F, Maciejewska B, Briers Y, Drulis-Kawa Z. 2018. Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol 9:2517 http://dx.doi.org/10.3389/fmicb.2018.02517. [PubMed]
54. Verma V, Harjai K, Chhibber S. 2010. Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling 26:729–737 http://dx.doi.org/10.1080/08927014.2010.511196. [PubMed]
55. Kay MK, Erwin TC, McLean RJC, Aron GM. 2011. Bacteriophage ecology in Escherichia coli and Pseudomonas aeruginosa mixed-biofilm communities. Appl Environ Microbiol 77:821–829 http://dx.doi.org/10.1128/AEM.01797-10. [PubMed]
56. Ross A, Ward S, Hyman P. 2016. More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352 http://dx.doi.org/10.3389/fmicb.2016.01352.
57. O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005. Potential of the polyvalent anti- Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842 http://dx.doi.org/10.1128/AEM.71.4.1836-1842.2005. [PubMed]
58. Hamdi S, Rousseau GM, Labrie SJ, Tremblay DM, Kourda RS, Ben Slama K, Moineau S. 2017. Characterization of two polyvalent phages infecting Enterobacteriaceae. Sci Rep 7:40349 http://dx.doi.org/10.1038/srep40349. [PubMed]
59. Yu P, Mathieu J, Yang Y, Alvarez PJJ. 2017. Suppression of enteric bacteria by bacteriophages: importance of phage polyvalence in the presence of soil bacteria. Environ Sci Technol 51:5270–5278 http://dx.doi.org/10.1021/acs.est.7b00529. [PubMed]
60. Sybesma W, Zbinden R, Chanishvili N, Kutateladze M, Chkhotua A, Ujmajuridze A, Mehnert U, Kessler TM. 2016. Bacteriophages as potential treatment for urinary tract infections. Front Microbiol 7:465–465 http://dx.doi.org/10.3389/fmicb.2016.00465. [PubMed]
61. Khan Mirzaei M, Nilsson AS. 2015. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10:e0118557 http://dx.doi.org/10.1371/journal.pone.0118557. [PubMed]
62. Maura D, Galtier M, Le Bouguénec C, Debarbieux L. 2012. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother 56:6235–6242 http://dx.doi.org/10.1128/AAC.00602-12. [PubMed]
63. Maura D, Morello E, du Merle L, Bomme P, Le Bouguénec C, Debarbieux L. 2012. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol 14:1844–1854 http://dx.doi.org/10.1111/j.1462-2920.2011.02644.x. [PubMed]
64. Jamal M, Hussain T, Das CR, Andleeb S. 2015. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J Med Microbiol 64:454–462 http://dx.doi.org/10.1099/jmm.0.000040. [PubMed]
65. Tabassum R, Shafique M, Khawaja KA, Alvi IA, Rehman Y, Sheik CS, Abbas Z, Rehman SU. 2018. Complete genome analysis of a Siphoviridae phage TSK1 showing biofilm removal potential against Klebsiella pneumoniae. Sci Rep 8:17904 http://dx.doi.org/10.1038/s41598-018-36229-y. [PubMed]
66. Hao G, Chen AI, Liu M, Zhou H, Egan M, Yang X, Kan B, Wang H, Goulian M, Zhu J. 2019. Colistin-resistance-mediated bacterial surface modification sensitizes phage infection. Antimicrob Agents Chemother 63:e01609-19 http://dx.doi.org/10.1128/AAC.01609-19. [PubMed]
67. Chhibber S, Nag D, Bansal S. 2013. Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 13:174–174 http://dx.doi.org/10.1186/1471-2180-13-174. [PubMed]
68. Singla S, Harjai K, Katare OP, Chhibber S. 2016. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One 11:e0153777 http://dx.doi.org/10.1371/journal.pone.0153777. [PubMed]
69. Taha OA, Connerton PL, Connerton IF, El-Shibiny A. 2018. Bacteriophage ZCKP1: a potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients. Front Microbiol 9:2127 http://dx.doi.org/10.3389/fmicb.2018.02127. [PubMed]
70. Brzozowska E, Pyra A, Pawlik K, Janik M, Górska S, Urbańska N, Drulis-Kawa Z, Gamian A. 2017. Hydrolytic activity determination of Tail Tubular Protein A of Klebsiella pneumoniae bacteriophages towards saccharide substrates. Sci Rep 7:18048 http://dx.doi.org/10.1038/s41598-017-18096-1. [PubMed]
71. Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q. 2019. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768 http://dx.doi.org/10.3389/fmicb.2019.02768. [PubMed]
72. Tan D, Zhang Y, Cheng M, Le S, Gu J, Bao J, Qin J, Guo X, Zhu T. 2019. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 11:1080 http://dx.doi.org/10.3390/v11111080. [PubMed]
73. Verma V, Harjai K, Chhibber S. 2009. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother 64:1212–1218 http://dx.doi.org/10.1093/jac/dkp360. [PubMed]
74. Chhibber S, Bansal S, Kaur S. 2015. Disrupting the mixed-species biofilm of Klebsiella pneumoniae B5055 and Pseudomonas aeruginosa PAO using bacteriophages alone or in combination with xylitol. Microbiology (Reading) 161:1369–1377 http://dx.doi.org/10.1099/mic.0.000104.
75. Kumari S, Harjai K, Chhibber S. 2009. Efficacy of bacteriophage treatment in murine burn wound infection induced by Klebsiella pneumoniae. J Microbiol Biotechnol 19:622–628. [PubMed]
