No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Outer Membrane Protein Insertion by the β-barrel Assembly Machine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Dante P. Ricci1, and Thomas J. Silhavy2
  • Editors: Maria Sandkvist3, Eric Cascales4, Peter J. Christie5
    Affiliations: 1: Department of Early Research, Achaogen, Inc., South San Francisco, CA 94080; 2: Department of Molecular Biology, Princeton University, Princeton, NJ 08544; 3: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 4: CNRS Aix-Marseille Université, Mediterranean Institute of Microbiology, Marseille, France; 5: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Received 25 September 2018 Accepted 11 January 2019 Published 13 March 2019
  • Address correspondence to Thomas J. Silhavy, [email protected]
image of Outer Membrane Protein Insertion by the β-barrel Assembly Machine
    Preview this reference work article:
    Zoom in

    Outer Membrane Protein Insertion by the β-barrel Assembly Machine, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/2/ESP-0035-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/2/ESP-0035-2018-2.gif
  • Abstract:

    Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.

  • Citation: Ricci D, Silhavy T. 2019. Outer Membrane Protein Insertion by the β-barrel Assembly Machine, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0035-2018

Article Version

This article is an updated version of the following content:


1. Konovalova A, Kahne DE, Silhavy TJ. 2017. Outer membrane biogenesis. Annu Rev Microbiol 71:539–556. http://dx.doi.org/10.1146/annurev-micro-090816-093754. [PubMed]
2. Okuda S, Freinkman E, Kahne D. 2012. Cytoplasmic ATP hydrolysis powers transport of lipopolysaccharide across the periplasm in E. coli. Science 338:1214–1217. http://dx.doi.org/10.1126/science.1228984.
3. Sherman DJ, Xie R, Taylor RJ, George AH, Okuda S, Foster PJ, Needleman DJ, Kahne D. 2018. Lipopolysaccharide is transported to the cell surface by a membrane-to-membrane protein bridge. Science 359:798–801. http://dx.doi.org/10.1126/science.aar1886. [PubMed]
4. Botos I, Noinaj N, Buchanan SK. 2017. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 372:20160224. http://dx.doi.org/10.1098/rstb.2016.0224. [PubMed]
5. Sutterlin HA, Shi H, May KL, Miguel A, Khare S, Huang KC,Silhavy TJ. 2016. Disruption of lipid homeostasis in the Gram-negative cell envelope activates a novel cell death pathway. Proc Natl Acad Sci U S A 113:E1565–E1574. http://dx.doi.org/10.1073/pnas.1601375113. [PubMed]
6. Malinverni JC, Silhavy TJ. 2009. An ABC transport system that maintains lipid asymmetry in the gram-negative outer membrane. Proc Natl Acad Sci U S A 106:8009–8014. http://dx.doi.org/10.1073/pnas.0903229106. [PubMed]
7. Abellón-Ruiz J, Kaptan SS, Baslé A, Claudi B, Bumann D, Kleinekathöfer U, van den Berg B. 2017. Structural basis for maintenance of bacterial outer membrane lipid asymmetry. Nat Microbiol 2:1616–1623. http://dx.doi.org/10.1038/s41564-017-0046-x. [PubMed]
8. Chong Z-S, Woo W-F, Chng S-S. 2015. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol Microbiol 98:1133–1146. http://dx.doi.org/10.1111/mmi.13202. [PubMed]
9. Powers MJ, Trent MS. 2018. Phospholipid retention in the absence of asymmetry strengthens the outer membrane permeability barrier to last-resort antibiotics. Proc Natl Acad Sci U S A 115:E8518–E8527. http://dx.doi.org/10.1073/pnas.1806714115. [PubMed]
10. Ekiert DC, Bhabha G, Isom GL, Greenan G, Ovchinnikov S, Henderson IR, Cox JS, Vale RD. 2017. Architectures of lipid transport systems for the bacterial outer membrane. Cell 169:273–285.e17. http://dx.doi.org/10.1016/j.cell.2017.03.019. [PubMed]
11. Okuda S, Tokuda H. 2011. Lipoprotein sorting in bacteria. Annu Rev Microbiol 65:239–259. http://dx.doi.org/10.1146/annurev-micro-090110-102859. [PubMed]
