1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

EcoSal Plus

Domain 4:

Synthesis and Processing of Macromolecules

The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Maria Lara-Tejero1, and Jorge E. Galán2
  • Editors: Maria Sandkvist3, Eric Cascales4, Peter J. Christie5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536; 2: Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536; 3: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 4: CNRS Aix-Marseille Université, Mediterranean Institute of Microbiology, Marseille, France; 5: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Received 16 October 2018 Accepted 01 February 2019 Published 29 March 2019
  • Address correspondence to Maria Lara-Tejero, [email protected]
image of The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells
    Preview this reference work article:
    Zoom in
    Zoomout

    The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, Page 1 of 2

    | /docserver/preview/fulltext/ecosalplus/8/2/ESP-0039-2018-1.gif /docserver/preview/fulltext/ecosalplus/8/2/ESP-0039-2018-2.gif
  • Abstract:

    Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.

  • Citation: Lara-Tejero M, Galán J. 2019. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0039-2018

References

1. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, Strynadka NCJ, Finlay BB. 2017. Assembly, structure, function and regulation of type III secretion systems. Nat Rev Microbiol 15:323–337. http://dx.doi.org/10.1038/nrmicro.2017.20. [PubMed]
2. Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 68:415–438. http://dx.doi.org/10.1146/annurev-micro-092412-155725. [PubMed]
3. Notti RQ, Stebbins CE. 2016. The structure and function of type III secretion systems. Microbiol Spectr 4:VMBF-0004-2015.
4. Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. 2018. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 365:fny201. http://dx.doi.org/10.1093/femsle/fny201. [PubMed]
5. Hicks SW, Galán JE. 2013. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol 11:316–326. http://dx.doi.org/10.1038/nrmicro3009. [PubMed]
6. Pinaud L, Sansonetti PJ, Phalipon A. 2018. Host cell targeting by enteropathogenic bacteria T3SS effectors. Trends Microbiol 26:266–283. http://dx.doi.org/10.1016/j.tim.2018.01.010. [PubMed]
7. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, Galán JE, Aizawa SI. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605. http://dx.doi.org/10.1126/science.280.5363.602. [PubMed]
8. Blocker A, Jouihri N, Larquet E, Gounon P, Ebel F, Parsot C, Sansonetti P, Allaoui A. 2001. Structure and composition of the Shigella flexneri “needle complex,” a part of its type III secreton. Mol Microbiol 39:652–663. http://dx.doi.org/10.1046/j.1365-2958.2001.02200.x. [PubMed]
9. Daniell SJ, Takahashi N, Wilson R, Friedberg D, Rosenshine I, Booy FP, Shaw RK, Knutton S, Frankel G, Aizawa S. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell Microbiol 3:865–871. http://dx.doi.org/10.1046/j.1462-5822.2001.00168.x. [PubMed]
10. Sekiya K, Ohishi M, Ogino T, Tamano K, Sasakawa C, Abe A. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc Natl Acad Sci U S A 98:11638–11643. http://dx.doi.org/10.1073/pnas.191378598. [PubMed]
11. Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM. 2004. Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–1042. http://dx.doi.org/10.1126/science.1102610. [PubMed]
12. Schraidt O, Marlovits TC. 2011. Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 331:1192–1195. http://dx.doi.org/10.1126/science.1199358. [PubMed]
13. Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JR, Majewski DD, Huang RK, Spreter T, Finlay BB, Yu Z, Strynadka NC. 2016. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 540:597–601. http://dx.doi.org/10.1038/nature20576. [PubMed]
