No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antibody Engineering

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    360.47 Kb
  • XML
    152.88 Kb
  • HTML
    154.58 Kb
  • Authors: Kin-Ming Lo1, Olivier Leger2, Björn Hock3
  • Editors: James E. Crowe Jr.4, Diana Boraschi5
    Affiliations: 1: Department of Protein Engineering and Antibody Technologies, EMD Serono Research Institute, Billerica, MA 01821; 2: Department of Protein Engineering and Antibody Technologies, Merck Serono S.A.—Geneva, 1202 Geneva, Switzerland; 3: Department of Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, D-64293 Darmstadt, Germany; 4: Vanderbilt University School of Medicine, Nashville, TN; 5: National Research Council, Pisa, Italy; and Rino Rappuoli, Novartis Vaccines, Siena, Italy
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0007-12
  • Received 30 November 2012 Accepted 11 April 2013 Published 31 January 2014
  • Correspondence: Kin-Ming Lo, [email protected]
image of Antibody Engineering
    Preview this microbiology spectrum article:
    Zoom in

    Antibody Engineering, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/AID-0007-2012-1.gif /docserver/preview/fulltext/microbiolspec/2/1/AID-0007-2012-2.gif
  • Abstract:

    Advanced molecular biology techniques developed during the past few decades have allowed the industry to exploit and commercialize the natural defense mechanisms that antibodies provide. This review discusses the latest advances in antibody-engineering technologies to enhance clinical efficacy and outcomes. For the constant regions, the choice of the antibody class and isotype has to be made carefully to suit the therapeutic applications. Engineering of the Fc region, either by direct targeted mutagenesis or by modifying the nature of its -glycan, has played an important role in recent years in increasing half-life or controlling effector functions. The variable regions of the antibody are responsible for binding affinity and exquisite specificity to the target molecule, which together with the Fc determine the drug's efficacy and influence the drug dose required to obtain the desired effectiveness. A key requirement during antibody development is therefore to affinity mature the variable regions when necessary, so that they bind the therapeutic target with sufficiently high affinity to guarantee effective occupancy over prolonged periods. If the antibody was obtained from a non-human source, such as rodents, a humanization process has to be applied to minimize immunogenicity while maintaining the desired binding affinity and selectivity. Finally, we discuss the next next-generation antibodies, such as antibody-drug conjugates, bispecific antibodies, and immunocytokines, which are being developed to meet future challenges.

  • Citation: Lo K, Leger O, Hock B. 2014. Antibody Engineering. Microbiol Spectrum 2(1):AID-0007-12. doi:10.1128/microbiolspec.AID-0007-12.


1. Rodriguez ME, van der Pol WL, Sanders LA, van de Winkel JG. 1999. Crucial role of FcgammaRIIa (CD32) in assessment of functional anti- Streptococcus pneumoniae antibody activity in human sera. J Infect Dis 179:423–433. [PubMed][CrossRef]
2. Woof JM, Kerr MA. 2004. IgA function—variations on a theme. Immunology 113:175–177. [PubMed][CrossRef]
3. Dechant M, Beyer T, Schneider-Merck T, Weisner W, Peipp M, van de Winkel JG, Valerius T. 2007. Effector mechanisms of recombinant IgA antibodies against epidermal growth factor receptor. J Immunol 179:2936–2943. [PubMed]
4. Weisbart RH, Kacena A, Schuh A, Golde DW. 1988. GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature 332:647–648. [PubMed][CrossRef]
5. Lohse S, Derer S, Beyer T, Klausz K, Peipp M, Leusen JH, van de Winkel JG, Dechant M, Valerius T. 2011. Recombinant dimeric IgA antibodies against the epidermal growth factor receptor mediate effective tumor cell killing. J Immunol 186:3770–3778. [PubMed][CrossRef]
6. Nimmerjahn F, Ravetch JV. 2010. Antibody-mediated modulation of immune responses. Immunol Rev 236:265–275. [PubMed][CrossRef]
7. Noya FJ, Baker CJ, Edwards MS. 1993. Neutrophil Fc receptor participation in phagocytosis of type III group B streptococci. Infect Immun 61:1415–1420. [PubMed]
8. Beenhouwer DO, Yoo EM, Lai CW, Rocha MA, Morrison SL. 2007. Human immunoglobulin G2 (IgG2) and IgG4, but not IgG1 or IgG3, protect mice against Cryptococcus neoformans infection. Infect Immun 75:1424–1435. [PubMed][CrossRef]
9. Tucker SC, Casadevall A. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA 99:3165–3170. [PubMed][CrossRef]
10. Zebedee SL, Koduri RK, Mukherjee J, Mukherjee S, Lee S, Sauer DF, Scharff MD, Casadevall A. 1994. Mouse-human immunoglobulin G1 chimeric antibodies with activities against Cryptococcus neoformans. Antimicrob Agents Chemother 38:1507–1514. [PubMed]
11. Schneider-Merck T, Lammerts van Bueren JJ, Berger S, Rossen K, van Berkel PH, Derer S, Beyer T, Lohse S, Bleeker WK, Peipp M, Parren PW, van de Winkel JG, Valerius T, Dechant M. 2010. Human IgG2 antibodies against epidermal growth factor receptor effectively trigger antibody-dependent cellular cytotoxicity but, in contrast to IgG1, only by cells of myeloid lineage. J Immunol 184:512–520.
