1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Sujeet Bhoite1, Nani van Gerven2,3, Matthew R. Chapman4, and Han Remaut5,6
  • Editors: Maria Sandkvist7, Eric Cascales8, Peter J. Christie9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109; 2: Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; 3: Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; 4: Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109; 5: Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; 6: Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium; 7: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 8: CNRS Aix-Marseille Université, Mediterranean Institute of Microbiology, Marseille, France; 9: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Received 17 September 2018 Accepted 16 January 2019 Published 20 March 2019
  • Address correspondence to Han Remaut, [email protected]
image of Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway
    Preview this reference work article:
    Zoom in
    Zoomout

    Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/2/ESP-0037-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/2/ESP-0037-2018-2.gif
  • Abstract:

    In 1989, Normark and coworkers reported on fibrous surface structures called curli on strains of that were suspected of causing bovine mastitis. Subsequent work by many groups has revealed an elegant and highly regulated curli biogenesis pathway also referred to as the type VIII secretion system. Curli biogenesis is governed by two divergently transcribed operons, and . The operon encodes the structural subunits of curli, CsgA and CsgB, along with a chaperone-like protein, CsgC. The operon encodes the accessory proteins required for efficient transcription, secretion, and assembly of the curli fiber. CsgA and CsgB are secreted as largely unstructured proteins and transition to β-rich structures that aggregate into regular fibers at the cell surface. Since both of these proteins have been shown to be amyloidogenic in nature, the correct spatiotemporal synthesis of the curli fiber is of paramount importance for proper functioning and viability. Gram-negative bacteria have evolved an elegant machinery for the safe handling, secretion, and extracellular assembly of these amyloidogenic proteins.

  • Citation: Bhoite S, van Gerven N, Chapman M, Remaut H. 2019. Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0037-2018