14. Crepin VF, Prasannan S, Shaw RK, Wilson RK, Creasey E, Abe CM, Knutton S, Frankel G, Matthews S. 2005. Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ. Mol Microbiol 55:1658–1670. http://dx.doi.org/10.1111/j.1365-2958.2005.04508.x. [PubMed]
15. Spreter T, Yip CK, Sanowar S, André I, Kimbrough TG, Vuckovic M, Pfuetzner RA, Deng W, Yu AC, Finlay BB, Baker D, Miller SI, Strynadka NC. 2009. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat Struct Mol Biol 16:468–476. http://dx.doi.org/10.1038/nsmb.1603. [PubMed]
16. Bergeron JR, Worrall LJ, Sgourakis NG, DiMaio F, Pfuetzner RA, Felise HB, Vuckovic M, Yu AC, Miller SI, Baker D, Strynadka NC. 2013. A refined model of the prototypical Salmonella SPI-1 T3SS basal body reveals the molecular basis for its assembly. PLoS Pathog 9:e1003307. http://dx.doi.org/10.1371/journal.ppat.1003307. [PubMed]
17. Yip CK, Kimbrough TG, Felise HB, Vuckovic M, Thomas NA,Pfuetzner RA, Frey EA, Finlay BB, Miller SI, Strynadka NC. 2005.Structural characterization of the molecular platform for type III secretion system assembly. Nature 435:702–707. http://dx.doi.org/10.1038/nature03554. [PubMed]
18. Abrusci P, Vergara-Irigaray M, Johnson S, Beeby MD, Hendrixson DR, Roversi P, Friede ME, Deane JE, Jensen GJ, Tang CM, Lea SM. 2013. Architecture of the major component of the type III secretion system export apparatus. Nat Struct Mol Biol 20:99–104. http://dx.doi.org/10.1038/nsmb.2452. [PubMed]
19. Hu B, Lara-Tejero M, Kong Q, Galan JE, Liu J. 2017. In situ molecular architecture of the Salmonella type III secretion machine. Cell 168:1065–1074.e10. [PubMed]
20. Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, Lea SM. 2003. Helical structure of the needle of the type III secretion system of Shigella flexneri. J Biol Chem 278:17103–17107. http://dx.doi.org/10.1074/jbc.M300091200. [PubMed]
21. Galkin VE, Schmied WH, Schraidt O, Marlovits TC, Egelman EH. 2010. The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. J Mol Biol 396:1392–1397. http://dx.doi.org/10.1016/j.jmb.2010.01.001. [PubMed]
22. Kubori T, Sukhan A, Aizawa SI, Galán JE. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97:10225–10230. http://dx.doi.org/10.1073/pnas.170128997. [PubMed]
23. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S, Lange A. 2012. Atomic model of the type III secretion system needle. Nature 486:276–279. http://dx.doi.org/10.1038/nature11079. [PubMed]
24. Deane JE, Roversi P, Cordes FS, Johnson S, Kenjale R, Daniell S, Booy F, Picking WD, Picking WL, Blocker AJ, Lea SM. 2006. Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci U S A 103:12529–12533. http://dx.doi.org/10.1073/pnas.0602689103. [PubMed]
25. Poyraz O, Schmidt H, Seidel K, Delissen F, Ader C, Tenenboim H, Goosmann C, Laube B, Thünemann AF, Zychlinsky A, Baldus M, Lange A, Griesinger C, Kolbe M. 2010. Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 17:788–792. http://dx.doi.org/10.1038/nsmb.1822. [PubMed]
26. Zhang L, Wang Y, Picking WL, Picking WD, De Guzman RN. 2006. Solution structure of monomeric BsaL, the type III secretion needle protein of Burkholderia pseudomallei. J Mol Biol 359:322–330. http://dx.doi.org/10.1016/j.jmb.2006.03.028. [PubMed]
27. Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NCJ. 2018. Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nat Commun 9:3840. http://dx.doi.org/10.1038/s41467-018-06298-8. [PubMed]
28. Lefebre MD, Galán JE. 2014. The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system. Proc Natl Acad Sci U S A 111:817–822. http://dx.doi.org/10.1073/pnas.1319698111. [PubMed]