12. Isaacs JD, Clark MR, Greenwood J, Waldmann H. 1992. Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J Immunol 148:3062–3071. [PubMed]
13. Isaacs JD, Wing MG, Greenwood JD, Hazleman BL, Hale G, Waldmann H. 1996. A therapeutic human IgG4 monoclonal antibody that depletes target cells in humans. Clin ExpImmunol 106:427–433. [PubMed]
14. Isaacs JD. 2001. From bench to bedside: discovering rules for antibody design, and improving serotherapy with monoclonal antibodies. Rheumatology 40:724–738. [PubMed]
15. Wypych J, Li M, Guo A, Zhang Z, Martinez T, Allen MJ, Fodor S, Kelner DN, Flynn GC, Liu YD, Bondarenko PV, Ricci MS, Dillon TM, Balland A. 2008. Human IgG2 antibodies display disulfide-mediated structural isoforms. J Biol Chem 283:16194–16205. [PubMed][CrossRef]
16. Dillon TM, Ricci MS, Vezina C, Flynn GC, Liu YD, Rehder DS, Plant M, Henkle B, Li Y, Deechongkit S, Varnum B, Wypych J, Balland A, Bondarenko PV. 2008. Structural and functional characterization of disulfide isoforms of the human IgG2 subclass. J Biol Chem 283:16206–16215. [PubMed][CrossRef]
17. Lo KM, Zhang J, Sun Y, Morelli B, Lan Y, Lauder S, Brunkhorst B, Webster G, Hallakou-Bozec S, Doaré L, Gillies SD. 2005. Engineering a pharmacologically superior form of leptin for the treatment of obesity. Protein Eng Des Sel 18:1–10. [PubMed][CrossRef]
18. Tan LK, Shopes RJ, Oi VT, Morrison SL. 1990. Influence of the hinge region on complement activation, C1q binding, and segmental flexibility in chimeric human immunoglobulins. Proc Natl Acad Sci USA 87:162–166. [PubMed]
19. Dela Cruz JS, Huang TH, Penichet ML, Morrison SL. 2004. Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4:57–64. [PubMed]