12. Ranava D, Caumont-Sarcos A, Albenne C, Ieva R. 2018. Bacterial machineries for the assembly of membrane-embedded β-barrel proteins. FEMS Microbiol Lett 365:fny087. http://dx.doi.org/10.1093/femsle/fny087. [PubMed]
13. Anwari K, Webb CT, Poggio S, Perry AJ, Belousoff M, Celik N, Ramm G, Lovering A, Sockett RE, Smit J, Jacobs-Wagner C, Lithgow T. 2012. The evolution of new lipoprotein subunits of the bacterial outer membrane BAM complex. Mol Microbiol 84:832–844. http://dx.doi.org/10.1111/j.1365-2958.2012.08059.x. [PubMed]
14. Lee J, Sutterlin HA, Wzorek JS, Mandler MD, Hagan CL, Grabowicz M, Tomasek D, May MD, Hart EM, Silhavy TJ, Kahne D. 2018. Substrate binding to BamD triggers a conformational change in BamA to control membrane insertion. Proc Natl Acad Sci U S A 115:2359–2364. http://dx.doi.org/10.1073/pnas.1711727115. [PubMed]
15. Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M, Gronenberg LS, Sutterlin HA, Davis RM, Ruiz N, Silhavy TJ, Kahne DE. 2016. Characterization of a stalled complex on the β-barrel assembly machine. Proc Natl Acad Sci U S A 113:8717–8722. http://dx.doi.org/10.1073/pnas.1604100113. [PubMed]
16. Hagan CL, Wzorek JS, Kahne D. 2015. Inhibition of the β-barrel assembly machine by a peptide that binds BamD. Proc Natl Acad Sci U S A 112:2011–2016. http://dx.doi.org/10.1073/pnas.1415955112. [PubMed]
17. Hagan CL, Westwood DB, Kahne D. 2013. Bam lipoproteins assemble BamA in vitro. Biochemistry 52:6108–6113. http://dx.doi.org/10.1021/bi400865z. [PubMed]
18. Ieva R, Tian P, Peterson JH, Bernstein HD. 2011. Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. Proc Natl Acad Sci U S A 108:E383–E391. http://dx.doi.org/10.1073/pnas.1103827108. [PubMed]
19. Vuong P, Bennion D, Mantei J, Frost D, Misra R. 2008. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J Bacteriol 190:1507–1517. http://dx.doi.org/10.1128/JB.01477-07. [PubMed]
20. Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 61:151–164. http://dx.doi.org/10.1111/j.1365-2958.2006.05211.x. [PubMed]
21. Bakelar J, Buchanan SK, Noinaj N. 2016. The structure of the β-barrel assembly machinery complex. Science 351:180–186. http://dx.doi.org/10.1126/science.aad3460. [PubMed]
22. Chen Z, Zhan LH, Hou HF, Gao ZQ, Xu JH, Dong C, Dong YH. 2016. Structural basis for the interaction of BamB with the POTRA3-4 domains of BamA. Acta Crystallogr D Struct Biol 72:236–244. http://dx.doi.org/10.1107/S2059798315024729. [PubMed]
23. Bergal HT, Hopkins AH, Metzner SI, Sousa MC. 2016. The structure of a BamA-BamD fusion illuminates the architecture of the β-barrel assembly machine core. Structure 24:243–251. http://dx.doi.org/10.1016/j.str.2015.10.030. [PubMed]
24. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y. 2016. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23:192–196. http://dx.doi.org/10.1038/nsmb.3181. [PubMed]
25. Jansen KB, Baker SL, Sousa MC. 2015. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine. J Biol Chem 290:2126–2136. http://dx.doi.org/10.1074/jbc.M114.584524. [PubMed]
26. Heuck A, Schleiffer A, Clausen T. 2011. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins. J Mol Biol 406:659–666. http://dx.doi.org/10.1016/j.jmb.2011.01.002. [PubMed]
27. Bennion D, Charlson ES, Coon E, Misra R. 2010. Dissection of β-barrel outer membrane protein assembly pathways through characterizing BamA POTRA 1 mutants of Escherichia coli. Mol Microbiol 77:1153–1171. http://dx.doi.org/10.1111/j.1365-2958.2010.07280.x. [PubMed]
28. Ricci DP, Schwalm J, Gonzales-Cope M, Silhavy TJ. 2013. The activity and specificity of the outer membrane protein chaperone SurA are modulated by a proline isomerase domain. mBio 4:e00540-13. http://dx.doi.org/10.1128/mBio.00540-13. [PubMed]
29. Patel GJ, Kleinschmidt JH. 2013. The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane protein A from its complex with Skp. Biochemistry 52:3974–3986. http://dx.doi.org/10.1021/bi400103t. [PubMed]