29. Zilkenat S, Franz-Wachtel M, Stierhof YD, Galán JE, Macek B, Wagner S. 2016. Determination of the stoichiometry of the complete bacterial type III secretion needle complex using a combined quantitative proteomic approach. Mol Cell Proteomics 15:1598–1609. http://dx.doi.org/10.1074/mcp.M115.056598. [PubMed]
30. Zhong D, Lefebre M, Kaur K, McDowell MA, Gdowski C, Jo S, Wang Y, Benedict SH, Lea SM, Galan JE, De Guzman RN. 2012. The Salmonella type III secretion system inner rod protein PrgJ is partially folded. J Biol Chem 287:25303–25311. http://dx.doi.org/10.1074/jbc.M112.381574. [PubMed]
31. Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE. 2006. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640. http://dx.doi.org/10.1038/nature04822. [PubMed]
32. Wood SE, Jin J, Lloyd SA. 2008. YscP and YscU switch the substrate specificity of the Yersinia type III secretion system by regulating export of the inner rod protein YscI. J Bacteriol 190:4252–4262. http://dx.doi.org/10.1128/JB.00328-08. [PubMed]
33. Epler CR, Dickenson NE, Bullitt E, Picking WL. 2012. Ultrastructural analysis of IpaD at the tip of the nascent MxiH type III secretion apparatus of Shigella flexneri. J Mol Biol 420:29–39. http://dx.doi.org/10.1016/j.jmb.2012.03.025. [PubMed]
34. Mueller CA, Broz P, Müller SA, Ringler P, Erne-Brand F, Sorg I, Kuhn M, Engel A, Cornelis GR. 2005. The V-antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science 310:674–676. http://dx.doi.org/10.1126/science.1118476. [PubMed]
35. Knutton S, Rosenshine I, Pallen MJ, Nisan I, Neves BC, Bain C, Wolff C, Dougan G, Frankel G. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J 17:2166–2176. http://dx.doi.org/10.1093/emboj/17.8.2166. [PubMed]
36. Erskine PT, Knight MJ, Ruaux A, Mikolajek H, Wong Fat Sang N, Withers J, Gill R, Wood SP, Wood M, Fox GC, Cooper JB. 2006. High resolution structure of BipD: an invasion protein associated with the type III secretion system of Burkholderia pseudomallei. J Mol Biol 363:125–136. http://dx.doi.org/10.1016/j.jmb.2006.07.069. [PubMed]
37. Johnson S, Roversi P, Espina M, Olive A, Deane JE, Birket S, Field T, Picking WD, Blocker AJ, Galyov EE, Picking WL, Lea SM. 2007. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J Biol Chem 282:4035–4044. http://dx.doi.org/10.1074/jbc.M607945200. [PubMed]
38. Derewenda U, Mateja A, Devedjiev Y, Routzahn KM, Evdokimov AG, Derewenda ZS, Waugh DS. 2004. The structure of Yersinia pestis V-antigen, an essential virulence factor and mediator of immunity against plague. Structure 12:301–306.
39. Chaudhury S, de Azevedo Souza C, Plano GV, De Guzman RN. 2015. The LcrG tip chaperone protein of the Yersinia pestis type III secretion system is partially folded. J Mol Biol 427:3096–3109. http://dx.doi.org/10.1016/j.jmb.2015.07.024. [PubMed]
40. Chaudhury S, Battaile KP, Lovell S, Plano GV, De Guzman RN. 2013. Structure of the Yersinia pestis tip protein LcrV refined to 1.65 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:477–481. http://dx.doi.org/10.1107/S1744309113008579. [PubMed]
41. Lunelli M, Hurwitz R, Lambers J, Kolbe M. 2011. Crystal structure of PrgI-SipD: insight into a secretion competent state of the type three secretion system needle tip and its interaction with host ligands. PLoS Pathog 7:e1002163. http://dx.doi.org/10.1371/journal.ppat.1002163. [PubMed]
42. Wang Y, Nordhues BA, Zhong D, De Guzman RN. 2010. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts. Biochemistry 49:4220–4226. http://dx.doi.org/10.1021/bi100335u. [PubMed]
43. Chatterjee S, Zhong D, Nordhues BA, Battaile KP, Lovell S, De Guzman RN. 2011. The crystal structures of the Salmonella type III secretion system tip protein SipD in complex with deoxycholate and chenodeoxycholate. Protein Sci 20:75–86. http://dx.doi.org/10.1002/pro.537. [PubMed]
44. Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR. 2007. Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 65:1311–1320. http://dx.doi.org/10.1111/j.1365-2958.2007.05871.x. [PubMed]
45. Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. 2015. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 95:31–50. http://dx.doi.org/10.1111/mmi.12843. [PubMed]
46. Daniell SJ, Kocsis E, Morris E, Knutton S, Booy FP, Frankel G. 2003. 3D structure of EspA filaments from enteropathogenic Escherichia coli. Mol Microbiol 49:301–308. http://dx.doi.org/10.1046/j.1365-2958.2003.03555.x. [PubMed]
47. Wang YA, Yu X, Yip C, Strynadka NC, Egelman EH. 2006. Structural polymorphism in bacterial EspA filaments revealed by cryo-EM and an improved approach to helical reconstruction. Structure 14:1189–1196. http://dx.doi.org/10.1016/j.str.2006.05.018. [PubMed]
48. Allaoui A, Woestyn S, Sluiters C, Cornelis GR. 1994. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J Bacteriol 176:4534–4542. http://dx.doi.org/10.1128/jb.176.15.4534-4542.1994. [PubMed]
49. Galán JE, Ginocchio C, Costeas P. 1992. Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J Bacteriol 174:4338–4349. http://dx.doi.org/10.1128/jb.174.13.4338-4349.1992. [PubMed]
50. Ginocchio CC, Galán JE. 1995. Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun 63:729–732. [PubMed]
51. Groisman EA, Ochman H. 1993. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J 12:3779–3787. http://dx.doi.org/10.1002/j.1460-2075.1993.tb06056.x.
52. Wagner S, Königsmaier L, Lara-Tejero M, Lefebre M, Marlovits TC, Galán JE. 2010. Organization and coordinated assembly of the type III secretion export apparatus. Proc Natl Acad Sci U S A 107:17745–17750. http://dx.doi.org/10.1073/pnas.1008053107. [PubMed]
53. Kuhlen L, Abrusci P, Johnson S, Gault J, Deme J, Caesar J, Dietsche T, Mebrhatu MT, Ganief T, Macek B, Wagner S, Robinson CV, Lea SM. 2018. Structure of the core of the type III secretion system export apparatus. Nat Struct Mol Biol 25:583–590. http://dx.doi.org/10.1038/s41594-018-0086-9. [PubMed]
54. Lee PC, Rietsch A. 2015. Fueling type III secretion. Trends Microbiol 23:296–300. http://dx.doi.org/10.1016/j.tim.2015.01.012. [PubMed]
55. Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg A, Wolf-Watz H, Lloyd SA. 2003. YscP and YscU regulate substrate specificity of the Yersinia type III secretion system. J Bacteriol 185:2259–2266. http://dx.doi.org/10.1128/JB.185.7.2259-2266.2003. [PubMed]
56. Lavander M, Sundberg L, Edqvist PJ, Lloyd SA, Wolf-Watz H, Forsberg A. 2002. Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is essential for bacterial survival but not for type III secretion. J Bacteriol 184:4500–4509. http://dx.doi.org/10.1128/JB.184.16.4500-4509.2002. [PubMed]
57. Ferris HU, Furukawa Y, Minamino T, Kroetz MB, Kihara M, Namba K, Macnab RM. 2005. FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280:41236–41242. http://dx.doi.org/10.1074/jbc.M509438200. [PubMed]
58. Zarivach R, Deng W, Vuckovic M, Felise HB, Nguyen HV, Miller SI, Finlay BB, Strynadka NC. 2008. Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS. Nature 453:124–127. http://dx.doi.org/10.1038/nature06832. [PubMed]
59. Deane JE, Graham SC, Mitchell EP, Flot D, Johnson S, Lea SM. 2008. Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol 69:267–276. http://dx.doi.org/10.1111/j.1365-2958.2008.06293.x. [PubMed]
60. Wiesand U, Sorg I, Amstutz M, Wagner S, van den Heuvel J, Lührs T, Cornelis GR, Heinz DW. 2009. Structure of the type III secretion recognition protein YscU from Yersinia enterocolitica. J Mol Biol 385:854–866. http://dx.doi.org/10.1016/j.jmb.2008.10.034. [PubMed]
61. Lountos GT, Austin BP, Nallamsetty S, Waugh DS. 2009. Atomic resolution structure of the cytoplasmic domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion. Protein Sci 18:467–474. http://dx.doi.org/10.1002/pro.56. [PubMed]