20. Klein JS, Bjorkman PJ. 2010. Few and far between. How HIV may be evading antibody avidity. PLoS Pathogens 6:1–6.
21. Bruhns P. 2012. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119:5640–5649. [PubMed][CrossRef]
22. van der Neut Kolfschoten M, Schuurman J, Losen M, Bleeker WK, Martínez-Martínez P, Vermeulen E, den Bleker TH, Wiegman L, Vink T, Aarden LA, De Baets MH, van de Winkel JG, Aalberse RC, Parren PW. 2007. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science 317:1554–1557. [PubMed][CrossRef]
23. Labrijn AF, Buijsse AO, van den Bremer ET, Verwilligen AY, Bleeker WK, Thorpe SJ, Killestein J, Polman CH, Aalberse RC, Schuurman J, van de Winkel JG, Parren PW. 2009. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 27:767–771. [PubMed][CrossRef]
24. Shapiro RI, Plavina T, Schlain BR, Pepinsky RB, Garber EA, Jarpe M, Hochman PS, Wehner NG, Bard F, Motter R, Yednock TA, Taylor FR. 2011. Development and validation of immunoassays to quantify the half-antibody exchange of an IgG4 antibody, natalizumab (Tysabri®) with endogenous IgG4. J Pharm Biomed Anal 55:168–175. [PubMed][CrossRef]
25. Rispens T, Meesters J, den Bleker TH, Ooijevaar-De Heer P, Schuurman J, Parren PW, Labrijn A, Aalberse RC. 2013. Fc-Fc interactions of human IgG4 require dissociation of heavy chains and are formed predominantly by the intra-chain hinge isomer. Mol Immunol 53:35–42. [PubMed][CrossRef]
26. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU. 2006. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215. [PubMed][CrossRef]
27. Lifely MR, Hale C, Boyce S, Keen MJ, Phillips J. 1995. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5:813–822. [PubMed]
28. Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. 1999. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180. [PubMed][CrossRef]
29. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K. 2003. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278:3466–3473. [PubMed][CrossRef]
30. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. 2002. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99:754–758. [PubMed]
31. Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, Kimby E, Frankel SR, Touroutoglou N, Turnbull B, Anderson KC, Maloney DG, Fox EA. 2005. Polymorphisms in FcγRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenström's macroglobulinemia. J Clin Oncol 23:474–481. [PubMed][CrossRef]
32. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Neri TM, Ardizzoni A. 2008. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol 26:1789–1796. [PubMed][CrossRef]
33. Bibeau F, Lopez-Crapez E, Di Fiore F, Thezenas S, Ychou M, Blanchard F, Lamy A, Penault-Llorca F, Frébourg T, Michel P, Sabourin JC, Boissière-Michot F. 2009. Impact of FcγRIIa-FcγRIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan. J Clin Oncol 27:1122–1129. [PubMed][CrossRef]
34. Kumpel BM. 2007. Efficacy of RhD monoclonal antibodies in clinical trials as replacement therapy for prophylactic anti-D immunoglobulin: more questions than answers. Vox Sang 93:99–111. [PubMed][CrossRef]
35. Peipp M, Lammerts van Bueren JJ, Schneider-Merck T, Bleeker WW, Dechant M, Beyer T, Repp R, van Berkel PH, Vink T, van de Winkel JG, Parren PW, Valerius T. 2008. Antibody fucosylation differentially impacts cytotoxicity mediated by NK and PMN effector cells. Blood 112:2390–2399. [PubMed][CrossRef]
36. Mori K, Iida S, Yamane-Ohnuki N, Kanda Y, Kuni-Kamochi R, Nakano R, Imai-Nishiya H, Okazaki A, Shinkawa T, Natsume A, Niwa R, Shitara K, Satoh M. 2007. Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology 55:109–114. [PubMed][CrossRef]
37. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. 2001. High resolution mapping of the binding site on human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and design of IgG1 variants with improved binding to the FcγR. J Biol Chem 276:6591–6604. [PubMed][CrossRef]
38. Nimmerjahn F, Ravetch JV. 2005. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science 310:1510–1512. [PubMed][CrossRef]
39. Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI. 2006. Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010. [PubMed][CrossRef]
40. Armour KL, Clark MR, Hadley AG, Williamson LM. 1999. Recombinant human IgG molecules lacking Fcγ receptor I binding and monocyte triggering activities. Eur J Immunol 29:2613–2624. [PubMed]
41. Mueller JP, Giannoni MA, Hartman SL, Elliott EA, Squinto SP, Mathis LA, Evans MJ. 1997. Humanized porcine VCAM-specific monoclonal antibodies with chimeric IgG2/G4 constant regions block human leukocyte binding to porcine endothelial cells. Mol Immunol 34:441–452. [PubMed]
42. An Z, Forrest G, Moore R, Cukan M, Haytko P, Huang L, Vitelli S, Zhao JZ, Lu P, Hua J, Gibson CR, Harvey BR, Montgomery D, Zaller D, Wang F, Strohl W. 2009. IgG2m4, an engineered antibody isotype with reduced Fc function. MAbs 1:572–579. [PubMed]
43. Labrijn AF, Aalberse RC, Schuurman J. 2008. When binding is enough: nonactivating antibody formats. Curr Opin Immunol 20:479–485. [PubMed][CrossRef]
44. Tao MH, Morrison SL. 1989. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143:2595–2601. [PubMed]
45. Nimmerjahn F, Ravetch JV. 2008. Fcγ receptors as regulators of immune responses. Nat Rev Immunol 8:34–47. [PubMed][CrossRef]