References

1. Olsén A, Jonsson A, Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338:652–655. http://dx.doi.org/10.1038/338652a0. [PubMed]
2. Dueholm MS, Albertsen M, Otzen D, Nielsen PH. 2012. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7:e51274. http://dx.doi.org/10.1371/journal.pone.0051274. [PubMed]
3. Barnhart MM, Chapman MR. 2006. Curli biogenesis and function. Annu Rev Microbiol 60:131–147. http://dx.doi.org/10.1146/annurev.micro.60.080805.142106. [PubMed]
4. Collinson SK, Doig PC, Doran JL, Clouthier S, Trust TJ, Kay WW. 1993. Thin, aggregative fimbriae mediate binding of Salmonella enteritidis to fibronectin. J Bacteriol 175:12–18. http://dx.doi.org/10.1128/jb.175.1.12-18.1993. [PubMed]
5. Römling U, Sierralta WD, Eriksson K, Normark S. 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264. http://dx.doi.org/10.1046/j.1365-2958.1998.00791.x. [PubMed]
6. Kikuchi T, Mizunoe Y, Takade A, Naito S, Yoshida S. 2005. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49:875–884. http://dx.doi.org/10.1111/j.1348-0421.2005.tb03678.x. [PubMed]
7. Hung C, Zhou Y, Pinkner JS, Dodson KW, Crowley JR, Heuser J, Chapman MR, Hadjifrangiskou M, Henderson JP, Hultgren SJ. 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4:e00645-13. http://dx.doi.org/10.1128/mBio.00645-13. [PubMed]
8. Hufnagel DA, Depas WH, Chapman MR. 2015. The biology of the Escherichia coli extracellular matrix. Microbiol Spectr 3:MB-0014-2014. http://dx.doi.org/10.1128/microbiolspec.MB-0014-2014. [PubMed]
9. Herwald H, Mörgelin M, Olsén A, Rhen M, Dahlbäck B, Müller-Esterl W, Björck L. 1998. Activation of the contact-phase system on bacterial surfaces—a clue to serious complications in infectious diseases. Nat Med 4:298–302. http://dx.doi.org/10.1038/nm0398-298. [PubMed]
10. Gophna U, Barlev M, Seijffers R, Oelschlager TA, Hacker J, Ron EZ. 2001. Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665. http://dx.doi.org/10.1128/IAI.69.4.2659-2665.2001. [PubMed]
11. Tükel C, Raffatellu M, Humphries AD, Wilson RP, Andrews-Polymenis HL, Gull T, Figueiredo JF, Wong MH, Michelsen KS, Akçelik M, Adams LG, Bäumler AJ. 2005. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol 58:289–304. http://dx.doi.org/10.1111/j.1365-2958.2005.04825.x. [PubMed]
12. Tükel C, Wilson RP, Nishimori JH, Pezeshki M, Chromy BA, Bäumler AJ. 2009. Responses to amyloids of microbial and host origin are mediated through Toll-like receptor 2. Cell Host Microbe 6:45–53. http://dx.doi.org/10.1016/j.chom.2009.05.020. [PubMed]
13. Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. 2018. The role of functional amyloids in bacterial virulence. J Mol Biol 430:3657–3684. http://dx.doi.org/10.1016/j.jmb.2018.07.010. [PubMed]
14. Serra DO, Klauck G, Hengge R. 2015. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of Escherichia coli. Environ Microbiol 17:5073–5088. http://dx.doi.org/10.1111/1462-2920.12991. [PubMed]
15. Bian Z, Normark S. 1997. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli. EMBO J 16:5827–5836. http://dx.doi.org/10.1093/emboj/16.19.5827. [PubMed]
16. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. http://dx.doi.org/10.1126/science.1067484. [PubMed]
17. Hammar M, Arnqvist A, Bian Z, Olsen A, Normark S. 1995. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670. http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_18040661.x.
18. Van Gerven N, Klein RD, Hultgren SJ, Remaut H. 2015. Bacterial amyloid formation: structural insights into curli biogensis [ sic]. Trends Microbiol 23:693–706. http://dx.doi.org/10.1016/j.tim.2015.07.010. [PubMed]
19. Evans ML, Chorell E, Taylor JD, Åden J, Götheson A, Li F, Koch M, Sefer L, Matthews SJ, Wittung-Stafshede P, Almqvist F, Chapman MR. 2015. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Mol Cell 57:445–455. http://dx.doi.org/10.1016/j.molcel.2014.12.025. [PubMed]
20. Robinson LS, Ashman EM, Hultgren SJ, Chapman MR. 2006. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59:870–881. http://dx.doi.org/10.1111/j.1365-2958.2005.04997.x. [PubMed]
21. Nenninger AA, Robinson LS, Hultgren SJ. 2009. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci U S A 106:900–905. http://dx.doi.org/10.1073/pnas.0812143106. [PubMed]
22. Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP, Hultgren SJ, Chapman MR. 2011. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81:486–499. http://dx.doi.org/10.1111/j.1365-2958.2011.07706.x. [PubMed]
23. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. 2001. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223. http://dx.doi.org/10.1128/JB.183.24.7213-7223.2001. [PubMed]
24. Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I, Troupiotis-Tsaïlaki A, Jonckheere W, Péhau-Arnaudet G, Pinkner JS, Chapman MR, Hultgren SJ, Howorka S, Fronzes R, Remaut H. 2014. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:250–253. http://dx.doi.org/10.1038/nature13768. [PubMed]
25. Cao B, Zhao Y, Kou Y, Ni D, Zhang XC, Huang Y. 2014. Structure of the nonameric bacterial amyloid secretion channel. Proc Natl Acad Sci U S A 111:E5439–E5444. http://dx.doi.org/10.1073/pnas.1411942111. [PubMed]
26. Shu Q, Krezel AM, Cusumano ZT, Pinkner JS, Klein R, Hultgren SJ, Frieden C. 2016. Solution NMR structure of CsgE: structural insights into a chaperone and regulator protein important for functional amyloid formation. Proc Natl Acad Sci U S A 113:7130–7135. http://dx.doi.org/10.1073/pnas.1607222113. [PubMed]
27. Klein RD, Shu Q, Cusumano ZT, Nagamatsu K, Gualberto NC,Lynch AJL, Wu C, Wang W, Jain N, Pinkner JS, Amarasinghe GK, Hultgren SJ, Frieden C, Chapman MR. 2018. Structure-function analysis of the curli accessory protein CsgE defines surfaces essential for coordinating amyloid fiber formation. mBio 9:e01349-18. http://dx.doi.org/10.1128/mBio.01349-18. [PubMed]
28. Van Gerven N, Goyal P, Vandenbussche G, De Kerpel M, Jonckheere W, De Greve H, Remaut H. 2014. Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol Microbiol 91:1022–1035. http://dx.doi.org/10.1111/mmi.12515. [PubMed]
29. Hammar M, Bian Z, Normark S. 1996. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci U S A 93:6562–6566. http://dx.doi.org/10.1073/pnas.93.13.6562. [PubMed]
30. Hammer ND, McGuffie BA, Zhou Y, Badtke MP, Reinke AA, Brännström K, Gestwicki JE, Olofsson A, Almqvist F, Chapman MR. 2012. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J Mol Biol 422:376–389. http://dx.doi.org/10.1016/j.jmb.2012.05.043. [PubMed]
31. Hammer ND, Schmidt JC, Chapman MR. 2007. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A 104:12494–12499. http://dx.doi.org/10.1073/pnas.0703310104. [PubMed]
32. Schubeis T, Spehr J, Viereck J, Köpping L, Nagaraj M, Ahmed M, Ritter C. 2018. Structural and functional characterization of the curli adaptor protein CsgF. FEBS Lett 592:1020–1029. http://dx.doi.org/10.1002/1873-3468.13002. [PubMed]
33. Wickner W, Schekman R. 2005. Protein translocation across biological membranes. Science 310:1452–1456. http://dx.doi.org/10.1126/science.1113752. [PubMed]
34. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. 2015. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359. http://dx.doi.org/10.1038/nrmicro3456. [PubMed]
35. Zavialov AV, Tischenko VM, Fooks LJ, Brandsdal BO, Aqvist J, Zav’yalov VP, Macintyre S, Knight SD. 2005. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 389:685–694. http://dx.doi.org/10.1042/BJ20050426. [PubMed]
36. Bernstein HD. 2015. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol Microbiol 97:205–215. http://dx.doi.org/10.1111/mmi.13031. [PubMed]
37. Van den Broeck I, Goyal P, Remaut H. 2015. Insights in peptide diffusion channels from the bacterial amyloid secretor CsgG. Channels (Austin) 9:65–67. http://dx.doi.org/10.1080/19336950.2015.1017172. [PubMed]
38. Wang X, Hammer ND, Chapman MR. 2008. The molecular basis of functional bacterial amyloid polymerization and nucleation. J Biol Chem 283:21530–21539. http://dx.doi.org/10.1074/jbc.M800466200. [PubMed]
39. Debenedictis EP, Ma D, Keten S. 2017. Structural predictions for curli amyloid fibril subunits CsgA and CsgB. RSC Adv 7:48102–48112. http://dx.doi.org/10.1039/C7RA08030A.
40. Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, Wickner RB. 2009. The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 284:25065–25076. http://dx.doi.org/10.1074/jbc.M109.007054. [PubMed]