62. Björnfot AC, Lavander M, Forsberg A, Wolf-Watz H. 2009. Autoproteolysis of YscU of Yersinia pseudotuberculosis is important for regulation of expression and secretion of Yop proteins. J Bacteriol 191:4259–4267. http://dx.doi.org/10.1128/JB.01730-08. [PubMed]
63. Monjarás Feria JV, Lefebre MD, Stierhof YD, Galán JE, Wagner S. 2015. Role of autocleavage in the function of a type III secretion specificity switch protein in Salmonella enterica serovar Typhimurium. mBio 6:e01459-15. http://dx.doi.org/10.1128/mBio.01459-15. [PubMed]
64. Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. 2011. A sorting platform determines the order of protein secretion in bacterial type III systems. Science 331:1188–1191. http://dx.doi.org/10.1126/science.1201476. [PubMed]
65. Jackson MW, Plano GV. 2000. Interactions between type III secretion apparatus components from Yersinia pestis detected using the yeast two-hybrid system. FEMS Microbiol Lett 186:85–90. http://dx.doi.org/10.1111/j.1574-6968.2000.tb09086.x. [PubMed]
66. Spaeth KE, Chen YS, Valdivia RH. 2009. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 5:e1000579. http://dx.doi.org/10.1371/journal.ppat.1000579. [PubMed]
67. Hu B, Morado DR, Margolin W, Rohde JR, Arizmendi O, Picking WL, Picking WD, Liu J. 2015. Visualization of the type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci U S A 112:1047–1052. http://dx.doi.org/10.1073/pnas.1411610112. [PubMed]
68. Thomas D, Morgan DG, DeRosier DJ. 2001. Structures of bacterial flagellar motors from two FliF-FliG gene fusion mutants. J Bacteriol 183:6404–6412. http://dx.doi.org/10.1128/JB.183.21.6404-6412.2001. [PubMed]
69. Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP. 2015. Composition, formation, and regulation of the cytosolic C-ring, a dynamic component of the type III secretion injectisome. PLoS Biol 13:e1002039. http://dx.doi.org/10.1371/journal.pbio.1002039. [PubMed]
70. Diepold A, Sezgin E, Huseyin M, Mortimer T, Eggeling C, Armitage JP. 2017. A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 8:15940. http://dx.doi.org/10.1038/ncomms15940. [PubMed]
71. Zhang Y, Lara-Tejero M, Bewersdorf J, Galán JE. 2017. Visualization and characterization of individual type III protein secretion machines in live bacteria. Proc Natl Acad Sci U S A 114:6098–6103. http://dx.doi.org/10.1073/pnas.1705823114. [PubMed]
72. Bzymek KP, Hamaoka BY, Ghosh P. 2012. Two translation products of Yersinia yscQ assemble to form a complex essential to type III secretion. Biochemistry 51:1669–1677. http://dx.doi.org/10.1021/bi201792p. [PubMed]
73. McDowell MA, Marcoux J, McVicker G, Johnson S, Fong YH, Stevens R, Bowman LA, Degiacomi MT, Yan J, Wise A, Friede ME, Benesch JL, Deane JE, Tang CM, Robinson CV, Lea SM. 2016. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol Microbiol 99:749–766. http://dx.doi.org/10.1111/mmi.13267. [PubMed]
74. Yu XJ, Liu M, Matthews S, Holden DW. 2011. Tandem translation generates a chaperone for the Salmonella type III secretion system protein SsaQ. J Biol Chem 286:36098–36107. http://dx.doi.org/10.1074/jbc.M111.278663. [PubMed]
75. Notti RQ, Bhattacharya S, Lilic M, Stebbins CE. 2015. A common assembly module in injectisome and flagellar type III secretion sorting platforms. Nat Commun 6:7125. http://dx.doi.org/10.1038/ncomms8125. [PubMed]
76. Majewski DD, Worrall LJ, Strynadka NC. 2018. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr Opin Struct Biol 51:61–72. http://dx.doi.org/10.1016/j.sbi.2018.02.008.
77. Daefler S, Russel M. 1998. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol Microbiol 28:1367–1380. http://dx.doi.org/10.1046/j.1365-2958.1998.00908.x.