46. Jefferis R. 2007. Antibody therapeutics: isotype and glycoform selection. Expert Opin Biol Ther 7:1401–1413. [PubMed][CrossRef]
47. Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T. 2010. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol 184:1968–1976. [PubMed][CrossRef]
48. Dall'Acqua WF, Kiener PA, Wu H. 2006. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 281:23514–23524. [PubMed][CrossRef]
49. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, Presta LG, Meng YG, Roopenian DC. 2006. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol 18:1759–1769. [PubMed][CrossRef]
50. Vidarsson G, Stemerding AM, Stapleton NM, Spliethoff SE, Janssen H, Rebers FE, de Haas M, van de Winkel JG. 2006. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood 108:3573–3579. [PubMed][CrossRef]
51. Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. 2007. Higher levels of sialylated Fc glycans in immunoglobulin G molecules can adversely impact functionality. Mol Immunol 44:1524–1534. [PubMed][CrossRef]
52. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. 2008. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376. [PubMed][CrossRef]
53. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. 2008. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 105:19571–19578. [PubMed][CrossRef]
54. Kaneko Y, Nimmerjahn F, Ravetch JV. 2006. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313:670–673. [PubMed][CrossRef]
55. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG. 2002. Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147. [PubMed]
56. Jung ST, Kang TH, Kelton W, Georgiou G. 2011. Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 22:858–867. [PubMed]
57. Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD. 2008. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 105:20167–20172. [PubMed][CrossRef]
58. Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, Georgiou G. 2010. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 107:604–609. [PubMed][CrossRef]
59. Jones TP, Dear PH, Foote J, Neuberger MS, Winter G. 1986. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525. [CrossRef]
60. Léger OJ, Yednock TA, Tanner L, Horner HC, Hines DK, Keen S, Saldanha J, Jones ST, Fritz LC, Bendig MM. 1997. Humanization of a mouse antibody against human alpha-4 integrin: a potential therapeutic for the treatment of multiple sclerosis. Hum Antibodies 8:3–16. [PubMed]
61. Sato K, Tsuchiya M, Saldanha J, Koishihara Y, Ohsugi Y, Kishimoto T, Bendig MM. 1994. Humanization of a mouse anti-human interleukin-6 receptor antibody comparing two methods for selecting human framework regions. Mol Immunol 31:371–381. [PubMed]
62. Leger O, Saldanha WJ. 2012. Humanization of antibodies, p 1–23. In Wood CR (ed), Molecular Medicine and Medicinal Chemistry, vol 4. Antibody Drug Discovery. Imperial College Press, London, United Kingdom.
63. Padlan EA. 1991. A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol Immunol 28:489–498. [PubMed]
64. Padlan EA. 1994. Anatomy of the antibody molecule. Mol Immunol 31:169–217.
65. Padlan EA, Abergel C, Tipper JP. 1995. Identification of specificity-determining residues in antibodies. FASEB J 9:133–139. [PubMed]
66. Tan P, Mitchell DA, Buss TN, Holmes MA, Anasetti C, Foote J. 2002. “Superhumanized” antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 169:1119–1125. [PubMed]
67. Lazar GA, Desjarlais JR, Jacinto J, Karki S, Hammond PW. 2007. A molecular immunology approach to antibody humanization and functional optimization. Mol Immunol 44:1986–1998. [PubMed][CrossRef]
68. Dall'Acqua WF, Damschroder MM, Zhang J, Woods RM, Widjaja L, Yu J, Wu H. 2005. Antibody humanization by framework shuffling. Methods 36:43–60. [PubMed][CrossRef]
69. Fransson J, Teplyakov A, Raghunathan G, Chi E, Cordier W, Dinh T, Feng Y, Giles-Komar J, Gilliland G, Lollo B, Malia TJ, Nishioka W, Obmolova G, Zhao S, Zhao Y, Swanson RV, Almagro JC. 2010. Human framework adaptation of a mouse anti-human IL-13 antibody. J Mol Biol 398:214–231. [PubMed][CrossRef]
70. Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. 1994. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology (NY) 12:899–903. [PubMed]
71. Kang AS, Jones TM, Burton DR. 1991. Antibody redesign by chain shuffling from random combinatorial immunoglobulin libraries. Proc Natl Acad Sci USA 88:11120–11123. [PubMed]
72. Christensen PA, Danielczyk A, Ravn P, Larsen M, Stahn R, Karsten U, Goletz S. 2009. Modifying antibody specificity by chain shuffling of V / V between antibodies with related specificities. Scand J Immunol 69:1–10. [PubMed][CrossRef]
73. Rosok MJ, Yelton DE, Harris LJ, Bajorath J, Hellström KE, Hellström I, Cruz GA, Kristensson K, Lin H, Huse WD, Glaser SM. 1996. A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. J Biol Chem 271:22611–22618. [PubMed]
74. Rader C, Ritter G, Nathan S, Elia M, Gout I, Jungbluth AA, Choen LS, Welt S, Old LJ, Barbas CF 3rd. 2000. The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem 275:13668–13676. [PubMed]
75. Nishibori N, Horiuchi H, Furusawa S, Matsuda H. 2006. Humanization of chicken monoclonal antibody using phage-display system. Mol Immunol 43:634–642. [PubMed][CrossRef]
76. Radstake TR, Svenson M, Eijsbouts AM, van den Hoogen FH, Enevold C, van Riel PL, Bendtzen K. 2009. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann Rheum Dis 68:1739–1745. [PubMed]