76. Chadha P, Katare OP, Chhibber S. 2016. In vivo efficacy of single phage versus phage cocktail in resolving burn wound infection in BALB/c mice. Microb Pathog 99:68–77 http://dx.doi.org/10.1016/j.micpath.2016.08.001. [PubMed]
77. Bao J, Wu N, Zeng Y, Chen L, Li L, Yang L, Zhang Y, Guo M, Li L, Li J, Tan D, Cheng M, Gu J, Qin J, Liu J, Li S, Pan G, Jin X, Yao B, Guo X, Zhu T, Le S. 2020. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae. Emerg Microbes Infect 9:771–774 http://dx.doi.org/10.1080/22221751.2020.1747950. [PubMed]
78. Abedon ST, García P, Mullany P, Aminov R. 2017. Editorial: phage therapy: past, present and future. Front Microbiol 8:981 http://dx.doi.org/10.3389/fmicb.2017.00981. [PubMed]
79. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST. 2010. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86 http://dx.doi.org/10.2174/138920110790725401. [PubMed]
80. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK, Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. 2014. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370:1198–1208 http://dx.doi.org/10.1056/NEJMoa1306801. [PubMed]
81. CDC. 2014. Types of healthcare-associated infections. https://www.cdc.gov/hai/infectiontypes.html. Accessed 4 May 2020.
82. Stone PW. 2009. Economic burden of healthcare-associated infections: an American perspective. Expert Rev Pharmacoecon Outcomes Res 9:417–422 http://dx.doi.org/10.1586/erp.09.53. [PubMed]
83. Al-Tawfiq JA, Tambyah PA. 2014. Healthcare associated infections (HAI) perspectives. J Infect Public Health 7:339–344 http://dx.doi.org/10.1016/j.jiph.2014.04.003. [PubMed]
84. Donlan RM. 2011. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner. Clin Infect Dis 52:1038–1045 http://dx.doi.org/10.1093/cid/cir077. [PubMed]
85. Lungren MP, Donlan RM, Kankotia R, Paxton BE, Falk I, Christensen D, Kim CY. 2014. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J Vasc Interv Radiol 25:1627–1632 http://dx.doi.org/10.1016/j.jvir.2014.06.009. [PubMed]
86. Curtin JJ, Donlan RM. 2006. Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275 http://dx.doi.org/10.1128/AAC.50.4.1268-1275.2006. [PubMed]
87. Lehman SM, Donlan RM. 2015. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother 59:1127–1137 http://dx.doi.org/10.1128/AAC.03786-14. [PubMed]
88. Melo LDR, Veiga P, Cerca N, Kropinski AM, Almeida C, Azeredo J, Sillankorva S. 2016. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front Microbiol 7:1024 http://dx.doi.org/10.3389/fmicb.2016.01024.
89. Davin-Regli A, Pagès J-M. 2015. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 6:392 http://dx.doi.org/10.3389/fmicb.2015.00392. [PubMed]
90. Jamal M, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Ur Rahman S, Das CR. 2019. Isolation, characterization and efficacy of phage MJ2 against biofilm forming multi-drug resistant Enterobacter cloacae. Folia Microbiol (Praha) 64:101–111 http://dx.doi.org/10.1007/s12223-018-0636-x. [PubMed]
91. Snitkin ES, Zelazny AM, Thomas PJ, Stock F, Henderson DK, Palmore TN, Segre JA, Segre JA, NISC Comparative Sequencing Program Group. 2012. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116 http://dx.doi.org/10.1126/scitranslmed.3004129.
92. Leitner E, Zarfel G, Luxner J, Herzog K, Pekard-Amenitsch S, Hoenigl M, Valentin T, Feierl G, Grisold AJ, Högenauer C, Sill H, Krause R, Zollner-Schwetz I. 2015. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother 59:714–716 http://dx.doi.org/10.1128/AAC.04306-14. [PubMed]
93. Roux D, Aubier B, Cochard H, Quentin R, van der Mee-Marquet N, HAI Prevention Group of the Réseau des Hygiénistes du Centre. 2013. Contaminated sinks in intensive care units: an underestimated source of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the patient environment. J Hosp Infect 85:106–111 http://dx.doi.org/10.1016/j.jhin.2013.07.006. [PubMed]
94. Shaw E, Gavaldà L, Càmara J, Gasull R, Gallego S, Tubau F, Granada RM, Ciercoles P, Dominguez MA, Mañez R, Carratalà J, Pujol M. 2018. Control of endemic multidrug-resistant Gram-negative bacteria after removal of sinks and implementing a new water-safe policy in an intensive care unit. J Hosp Infect 98:275–281 http://dx.doi.org/10.1016/j.jhin.2017.10.025. [PubMed]
95. Kotay SM, Donlan RM, Ganim C, Barry K, Christensen BE, Mathers AJ. 2019. Droplet- rather than aerosol-mediated dispersion is the primary mechanism of bacterial transmission from contaminated hand-washing sink traps. Appl Environ Microbiol 85:e01997-18. [PubMed]