78. Crago AM, Koronakis V. 1998. Salmonella InvG forms a ring-like multimer that requires the InvH lipoprotein for outer membrane localization. Mol Microbiol 30:47–56. http://dx.doi.org/10.1046/j.1365-2958.1998.01036.x.
79. Burghout P, Beckers F, de Wit E, van Boxtel R, Cornelis GR, Tommassen J, Koster M. 2004. Role of the pilot protein YscW in the biogenesis of the YscC secretin in Yersinia enterocolitica. J Bacteriol 186:5366–5375. http://dx.doi.org/10.1128/JB.186.16.5366-5375.2004.
80. Okon M, Moraes TF, Lario PI, Creagh AL, Haynes CA, Strynadka NC, McIntosh LP. 2008. Structural characterization of the type-III pilot-secretin complex from Shigella flexneri. Structure 16:1544–1554. http://dx.doi.org/10.1016/j.str.2008.08.006.
81. Magdalena J, Hachani A, Chamekh M, Jouihri N, Gounon P, Blocker A, Allaoui A. 2002. Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol 184:3433–3441. http://dx.doi.org/10.1128/JB.184.13.3433-3441.2002.
82. Kato J, Dey S, Soto JE, Butan C, Wilkinson MC, De Guzman RN, Galan JE. 2018. A protein secreted by the Salmonella type III secretion system controls needle filament assembly. eLife 7:e35886. http://dx.doi.org/10.7554/eLife.35886.
83. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR. 2010. Deciphering the assembly of the Yersinia type III secretion injectisome. EMBO J 29:1928–1940. http://dx.doi.org/10.1038/emboj.2010.84.
84. Ménard R, Sansonetti P, Parsot C. 1994. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J 13:5293–5302. http://dx.doi.org/10.1002/j.1460-2075.1994.tb06863.x.
85. Zierler MK, Galán JE. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect Immun 63:4024–4028.
86. Mounier J, Bahrani FK, Sansonetti PJ. 1997. Secretion of Shigella flexneri Ipa invasins on contact with epithelial cells and subsequent entry of the bacterium into cells are growth stage dependent. Infect Immun 65:774–782.
87. Bahrani FK, Sansonetti PJ, Parsot C. 1997. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect Immun 65:4005–4010.
88. Olive AJ, Kenjale R, Espina M, Moore DS, Picking WL, Picking WD. 2007. Bile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where it colocalizes with IpaD at the tip of the type III secretion needle. Infect Immun 75:2626–2629. http://dx.doi.org/10.1128/IAI.01599-06.
89. Dickenson NE, Zhang L, Epler CR, Adam PR, Picking WL, Picking WD. 2011. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion. Biochemistry 50:172–180. http://dx.doi.org/10.1021/bi101365f.
90. Kenjale R, Wilson J, Zenk SF, Saurya S, Picking WL, Picking WD, Blocker A. 2005. The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280:42929–42937. http://dx.doi.org/10.1074/jbc.M508377200.
91. Cherradi Y, Schiavolin L, Moussa S, Meghraoui A, Meksem A, Biskri L, Azarkan M, Allaoui A, Botteaux A. 2013. Interplay between predicted inner-rod and gatekeeper in controlling substrate specificity of the type III secretion system. Mol Microbiol 87:1183–1199. http://dx.doi.org/10.1111/mmi.12158.
92. Veenendaal AK, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ. 2007. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63:1719–1730. http://dx.doi.org/10.1111/j.1365-2958.2007.05620.x.
93. Park D, Lara-Tejero M, Waxham MN, Li W, Hu B, Galán JE, Liu J. 2018. Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. eLife 7:39514. http://dx.doi.org/10.7554/eLife.39514.
94. Lara-Tejero M, Galán JE. 2009. Salmonella enterica serovar Typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642. http://dx.doi.org/10.1128/IAI.00077-09.
95. Ide T, Laarmann S, Greune L, Schillers H, Oberleithner H, Schmidt MA. 2001. Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679. http://dx.doi.org/10.1046/j.1462-5822.2001.00146.x.
96. Galán JE, Waksman G. 2018. Protein-injection machines in bacteria. Cell 172:1306–1318. http://dx.doi.org/10.1016/j.cell.2018.01.034.
Loading