77. De Groot AS, Scott DW. 2007. Immunogenicity of protein therapeutics. Trends Immunol 28:482–490.
78. Bernett MJ, Karki S, Moore GL, Leung IW, Chen H, Pong E, Nguyen DH, Jacinto J, Zalevsky J, Muchhal US, Desjarlais JR, Lazar GA. 2010. Engineering fully human monoclonal antibodies from murine variable regions. J Mol Biol 396:1474–1490.
79. Lanzavecchia A. 1985. Antigen-specific interaction between T and B cells. Nature 314:537–539. [PubMed]
80. Foote J, Eisen HN. 1995. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci USA 92:1054–1056. [PubMed]
81. Foote J, Eisen HN. 2000. Breaking the affinity ceiling for antibodies and T cell receptors. Proc Natl Acad Sci USA 97:10679–10681. [PubMed]
82. Batista FD, Neuberger MS. 1998. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8:751–759. [PubMed]
83. Drake AW, Myszka DG, Klakamp SL. 2004. Characterizing high-affinity antigen/antibody complexes by kinetic- and equilibrium-based methods. Anal Biochem 328:35–43. [PubMed][CrossRef]
84. Rathanaswami P, Roalstad S, Roskos L, Su QJ, Lackie S, Babcook J. 2005. Demonstration of an in vivo generated sub-picomolar affinity fully human monoclonal antibody to interleukin-8. Biochem Biophys Res Commun 334:1004–1013. [PubMed][CrossRef]
85. Liu M, Duke JL, Richter DJ, Vinuesa CG, Goodnow CC, Kleinstein SH, Schatz DG. 2008. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451:841–845. [PubMed][CrossRef]
86. Maeda K, Singh SK, Eda K, Kitabatake M, Pham P, Goodman MF, Sakaguchi N. 2010. GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. J Biol Chem 285:23945–23953. [PubMed][CrossRef]
87. Sakaguchi N, Kimura T, Matsushita S, Fujimura S, Shibata J, Araki M, Sakamoto T, Minoda C, Kuwahara K. 2005. Generation of high-affinity antibody against T cell-dependent antigen in the Ganp gene-transgenic mouse. J Immunol 174:4485–4494. [PubMed]
88. Fujimura S, Xing Y, Takeya M, Yamashita Y, Ohshima K, Kuwahara K, Sakaguchi N. 2005. Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res 65:5925–5934. [PubMed][CrossRef]
89. de Haard HJ, van Neer N, Reurs A, Hufton SE, Roovers RC, Henderikx P, de Bruïne AP, Arends JW, Hoogenboom HR. 1999. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274:18218–18230. [PubMed]
90. Schier R, McCall A, Adams GP, Marshall KW, Merritt H, Yim M, Crawford RS, Weiner LM, Marks C, Marks JD. 1996. Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J Mol Biol 263:551–567. [PubMed][CrossRef]
91. Votsmeier C, Plittersdorf H, Hesse O, Scheidig A, Strerath M, Gritzan U, Pellengahr K, Scholz P, Eicker A, Myszka D, Coco WM, Haupts U. 2012. Femtomolar Fab binding affinities to a protein target by alternative CDR residue co-optimization strategies without phage or cell surface display. MAbs 4:341–348.
92. Wark KL, Hudson PJ. 2006. Latest technologies for the enhancement of antibody affinity. Adv Drug Deliv Rev 58:657–670. [PubMed][CrossRef]
93. Lowe D, Wilkinson T, Vaughan TJ. 2012. Affinity maturation approaches for antibody lead optimization, p 85–119. In Wood CR (ed), Molecular Medicine and Medicinal Chemistry, vol 4. Antibody Drug Discovery. Imperial College Press, London, United Kingdom.