30. Narita S, Masui C, Suzuki T, Dohmae N, Akiyama Y. 2013. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 110:E3612–E3621. http://dx.doi.org/10.1073/pnas.1312012110. [PubMed]
31. Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC. 2010. Structure and flexibility of the complete periplasmic domain of BamA:the protein insertion machine of the outer membrane. Structure 18:1492–1501. http://dx.doi.org/10.1016/j.str.2010.08.012. [PubMed]
32. Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. 2007. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–964. http://dx.doi.org/10.1126/science.1143993. [PubMed]
33. Remaut H, Waksman G. 2006. Protein-protein interaction through beta-strand addition. Trends Biochem Sci 31:436–444. http://dx.doi.org/10.1016/j.tibs.2006.06.007. [PubMed]
34. Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C. 2016. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531:64–69. http://dx.doi.org/10.1038/nature17199. [PubMed]
35. Lundquist K, Bakelar J, Noinaj N, Gumbart JC. 2018. C-terminal kink formation is required for lateral gating in BamA. Proc Natl Acad Sci U S A 115:E7942–E7949. [PubMed]
36. Doerner PA, Sousa MC. 2017. Extreme dynamics in the BamA β-barrel seam. Biochemistry 56:3142–3149. http://dx.doi.org/10.1021/acs.biochem.7b00281. [PubMed]
37. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK. 2013. Structural insight into the biogenesis of β-barrel membrane proteins. Nature 501:385–390. http://dx.doi.org/10.1038/nature12521. [PubMed]
38. Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ, Ashcroft AE, Radford SE, Ranson NA. 2016. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat Commun 7:12865. http://dx.doi.org/10.1038/ncomms12865. [PubMed]
39. Danoff EJ, Fleming KG. 2015. Membrane defects accelerate outer membrane β-barrel protein folding. Biochemistry 54:97–99. [PubMed]
40. Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, Fleming KG. 2014. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A 111:5878–5883. http://dx.doi.org/10.1073/pnas.1322473111. [PubMed]
41. Schiffrin B, Calabrese AN, Higgins AJ, Humes JR, Ashcroft AE, Kalli AC, Brockwell DJ, Radford SE. 2017. Effects of periplasmic chaperones and membrane thickness on bama-catalyzed outer-membrane protein folding. J Mol Biol 429:3776–3792. http://dx.doi.org/10.1016/j.jmb.2017.09.008. [PubMed]
42. Leonard-Rivera M, Misra R. 2012. Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself. J Bacteriol 194:4662–4668. http://dx.doi.org/10.1128/JB.00825-12. [PubMed]
43. Dwyer RS, Ricci DP, Colwell LJ, Silhavy TJ, Wingreen NS. 2013. Predicting functionally informative mutations in Escherichia coli BamA using evolutionary covariance analysis. Genetics 195:443–455. http://dx.doi.org/10.1534/genetics.113.155861. [PubMed]
44. Thoma J, Sun Y, Ritzmann N, Müller DJ. 2018. POTRA domains, extracellular lid, and membrane composition modulate the conformational stability of the β barrel assembly factor BamA. Structure 26:987–996.e3. http://dx.doi.org/10.1016/j.str.2018.04.017. [PubMed]
45. Wzorek JS, Lee J, Tomasek D, Hagan CL, Kahne DE. 2017. Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop. Proc Natl Acad Sci U S A 114:2598–2603. http://dx.doi.org/10.1073/pnas.1616576114. [PubMed]
46. Hartmann J-B, Zahn M, Burmann IM, Bibow S, Hiller S. 2018.Sequence-specific solution NMR assignments of the β-barrel insertase BamA to monitor its conformational ensemble at the atomic level. J Am Chem Soc 140:11252–11260. http://dx.doi.org/10.1021/jacs.8b03220. [PubMed]
47. Misra R, Stikeleather R, Gabriele R. 2015. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli. J Mol Biol 427:1061–1074. http://dx.doi.org/10.1016/j.jmb.2014.04.021. [PubMed]