96. Aranega-Bou P, George RP, Verlander NQ, Paton S, Bennett A, Moore G, Aiken Z, Akinremi O, Ali A, Cawthorne J, Cleary P, Crook DW, Decraene V, Dodgson A, Doumith M, Ellington M, Eyre DW, George RP, Grimshaw J, Guiver M, Hill R, Hopkins K, Jones R, Lenney C, Mathers AJ, McEwan A, Moore G, Neilson M, Neilson S, Peto TEA, Phan HTT, Regan M, Seale AC, Stoesser N, Turner-Gardner J, Watts V, Walker J, Sarah Walker A, Wyllie D, Welfare W, Woodford N, TRACE Investigators’ Group. 2019. Carbapenem-resistant Enterobacteriaceae dispersal from sinks is linked to drain position and drainage rates in a laboratory model system. J Hosp Infect 102:63–69 http://dx.doi.org/10.1016/j.jhin.2018.12.007. [PubMed]
97. Kotsanas D, Wijesooriya WRPLI, Korman TM, Gillespie EE, Wright L, Snook K, Williams N, Bell JM, Li HY, Stuart RL. 2013. “Down the drain”: carbapenem-resistant bacteria in intensive care unit patients and handwashing sinks. Med J Aust 198:267–269 http://dx.doi.org/10.5694/mja12.11757. [PubMed]
98. Santiago AJ, Burgos-Garay ML, Kartforosh L, Mazher M, Donlan RM. 2020. Bacteriophage treatment of carbapenemase-producing Klebsiella pneumoniae in a multispecies biofilm: a potential biocontrol strategy for healthcare facilities. AIMS Microbiol 6:43–63 http://dx.doi.org/10.3934/microbiol.2020003. [PubMed]
99. Huss P, Raman S. 2020. Engineered bacteriophages as programmable biocontrol agents. Curr Opin Biotechnol 61:116–121 http://dx.doi.org/10.1016/j.copbio.2019.11.013. [PubMed]
100. Singh A, Poshtiban S, Evoy S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13:1763–1786 http://dx.doi.org/10.3390/s130201763. [PubMed]
101. Vinay M, Franche N, Grégori G, Fantino J-R, Pouillot F, Ansaldi M. 2015. Phage-based fluorescent biosensor prototypes to specifically detect enteric bacteria Such as E. coli and Salmonella enterica Typhimurium. PLoS One 10:e0131466 http://dx.doi.org/10.1371/journal.pone.0131466. [PubMed]
102. Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, Ullmann AJ, Williams C, ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli. 2015. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21(Suppl 1) :S1–S25 http://dx.doi.org/10.1016/j.cmi.2014.10.024. [PubMed]
103. Smith WD, Bardin E, Cameron L, Edmondson CL, Farrant KV, Martin I, Murphy RA, Soren O, Turnbull AR, Wierre-Gore N, Alton EW, Bundy JG, Bush A, Connett GJ, Faust SN, Filloux A, Freemont PS, Jones AL, Takats Z, Webb JS, Williams HD, Davies JC. 2017. Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis. FEMS Microbiol Lett 364:364 http://dx.doi.org/10.1093/femsle/fnx121.
104. Zimmerli W, Sendi P. 2017. Orthopaedic biofilm infections. APMIS 125:353–364 http://dx.doi.org/10.1111/apm.12687. [PubMed]
105. Aleshkin AV, Ershova ON, Volozhantsev NV, Svetoch EA, Popova AV, Rubalskii EO, Borzilov AI, Aleshkin VA, Afanas’ev SS, Karaulov AV, Galimzyanov KM, Rubalsky OV, Bochkareva SS. 2016. Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage 6:e1251379 http://dx.doi.org/10.1080/21597081.2016.1251379. [PubMed]
106. Kumari S, Harjai K, Chhibber S. 2010. Isolation and characterization of Klebsiella pneumoniae specific bacteriophages from sewage samples. Folia Microbiol (Praha) 55:221–227 http://dx.doi.org/10.1007/s12223-010-0032-7. [PubMed]
107. Ribeiro KVG, Ribeiro C, Dias RS, Cardoso SA, de Paula SO, Zanuncio JC, de Oliveira LL. 2018. Bacteriophage isolated from sewage eliminates and prevents the establishment of Escherichia Coli biofilm. Adv Pharm Bull 8:85–95 http://dx.doi.org/10.15171/apb.2018.011. [PubMed]
108. Chibeu A, Lingohr EJ, Masson L, Manges A, Harel J, Ackermann H-W, Kropinski AM, Boerlin P. 2012. Bacteriophages with the ability to degrade uropathogenic Escherichia coli biofilms. Viruses 4:471–487 http://dx.doi.org/10.3390/v4040471. [PubMed]
109. Gu Y, Xu Y, Xu J, Yu X, Huang X, Liu G, Liu X. 2019. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl Microbiol Biotechnol 103:315–326 http://dx.doi.org/10.1007/s00253-018-9471-x. [PubMed]
110. Mishra CK, Choi TJ, Kang SC. 2012. Isolation and characterization of a bacteriophage F20 virulent to Enterobacter aerogenes. J Gen Virol 93:2310–2314 http://dx.doi.org/10.1099/vir.0.043562-0. [PubMed]
111. Li E, Wei X, Ma Y, Yin Z, Li H, Lin W, Wang X, Li C, Shen Z, Zhao R, Yang H, Jiang A, Yang W, Yuan J, Zhao X. 2016. Isolation and characterization of a bacteriophage phiEap-2 infecting multidrug resistant Enterobacter aerogenes. Sci Rep 6:28338 http://dx.doi.org/10.1038/srep28338. [PubMed]
112. Verthé K, Possemiers S, Boon N, Vaneechoutte M, Verstraete W. 2004. Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions. Appl Microbiol Biotechnol 65:465–472 http://dx.doi.org/10.1007/s00253-004-1585-7. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0029-2019
2020-10-28
2021-04-19