94. Maul RW, Gearhart PJ. 2010. AID and somatic hypermutation. Adv Immunol 105:159–191.
95. Goodman MF, Scharff MD, Romesberg FE. 2007. AID-initiated purposeful mutations in immunoglobulin genes. Adv Immunol 94:127–155. [PubMed][CrossRef]
96. Delker RK, Fugmann SD, Papavasiliou FN. 2009. A coming-of-age story: activation-induced cytidine deaminase turns 10. Nat Immunol 10:1147–1153. [PubMed][CrossRef]
97. Kajita M, Okazawa T, Ikeda M, Todo K, Magari M, Kanayama N, Ohmori H. 2010. Efficient affinity maturation of antibodies in an engineered chicken B cell line DT40-SW by increasing point mutation. J Biosci Bioeng 110:351–358. [PubMed][CrossRef]
98. Martin A, Scharff MD. 2002. Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci USA 99:12304–12308. [PubMed][CrossRef]
99. Cumbers SJ, Williams GT, Davies SL, Grenfell RL, Takeda S, Batista FD, Sale JE, Neuberger MS. 2002. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat Biotechnol 20:1129–1134. [PubMed][CrossRef]
100. Bowers PM, Horlick RA, Neben TY, Toobian RM, Tomlinson GL, Dalton JL, Jones HA, Chen A, Altobell L 3rd, Zhang X, Macomber JL, Krapf IP, Wu BF, McConnell A, Chau B, Holland T, Berkebile AD, Neben SS, Boyle WJ, King DJ. 2011. Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci USA 108:20455–20460. [PubMed][CrossRef]
101. Ho M, Nagata S, Pastan I. 2006. Isolation of anti-CD22 Fv with high affinity by Fv display on human cells. Proc Natl Acad Sci USA 103:9637–9642. [PubMed][CrossRef]
102. Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. 2010. Development of a novel mammalian cell surface antibody display platform. MAbs 2:508–518. [PubMed][CrossRef]
103. Li CZ, Liang ZK, Chen ZR, Lou HB, Zhou Y, Zhang ZH, Yu F, Liu S, Zhou Y, Wu S, Zheng W, Tan W, Jiang S, Zhou C. 2012. Identification of HBsAg-specific antibodies from a mammalian cell displayed full-length human antibody library of healthy immunized donor. Cell Mol Immunol 9:184–190. [PubMed][CrossRef]
104. Li F, Liu YH, Li YW, Ju Q, Chen L, Xie PL, Li YH, Li GC. 2012. Human anti-EGFL7 recombinant full-length antibodies selected from a mammalian cell-based antibody display library. Mol Cell Biochem 365:77–84. [PubMed][CrossRef]
105. Reddy ST, Georgiou G. 2011. Systems analysis of adaptive immunity by utilization of high-throughput technologies. Curr Opin Biotechnol 22:584–589. [PubMed][CrossRef]
106. Clark LA, Boriack-Sjodin PA, Eldredge J, Fitch C, Friedman B, Hanf KJ, Jarpe M, Liparoto SF, Li Y, Lugovskoy A, Miller S, Rushe M, Sherman W, Simon K, Van Vlijmen H. 2006. Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15:949–960. [PubMed][CrossRef]
107. Fontayne A, De Maeyer B, De Maeyer M, Yamashita M, Matsushita T, Deckmyn H. 2007. Paratope and epitope mapping of the antithrombotic antibody 6B4 in complex with platelet glycoprotein Ibα. J Biol Chem 282:23517–23524. [PubMed][CrossRef]
108. Fontayne A, Vanhoorelbeke K, Pareyn I, Van Rompaey I, Meiring M, Lamprecht S, Roodt J, Desmet J, Deckmyn H. 2006. Rational humanization of the powerful antithrombotic anti-GPIbα antibody: 6B4. Thromb Haemost 96:671–684. [PubMed]