48. Ricci DP, Hagan CL, Kahne D, Silhavy TJ. 2012. Activation of the Escherichia coli β-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. Proc Natl Acad Sci U S A 109:3487–3491. http://dx.doi.org/10.1073/pnas.1201362109. [PubMed]
49. Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. 2018. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. J Biol Chem 293:1106–1119. http://dx.doi.org/10.1074/jbc.RA117.000437. [PubMed]
50. Mahoney TF, Ricci DP, Silhavy TJ. 2016. Classifying β-barrel assembly substrates by manipulating essential Bam complex members. J Bacteriol 198:1984–1992. http://dx.doi.org/10.1128/JB.00263-16. [PubMed]
51. Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y, Knowles TJ, Nichols KB, Cunningham AF, Overduin M, Schembri MA, Henderson IR. 2011. The essential β-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J Bacteriol 193:4250–4253. http://dx.doi.org/10.1128/JB.00192-11. [PubMed]
52. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Krüger V, Prinz C, Meisinger C, Guiard B, Wagner R, Pfanner N, Wiedemann N. 2008. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–1024. http://dx.doi.org/10.1016/j.cell.2008.01.028. [PubMed]
53. Walther DM, Papic D, Bos MP, Tommassen J, Rapaport D. 2009. Signals in bacterial beta-barrel proteins are functional in eukaryotic cells for targeting to and assembly in mitochondria. Proc Natl Acad Sci U S A 106:2531–2536. http://dx.doi.org/10.1073/pnas.0807830106. [PubMed]
54. Iyer BR, Zadafiya P, Vetal PV, Mahalakshmi R. 2017. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein. J Biol Chem 292:12351–12365. http://dx.doi.org/10.1074/jbc.M117.789446. [PubMed]
55. Paramasivam N, Habeck M, Linke D. 2012. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not? BMC Genomics 13:510. http://dx.doi.org/10.1186/1471-2164-13-510.
56. Kozjak-Pavlovic V, Ott C, Götz M, Rudel T. 2011. Neisserial Omp85 protein is selectively recognized and assembled into functional complexes in the outer membrane of human mitochondria. J Biol Chem 286:27019–27026. http://dx.doi.org/10.1074/jbc.M111.232249. [PubMed]
57. Müller JEN, Papic D, Ulrich T, Grin I, Schütz M, Oberhettinger P, Tommassen J, Linke D, Dimmer KS, Autenrieth IB, Rapaport D. 2011. Mitochondria can recognize and assemble fragments of a beta-barrel structure. Mol Biol Cell 22:1638–1647. http://dx.doi.org/10.1091/mbc.e10-12-0943. [PubMed]
58. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. 2006. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol 4:e377. http://dx.doi.org/10.1371/journal.pbio.0040377. [PubMed]
59. Albrecht R, Zeth K. 2011. Structural basis of outer membrane protein biogenesis in bacteria. J Biol Chem 286:27792–27803. http://dx.doi.org/10.1074/jbc.M111.238931. [PubMed]
60. Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. 2011. Crystal structure of BamD: an essential component of the β-barrel assembly machinery of gram-negative bacteria. J Mol Biol 409:348–357. http://dx.doi.org/10.1016/j.jmb.2011.03.035. [PubMed]
61. Rigel NW, Ricci DP, Silhavy TJ. 2013. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli. Proc Natl Acad Sci U S A 110:5151–5156. http://dx.doi.org/10.1073/pnas.1302662110. [PubMed]
62. McCabe AL, Ricci D, Adetunji M, Silhavy TJ. 2017. Conformational changes that coordinate the activity of BamA and BamD allowing β-barrel assembly. J Bacteriol 199:e00373-17. http://dx.doi.org/10.1128/JB.00373-17. [PubMed]
63. Webb CT, Heinz E, Lithgow T. 2012. Evolution of the β-barrel assembly machinery. Trends Microbiol 20:612–620. http://dx.doi.org/10.1016/j.tim.2012.08.006. [PubMed]
64. Tellez R, Jr, Misra R. 2012. Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a Δ bamB Δ bamE strain of Escherichia coli. J Bacteriol 194:317–324. http://dx.doi.org/10.1128/JB.06192-11. [PubMed]
65. Rigel NW, Schwalm J, Ricci DP, Silhavy TJ. 2012. BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. J Bacteriol 194:1002–1008. http://dx.doi.org/10.1128/JB.06426-11. [PubMed]
66. Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. 2007. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. Proc Natl Acad Sci U S A 104:6400–6405. http://dx.doi.org/10.1073/pnas.0701579104. [PubMed]
67. Kim KH, Kang H-S, Okon M, Escobar-Cabrera E, McIntosh LP, Paetzel M. 2011. Structural characterization of Escherichia coli BamE, a lipoprotein component of the β-barrel assembly machinery complex. Biochemistry 50:1081–1090. http://dx.doi.org/10.1021/bi101659u. [PubMed]
68. Ureta AR, Endres RG, Wingreen NS, Silhavy TJ. 2007. Kinetic analysis of the assembly of the outer membrane protein LamB in Escherichia coli mutants each lacking a secretion or targeting factor in a different cellular compartment. J Bacteriol 189:446–454. http://dx.doi.org/10.1128/JB.01103-06. [PubMed]
69. Charlson ES, Werner JN, Misra R. 2006. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J Bacteriol 188:7186–7194. http://dx.doi.org/10.1128/JB.00571-06. [PubMed]
70. Ruiz N, Falcone B, Kahne D, Silhavy TJ. 2005. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307–317. http://dx.doi.org/10.1016/j.cell.2005.02.014. [PubMed]
71. Hsieh P-F, Hsu C-R, Chen C-T, Lin T-L, Wang J-T. 2016. The Klebsiella pneumoniae YfgL (BamB) lipoprotein contributes to outer membrane protein biogenesis, type-1 fimbriae expression, anti-phagocytosis, and in vivo virulence. Virulence 7:587–601. http://dx.doi.org/10.1080/21505594.2016.1171435. [PubMed]
72. Hagan CL, Kim S, Kahne D. 2010. Reconstitution of outer membrane protein assembly from purified components. Science 328:890–892. http://dx.doi.org/10.1126/science.1188919. [PubMed]
73. Palomino C, Marín E, Fernández LÁ. 2011. The fimbrial usher FimD follows the SurA-BamB pathway for its assembly in the outer membrane of Escherichia coli. J Bacteriol 193:5222–5230. http://dx.doi.org/10.1128/JB.05585-11. [PubMed]
74. Schwalm J, Mahoney TF, Soltes GR, Silhavy TJ. 2013. Role for Skp in LptD assembly in Escherichia coli. J Bacteriol 195:3734–3742. http://dx.doi.org/10.1128/JB.00431-13. [PubMed]
75. Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT, Fulcher AJ, Dunstan RA, Hay ID, Naderer T, Whelan DR, Bell TDM, Elgass KD, Strugnell RA, Lithgow T. 2018. The WD40 protein BamB mediates coupling of BAM complexes into assembly precincts in the bacterial outer membrane. Cell Rep 23:2782–2794. http://dx.doi.org/10.1016/j.celrep.2018.04.093. [PubMed]
76. Huysmans GHM, Radford SE, Brockwell DJ, Baldwin SA. 2007. The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol 373:529–540. http://dx.doi.org/10.1016/j.jmb.2007.07.072. [PubMed]
77. Hou VC, Moe GR, Raad Z, Wuorimaa T, Granoff DM. 2003. Conformational epitopes recognized by protective anti-neisserial surface protein A antibodies. Infect Immun 71:6844–6849. http://dx.doi.org/10.1128/IAI.71.12.6844-6849.2003. [PubMed]
78. Chaturvedi D, Mahalakshmi R. 2013. Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 8:e79351. http://dx.doi.org/10.1371/journal.pone.0079351. [PubMed]
79. Kleinschmidt JH, den Blaauwen T, Driessen AJ, Tamm LK. 1999. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism. Biochemistry 38:5006–5016. http://dx.doi.org/10.1021/bi982465w. [PubMed]
80. Johansson MU, Alioth S, Hu K, Walser R, Koebnik R, Pervushin K. 2007. A minimal transmembrane beta-barrel platform protein studied by nuclear magnetic resonance. Biochemistry 46:1128–1140. http://dx.doi.org/10.1021/bi061265e. [PubMed]
81. Surrey T, Schmid A, Jähnig F. 1996. Folding and membrane insertion of the trimeric β-barrel protein OmpF. Biochemistry 35:2283–2288. [PubMed]
82. Jansen C, Wiese A, Reubsaet L, Dekker N, de Cock H, Seydel U, Tommassen J. 2000. Biochemical and biophysical characterization of in vitro folded outer membrane porin PorA of Neisseria meningitidis. Biochim Biophys Acta 1464:284–298. http://dx.doi.org/10.1016/S0005-2736(00)00155-3.