41. Louros NN, Bolas GMP, Tsiolaki PL, Hamodrakas SJ, Iconomidou VA. 2016. Intrinsic aggregation propensity of the CsgB nucleator protein is crucial for curli fiber formation. J Struct Biol 195:179–189. http://dx.doi.org/10.1016/j.jsb.2016.05.012. [PubMed]
42. Tian P, Boomsma W, Wang Y, Otzen DE, Jensen MH, Lindorff-Larsen K. 2015. Structure of a functional amyloid protein subunit computed using sequence variation. J Am Chem Soc 137:22–25. http://dx.doi.org/10.1021/ja5093634. [PubMed]
43. Biancalana M, Koide S. 2010. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412. http://dx.doi.org/10.1016/j.bbapap.2010.04.001. [PubMed]
44. Arosio P, Knowles TPJ, Linse S. 2015. On the lag phase in amyloid fibril formation. Phys Chem Chem Phys 17:7606–7618. http://dx.doi.org/10.1039/C4CP05563B. [PubMed]
45. Sleutel M, Van den Broeck I, Van Gerven N, Feuillie C, Jonckheere W, Valotteau C, Dufrêne YF, Remaut H. 2017. Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nat Chem Biol 13:902–908. http://dx.doi.org/10.1038/nchembio.2413. [PubMed]
46. Wang X, Chapman MR. 2008. Sequence determinants of bacterial amyloid formation. J Mol Biol 380:570–580. http://dx.doi.org/10.1016/j.jmb.2008.05.019. [PubMed]
47. Wang X, Zhou Y, Ren J-J, Hammer ND, Chapman MR. 2010. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci U S A 107:163–168. http://dx.doi.org/10.1073/pnas.0908714107. [PubMed]
48. Arnqvist A, Olsén A, Normark S. 1994. σ S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by σ70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol 13:1021–1032. http://dx.doi.org/10.1111/j.1365-2958.1994.tb00493.x. [PubMed]
49. Brown PK, Dozois CM, Nickerson CA, Zuppardo A, Terlonge J, Curtiss R, III. 2001. MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by Escherichia coli and Salmonella enterica serovar Typhimurium. Mol Microbiol 41:349–363. http://dx.doi.org/10.1046/j.1365-2958.2001.02529.x. [PubMed]
50. Gerstel U, Park C, Römling U. 2003. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654. http://dx.doi.org/10.1046/j.1365-2958.2003.03594.x. [PubMed]
51. Gerstel U, Römling U. 2003. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154:659–667. http://dx.doi.org/10.1016/j.resmic.2003.08.005. [PubMed]
52. Olsén A, Arnqvist A, Hammar M, Sukupolvi S, Normark S. 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536. http://dx.doi.org/10.1111/j.1365-2958.1993.tb01143.x. [PubMed]
53. Chiti F, Dobson CM. 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68. http://dx.doi.org/10.1146/annurev-biochem-061516-045115. [PubMed]
54. Taylor JD, Hawthorne WJ, Lo J, Dear A, Jain N, Meisl G, Andreasen M, Fletcher C, Koch M, Darvill N, Scull N, Escalera-Maurer A, Sefer L, Wenman R, Lambert S, Jean J, Xu Y, Turner B, Kazarian SG, Chapman MR, Bubeck D, de Simone A, Knowles TPJ, Matthews SJ. 2016. Electrostatically-guided inhibition of curli amyloid nucleation by the CsgC-like family of chaperones. Sci Rep 6:24656. http://dx.doi.org/10.1038/srep24656. [PubMed]
55. Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, Aberg V, Walker JN, Seed PC, Almqvist F, Chapman MR, Hultgren SJ. 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5:913–919. http://dx.doi.org/10.1038/nchembio.242. [PubMed]
56. Andersson EK, Bengtsson C, Evans ML, Chorell E, Sellstedt M, Lindgren AEG, Hufnagel DA, Bhattacharya M, Tessier PM, Wittung-Stafshede P, Almqvist F, Chapman MR. 2013. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 20:1245–1254. http://dx.doi.org/10.1016/j.chembiol.2013.07.017. [PubMed]
57. Dueholm MS, Petersen SV, Sønderkær M, Larsen P, Christiansen G, Hein KL, Enghild JJ, Nielsen JL, Nielsen KL, Nielsen PH, Otzen DE. 2010. Functional amyloid in Pseudomonas. Mol Microbiol 77:1009–1020.
58. Dueholm MS, Søndergaard MT, Nilsson M, Christiansen G, Stensballe A, Overgaard MT, Givskov M, Tolker-Nielsen T, Otzen DE, Nielsen PH. 2013. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation. Microbiologyopen 2:365–382. http://dx.doi.org/10.1002/mbo3.81. [PubMed]
59. Rouse SL, Stylianou F, Wu HYG, Berry JL, Sewell L, Morgan RML, Sauerwein AC, Matthews S. 2018. The FapF amyloid secretion transporter possesses an atypical asymmetric coiled coil. J Mol Biol 430:3863–3871. http://dx.doi.org/10.1016/j.jmb.2018.06.007. [PubMed]
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0037-2018
2019-03-20
2019-12-07