109. KurodaD, Shirai H, Jacobson MP, Nakamura H. 2012. Computer-aided antibody design. Protein Eng Des Sel 25:507–522.
110. Abhinandan KR, Martin AC. 2007. Analyzing the “degree of humanness” of antibody sequences. J Mol Biol 369:852–862. [PubMed][CrossRef]
111. David MP, Concepcion GP, Padlan EA. 2010. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies. BMC Bioinformatics 11:79. [PubMed][CrossRef]
112. Clackson T, Wells JA. 1994. In vitro selection from protein and peptide libraries. Trends Biotechnol 12:173–184. [PubMed][CrossRef]
113. Derda R, Tang SK, Li SC, Ng S, Matochko W, Jafari MR. 2011. Diversity of phage-displayed libraries of peptides during panning and amplification. Molecules 16:1776–1803. [PubMed][CrossRef]
114. Salfeld JG, Allen DJ, Hoogenboom HR, Kaymakcalan Z, Labkovsky B, Mankovich JA, McGuinness BT, Roberts AJ, Sakorafas P, Schoenhaut D, Vaughan TJ, White M, Wilton AJ. 2003. Human antibodies that bind human TNFα. US Patent 6090382.
115. Rajpal A, Beyaz N, Haber L, Cappuccilli G, Yee H, Bhatt RR, Takeuchi T, Lerner RA, Crea R. 2005. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci USA 102:8466–8471. [PubMed][CrossRef]
116. Via MC. 2009. Monoclonal Antibodies: Pipeline Analysis and Competitive Assessment. Cambridge Healthtech Institute, Needham, MA.
117. Licastro F, Chiappelli M, Ianni M, Porcellini E. 2009. Tumor necrosis factor-alpha antagonists: differential clinical effects by different biotechnological molecules. Int J Immunopathol Pharmacol 22:567–572. [PubMed]
118. Gebauer M, Skerra A. 2009. Engineered therapeutic scaffolds as next generation antibody therapeutics. Curr Opin Chem Biol 13:245–255.
119. Beck A, Wurch T, Bailly C, Corvaia N. 2010. Strategies and challenges for the next generation of theraputic antibodies. Nat Rev Immunol 10:345–352. [PubMed][CrossRef]
120. Teicher BVA, Chati RVJ. 2011. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res 17:6389–6397. [PubMed][CrossRef]
121. Mayes S, Brown N, Illidge TM. 2011. New antibody drug treatments for lymphoma Expert Opin Biol Ther 11:623–640. [PubMed][CrossRef]
122. Visiongain. 2012. Next generation antibody therapies: pipeline and market 2011–2012. Visiongain Ltd., London, United Kingdom.
123. Stasi R. 2008. Gemtuzuman Ozogamicin: An anti-CD33 immunoconjugate for the treatment of acute myeloid leukemia. Expert Opin Biol Ther 8:527–540. [PubMed][CrossRef]
124. Gualberto A. 2012. Brentuximab Vedotin (SGN-35), an antibody-drug conjugate for the treatment of CD30-positive malignancies. Expert Opin Investig Drugs 21:205–216. [PubMed][CrossRef]
125. Burris HA 3rd, Tibbitts J, Holden SN, Sliwkowski MX, Lewis Phillips GD. 2011. Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clin Breast Cancer 11:275–282. [PubMed][CrossRef]
126. Alley SC, Okeley NM, Senter PD. 2010. Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14:529–537. [PubMed][CrossRef]
127. Hughes B. 2010. Antibody-drug conjugates for cancer: poised to deliver? Nat Rev Drug Discov 9:665–667. [PubMed][CrossRef]
128. Löwenberg B, Beck J, Graux C, van Putten W, Schouten HC, Verdonck LF, Ferrant A, Sonneveld P, Jongen-Lavrencic M, von Lilienfeld-Toal M, Biemond BJ, Vellenga E, Breems D, de Muijnck H, Schaafsma R, Verhoef G, Döhner H, Gratwohl A, Pabst T, Ossenkoppele GJ, Maertens J; Dutch-Belgian Hemato-Oncology Cooperative Group (HOVON); German Austrian AML Study Group (AMLSG); Swiss Group for Clinical Cancer Research Collaborative Group (SAKK). 2010. Gemtuzumab ozogamicin as postremission treatment in AML at 60 years of age or more: results of a multicenter phase 3 study. Blood 115:2586–2591. [PubMed][CrossRef]
129. Ducry L, Stump B. 2010. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjugate Chem 21:5–13. [PubMed][CrossRef]
130. Lin K, Tibbitts J. 2012. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 29:2354–2366. [PubMed][CrossRef]
131. Gillies SD, Lan Y, Wesolowski JS, Qian X, Reisfeld RA, Holden S, Super M, Lo K-M. 1998. Antibody-IL-12 fusion proteins are effective in SCID mouse models of prostate and colon carcinoma metastases. J Immunol 160:6195–6203. [PubMed]