Article metrics loading...

/content/journal/ecosalplus/10.1128/ecosalplus.ESP-0039-2018
2019-03-29
2019-08-18

Abstract:

Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Comment has been disabled for this content
Submit comment
Close
Comment moderation successfully completed

Figures

Image of Figure 1
Figure 1

Surface view of the 3D reconstruction of the single-particle cryo-EM map of the needle complex (NC) substructure with the atomic structures of the different NC components docked. OR1, outer ring 1; OR2, outer ring 2; IR1, inner ring 1; IR2, inner ring 2. Central section of an overall cryo-ET structure of the complete injectisome . Of note is the location of IR2 in the cytosolic side of the bacterial envelope. IM, inner membrane; OM, outer membrane. Molecular model of the organization of the injectisome , with available atomic structures fitted into the model. Figure adapted from reference 96 , with permission.

Citation: Lara-Tejero M, Galán J. 2019. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0039-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

SctRST form a stable complex in the inner membrane, to which SctU is recruited. This complex nucleates the assembly of the IRs integrated by SctJ and SctD, which results in the extraction or “pulling” of the inner membrane components from the bacterial plasma membrane. At the same time, the secretin is independently assembled into the OR and the two structures come together to form the NC base substructure to which SctV is subsequently recruited. Once the NC base is formed, the cytoplasmic sorting platform is recruited to the cytoplasmic side of the NC base and the system starts to function as a type III secretion machine dedicated to the delivery of early substrates, such as the inner rod (SctI) and needle (SctF) subunits, to complete the assembly of the entire injectisome.

Citation: Lara-Tejero M, Galán J. 2019. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0039-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Activation of the injectisome leads to secretion of the translocators, which are deployed on the eukaryotic plasma membrane to form the translocon, which remains in contact with the needle to form a direct conduit between the bacterial and host cell cytosol that serves a passageway for the effector proteins. Figure adapted from reference 93 , with permission.

Citation: Lara-Tejero M, Galán J. 2019. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0039-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
Table 1

Principal components of most studied T3SSs

Citation: Lara-Tejero M, Galán J. 2019. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells, EcoSal Plus 2019; doi:10.1128/ecosalplus.ESP-0039-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error