Abstract:

In 1989, Normark and coworkers reported on fibrous surface structures called curli on strains of that were suspected of causing bovine mastitis. Subsequent work by many groups has revealed an elegant and highly regulated curli biogenesis pathway also referred to as the type VIII secretion system. Curli biogenesis is governed by two divergently transcribed operons, and . The operon encodes the structural subunits of curli, CsgA and CsgB, along with a chaperone-like protein, CsgC. The operon encodes the accessory proteins required for efficient transcription, secretion, and assembly of the curli fiber. CsgA and CsgB are secreted as largely unstructured proteins and transition to β-rich structures that aggregate into regular fibers at the cell surface. Since both of these proteins have been shown to be amyloidogenic in nature, the correct spatiotemporal synthesis of the curli fiber is of paramount importance for proper functioning and viability. Gram-negative bacteria have evolved an elegant machinery for the safe handling, secretion, and extracellular assembly of these amyloidogenic proteins.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Transmission electron micrographs of individual cells producing curli fibers and curli-like fibers grown from purified CsgA . Scale bars: 500 nm and 200 nm, respectively. Schematic organization of the and curli gene clusters and architecture of the curli subunits CsgA (blue) and CsgB (dark blue). Subunits comprise an N-terminal signal sequence (SEC) that is cleaved upon export into the periplasm. The mature proteins contain curlin pseudorepeat regions (N22, R1 to R5) that guide substrate specificity in the secretion pathway and form the amyloidogenic core of the curli subunits. Repeats that efficiently self-polymerize are underscored. Theoretical model of CsgA predicted based on amino acid covariation analysis ( 42 ). The predictions point to a right- or left-handed β-helix made up from stacked curlin repeats (labeled R1 to R5). Representation of typical CsgA polymerization profiles in the absence (red) or presence (blue) of preformed fibers or the CsgB nucleator. In the presence of CsgE (1:1 ratio) or CsgC (1:500 ratio), no CsgA polymerization is observed (black curve).

Citation: Bhoite S, van Gerven N, Chapman M, Remaut H. 2019. Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0037-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Curli subunits enter the periplasm via the SecYEG translocon, from where they progress to the cell surface as unfolded polypeptides via the curli transporter CsgG. Premature folding and polymerization of CsgA in the periplasm (right dotted line) are inhibited by CsgE and CsgC. CsgE binds and targets subunits to the secretion channel, while CsgC provides a safeguard against runaway polymerization, likely by the binding and neutralization of early assembly intermediates and/or nascent fibers. CsgG forms a nonameric complex that acts as a peptide diffusion channel and cooperates with the periplasmic factor CsgE, which binds the channel and forms a capping structure to the secretion complex. Recruitment and (partial) enclosure of CsgA in the secretion complex are proposed to create an entropy gradient over the channel that favors CsgA’s outward diffusion as an unfolded, soluble polypeptide. Once secreted, curli fiber formation and elongation are templated by CsgB, in a CsgF-dependent manner. CsgF is likely to be in contact or close proximity to the CsgG channel. The exact role of CsgF and whether fibers extend from the proximal or distal end (dashed arrows) are presently unknown. Abbreviations: IM, inner membrane; OM, outer membrane.

Citation: Bhoite S, van Gerven N, Chapman M, Remaut H. 2019. Curli Biogenesis: Bacterial Amyloid Assembly by the Type VIII Secretion Pathway, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0037-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error