83. de Cock H, Hendriks R, de Vrije T, Tommassen J. 1990. Assembly of an in vitro synthesized Escherichia coli outer membrane porin into its stable trimeric configuration. J Biol Chem 265:4646–4651. [PubMed]
84. Otzen DE, Andersen KK. 2013. Folding of outer membrane proteins. Arch Biochem Biophys 531:34–43. http://dx.doi.org/10.1016/j.abb.2012.10.008. [PubMed]
85. Conlan S, Bayley H. 2003. Folding of a monomeric porin, OmpG, in detergent solution. Biochemistry 42:9453–9465. http://dx.doi.org/10.1021/bi0344228. [PubMed]
86. Mogensen JE, Kleinschmidt JH, Schmidt MA, Otzen DE. 2005. Misfolding of a bacterial autotransporter. Protein Sci 14:2814–2827. http://dx.doi.org/10.1110/ps.051628705. [PubMed]
87. Kramer RA, Zandwijken D, Egmond MR, Dekker N. 2000. In vitro folding, purification and characterization of Escherichia coli outer membrane protease ompT. Eur J Biochem 267:885–893. http://dx.doi.org/10.1046/j.1432-1327.2000.01073.x. [PubMed]
88. Pocanschi CL, Apell H-J, Puntervoll P, Høgh B, Jensen HB, Welte W, Kleinschmidt JH. 2006. The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J Mol Biol 355:548–561. http://dx.doi.org/10.1016/j.jmb.2005.10.060. [PubMed]
89. Dekker N, Merck K, Tommassen J, Verheij HM. 1995. In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232:214–219. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20801.x. [PubMed]
90. Fleming KG. 2015. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci 370:20150026. http://dx.doi.org/10.1098/rstb.2015.0026. [PubMed]
91. Peterson JH, Plummer AM, Fleming KG, Bernstein HD. 2017. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 106:777–792. http://dx.doi.org/10.1111/mmi.13845. [PubMed]
92. Grabowicz M, Koren D, Silhavy TJ. 2016. The CpxQ sRNA negatively regulates Skp to prevent mistargeting of β-barrel outer membrane proteins into the cytoplasmic membrane. mBio 7:e00312-16. http://dx.doi.org/10.1128/mBio.00312-16. [PubMed]
93. Maurya SR, Chaturvedi D, Mahalakshmi R. 2013. Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 3:1989. http://dx.doi.org/10.1038/srep01989.