Abstract:

Members of the family , such as , are considered both serious and urgent public health threats. Biofilms formed by these health care-associated pathogens can lead to negative and costly health outcomes. The global spread of antibiotic resistance, coupled with increased tolerance to antimicrobial treatments in biofilm-associated bacteria, highlights the need for novel strategies to overcome treatment hurdles. Bacteriophages (phages), or viruses that infect bacteria, have reemerged as one such potential strategy. Virulent phages are capable of infecting and killing their bacterial hosts, in some cases producing depolymerases that are able to hydrolyze biofilms. Phage therapy does have its limitations, however, including potential narrow host ranges, development of bacterial resistance to infection, and the potential spread of phage-encoded virulence genes. That being said, advances in phage isolation, screening, and genome sequencing tools provide an upside in overcoming some of these limitations and open up the possibilities of using phages as effective biofilm control agents.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Three phage types (shown as blue, green, and black phage particles) represent the use of phage cocktails for increased efficacy. Disrupted matrix represents depolymerase activity. Improved antimicrobial penetration is represented by red markers diffusing further into the biofilm. Various bacterial species are represented by brown, yellow, and light orange cells. Persisters are represented by green cells.

Citation: Santiago A, Donlan R. 2020. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0029-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The catheter segment is represented in blue. Phage particles are represented in green. The black arrow represents the flow of urine.

Citation: Santiago A, Donlan R. 2020. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0029-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Biofilms consisting of six drinking water bacteria were allowed to form on stainless steel coupons in a CDC biofilm reactor p-trap model for 28 days and then were inoculated with CAV1016 and grown for an additional 21 days. The biofilm was stained with a species-specific 23S rRNA fluorescent hybridization probe and counterstained with 4′,6-diamidino-2-phenylindole (DAPI), visualized using a Zeiss Axioplan epifluorescence microscope with an Axiocam monochrome camera and ×40 oil immersion objective, and rendered using Axiovision image analysis software (Carl Zeiss). The biofilm consortium cells in the image are blue, and cells are red. The scale bar represents 50 µM.

Citation: Santiago A, Donlan R. 2020. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0029-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

List of bacteriophages used in studies investigating antibiofilm properties

Citation: Santiago A, Donlan R. 2020. Bacteriophage Infections of Biofilms of Health Care-Associated Pathogens: , EcoSal Plus 2020; doi:10.1128/ecosalplus.ESP-0029-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error