94. Horne JE, Radford SE. 2016. A growing toolbox of techniques for studying β-barrel outer membrane protein folding and biogenesis. Biochem Soc Trans 44:802–809. http://dx.doi.org/10.1042/BST20160020. [PubMed]
95. Kleinschmidt JH. 2015. Folding of β-barrel membrane proteins in lipid bilayers—unassisted and assisted folding and insertion. Biochim Biophys Acta 1848:1927–1943. http://dx.doi.org/10.1016/j.bbamem.2015.05.004. [PubMed]
96. Danoff EJ, Fleming KG. 2017. Novel kinetic intermediates populated along the folding pathway of the transmembrane β-barrel OmpA. Biochemistry 56:47–60. http://dx.doi.org/10.1021/acs.biochem.6b00809. [PubMed]
97. Huysmans GHM, Baldwin SA, Brockwell DJ, Radford SE. 2010. The transition state for folding of an outer membrane protein. Proc Natl Acad Sci U S A 107:4099–4104. http://dx.doi.org/10.1073/pnas.0911904107. [PubMed]
98. Tamm LK, Hong H, Liang B. 2004. Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666:250–263. http://dx.doi.org/10.1016/j.bbamem.2004.06.011. [PubMed]
99. Thoma J, Bosshart P, Pfreundschuh M, Müller DJ. 2012. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure 20:2185–2190. http://dx.doi.org/10.1016/j.str.2012.10.006. [PubMed]
100. Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. 2018. Membrane protein insertion through a mitochondrial β-barrel gate. Science 359:eaah6834. http://dx.doi.org/10.1126/science.aah6834.
101. Schiffrin B, Brockwell DJ, Radford SE. 2017. Outer membrane protein folding from an energy landscape perspective. BMC Biol 15:123. http://dx.doi.org/10.1186/s12915-017-0464-5. [PubMed]
102. Plummer AM, Fleming KG. 2016. From chaperones to the membrane with a BAM! Trends Biochem Sci 41:872–882. http://dx.doi.org/10.1016/j.tibs.2016.06.005. [PubMed]
103. Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS, Sousa MC, Fleming KG, Im W. 2016. BamA POTRA domain interacts with a native lipid membrane surface. Biophys J 110:2698–2709. http://dx.doi.org/10.1016/j.bpj.2016.05.010. [PubMed]
104. Michalik M, Orwick-Rydmark M, Habeck M, Alva V, Arnold T, Linke D. 2017. An evolutionarily conserved glycine-tyrosine motif forms a folding core in outer membrane proteins. PLoS One 12:e0182016. http://dx.doi.org/10.1371/journal.pone.0182016. [PubMed]
105. Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. 2014. Lateral opening and exit pore formation are required for BamA function. Structure 22:1055–1062. http://dx.doi.org/10.1016/j.str.2014.05.008. [PubMed]
106. Hagan CL, Silhavy TJ, Kahne D. 2011. β-Barrel membrane protein assembly by the Bam complex. Annu Rev Biochem 80:189–210. http://dx.doi.org/10.1146/annurev-biochem-061408-144611. [PubMed]
107. Botte M, Zaccai NR, Nijeholt JLÀ, Martin R, Knoops K, Papai G, Zou J, Deniaud A, Karuppasamy M, Jiang Q, Roy AS, Schulten K, Schultz P, Rappsilber J, Zaccai G, Berger I, Collinson I, Schaffitzel C. 2016. A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci Rep 6:38399. http://dx.doi.org/10.1038/srep38399. [PubMed]
108. Li L, Park E, Ling J, Ingram J, Ploegh H, Rapoport TA. 2016. Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:395–399. http://dx.doi.org/10.1038/nature17163. [PubMed]
109. Dalbey RE, Wang P, Kuhn A. 2011. Assembly of bacterial inner membrane proteins. Annu Rev Biochem 80:161–187. http://dx.doi.org/10.1146/annurev-biochem-060409-092524. [PubMed]
110. Ni D, Wang Y, Yang X, Zhou H, Hou X, Cao B, Lu Z, Zhao X, Yang K, Huang Y. 2014. Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli. FASEB J 28:2677–2685. http://dx.doi.org/10.1096/fj.13-248450. [PubMed]
111. Noinaj N, Gumbart JC, Buchanan SK. 2017. The β-barrel assembly machinery in motion. Nat Rev Microbiol 15:197–204. http://dx.doi.org/10.1038/nrmicro.2016.191. [PubMed]
112. Sinnige T, Weingarth M, Daniëls M, Boelens R, Bonvin AMJJ, Houben K, Baldus M. 2015. Conformational plasticity of the POTRA 5 domain in the outer membrane protein assembly factor BamA. Structure 23:1317–1324. http://dx.doi.org/10.1016/j.str.2015.04.014. [PubMed]
113. Albenne C, Ieva R. 2017. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 106:505–517. http://dx.doi.org/10.1111/mmi.13832. [PubMed]
114. Pavlova O, Peterson JH, Ieva R, Bernstein HD. 2013. Mechanistic link between β barrel assembly and the initiation of autotransporter secretion. Proc Natl Acad Sci U S A 110:E938–E947. http://dx.doi.org/10.1073/pnas.1219076110. [PubMed]
115. Ieva R, Skillman KM, Bernstein HD. 2008. Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol Microbiol 67:188–201. http://dx.doi.org/10.1111/j.1365-2958.2007.06048.x. [PubMed]
116. Plummer AM, Fleming KG. 2015. BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism. Biochemistry 54:6009–6011. http://dx.doi.org/10.1021/acs.biochem.5b00950. [PubMed]
117. journal-id:

Article metrics loading...



Like all outer membrane (OM) constituents, integral OM β-barrel proteins in Gram-negative bacteria are synthesized in the cytoplasm and trafficked to the OM, where they are locally assembled into the growing OM by the ubiquitous β-barrel assembly machine (Bam). While the identities and structures of all essential and accessory Bam components have been determined, the basic mechanism of Bam-assisted OM protein integration remains elusive. Here we review mechanistic analyses of OM β-barrel protein folding and Bam dynamics and summarize recent insights that inform a general model for OM protein recognition and assembly by the Bam complex.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Comment moderation successfully completed


Image of Figure 1
Figure 1

(a) The BamA β-barrel (pink) is asymmetric, with one face forming a narrow protein-lipid interface (approximated by the dashed line) that is thought to physically alter the local properties of the bilayer (green). (b) The activated BamA β-barrel undergoes a dramatic conformational rearrangement that disrupts the continuous β-barrel structure, separates the β-strands comprising the lateral gate (β1 and β16), and exposes an aqueous channel that spans the membrane. Additionally, a highly conserved extracellular loop (L6, blue) internally braces and globally stabilizes the β-barrel domain and compensates for the instability introduced by the conformational dynamics. This image was generated using PDB structures 4K3B (left) and 5EKQ (right).

Citation: Ricci D, Silhavy T. 2019. Outer Membrane Protein Insertion by the β-barrel Assembly Machine, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(a) A nascent eight-stranded OMP rapidly adsorbs to the surface (green) of the lipid bilayer, where hydrophobic lipid-facing side chains begin to penetrate into the membrane and β-strands assume a cloverleaf-like circular arrangement according to their relative position in the folded protein. (b) β-hairpins begin to form as the ends of the TM β-strands, oriented toward the center of the cloverleaf, plunge into the lipid phase. (c) Hydrogen bonds form between neighboring β-hairpins as they enter the membrane, stabilizing the native fold in concert with membrane insertion. The highlighted dashed line indicates the proposed path of the leading () ends of the β-strands.

Citation: Ricci D, Silhavy T. 2019. Outer Membrane Protein Insertion by the β-barrel Assembly Machine, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

(a) Nascent OMPs (red), maintained in a folding-competent state by periplasmic chaperones (green), are transferred to the Bam complex (blue). (b) Client proteins associate with multiple epitopes on Bam, potentially stimulating formation of early β-structure and orienting circularly-arranged β-strands/hairpins toward the presumptive substrate exit pore. Recognition of conserved OMP motifs triggers a conformational change in BamA that exposes the barrel lumen and destabilizes the lateral gate, further perturbing the local membrane environment and generating an OM integration path for OMP substrates. (c) The Bam complex prevents aggregation, protects substrates from proteolysis, and lowers the kinetic barrier to OM integration to enable rapid OMP folding along the native pathway. (d) OMPs spontaneously fold into the locally destabilized membrane, with the exposed BamA lumen potentially accommodating the folding barrel and/or secreted extracellular domains of client proteins. (e) Release of substrate from the complex prompts restoration of the closed, inert state of the complex to enable an ensuing round of assembly.

Citation: Ricci D, Silhavy T. 2019. Outer Membrane Protein Insertion by the β-barrel Assembly Machine, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error