132. Gillies SD, Lan Y, Hettmann T, Brunkhorst B, Sun Y, Mueller SO, and Lo K-M. 2011. A low-toxicity IL-2 based immunocytokine retains anti-tumor activity despite its high degree of IL-2 receptor selectivity. Clin Cancer Res 17:3673–3685. [PubMed][CrossRef]
133. Lu D, Zhang H, Ludwig D, Persaud,A., Jimenez X, Burtrum D, Balderes P, Liu M, Bohlen P, Witte L, and Zhu Z. 2004. Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 279:2856–2865. [PubMed][CrossRef]
134. Stommel JM, Kimmelman AC, Ying H, Nabioullin R, Ponugoti AH, Wiedemeyer R, Stegh AH, Bradner JE, Ligon KL, Brennan C, Chin L, DePinho RA. 2007. Coactivation of receptor tyrosine kinases affects the response of tumor cells to targeted therapies. Science 318:287–290. [PubMed][CrossRef]
135. Baeuerle PA, Reinhardt C. 2009. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res 69:4941–4944. [PubMed][CrossRef]
136. Milstein C, Cuello AC. 1983. Hybrid hybridomas and their use in immunohistochemistry. Nature 305:537–540. [PubMed]
137. Milstein C, Cuello AC. 1984. Hybrid hybridomas and the production of bi-specific monoclonal antibodies. Immunology Today 5:299–304.
138. Carter P. 2001. Bispecific human IgG by design. J Immunol Methods 248:7–15. [PubMed]
139. Brennan M, Davison PF, Paulus H. 1985. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 229:81–83. [PubMed]
140. Glennie MJ, McBride HM, Worth AT, Stevenson GT. 1987. Preparation and performance of bispecific F(ab’ gamma)2 antibody containing thioether-linked Fab’ gamma fragments. J Immunol 139:2367–2375. [PubMed]
141. Atwell JL, Pearce LA, Lah M, Gruen LC, Kortt AA, Hudson PJ. 1996. Design and expression of a stable bispecific scFv dimer with affinity for both glycophorin and N9 neuraminidase. Mol Immunol 33:1301–1312. [PubMed]
142. Huston JS, George AJ. 2001. Engineered antibodies take center stage. Hum Antibodies 10:127–142. [PubMed]
143. Seimetz D, Lindhofer H, Bokemeyer C. 2010. Development and approval of the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3) as a targeted cancer immunotherapy. Cancer Treat Rev 36:458–467. [PubMed][CrossRef]
144. Ridgway JB, Presta LG, Carter P. 1996. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 9:617–621. [PubMed]
145. Gunasekaran K, Pentony M, Shen M, Garrett L, Forte C, Woodward A, Ng SB, Born T, Retter M, Manchulenko K, Sweet H, Foltz IN, Wittekind M, Yan W. 2010. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem 285:19637–19646. [PubMed][CrossRef]
146. Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo K-M, and Huston JS. 2010. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 23:195–202. [PubMed][CrossRef]
147. SchaeferW, Regula JT, Bähner M, Schanzer J, Croasdale R, Dürr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, Schwaiger M, Stubenrauch KG, Sustmann C, Thomas M, Scheuer W, Klein C. 2011. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA 108:11187–11192. [PubMed][CrossRef]
148. Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, and CarterP. 1998. An efficient route to human bispecific IgG. Nat Biotechnol 16:677–681. [PubMed][CrossRef]
149. ShenJ, Vil MD, Jimenez X, Zhang H, Iacolina M, Mangalampalli V, Balderes P, Ludwig DL, Zhu Z. 2007. Single variable domain antibody as a versatile building block for the construction of IgG-like bispecific antibodies. J Immunol Methods 318:65–74. [PubMed]
150. Bostrom J, Yu SF, Kan D, Appleton BA, Lee CV, Billeci K, Man W, Peale F, Ross S, Wiesmann C, Fuh G. 2009. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614. [PubMed][CrossRef]
151. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, Davis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A, and Ghayur T. 2007. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol 25:1290–1297. [PubMed][CrossRef]

Article metrics loading...



Advanced molecular biology techniques developed during the past few decades have allowed the industry to exploit and commercialize the natural defense mechanisms that antibodies provide. This review discusses the latest advances in antibody-engineering technologies to enhance clinical efficacy and outcomes. For the constant regions, the choice of the antibody class and isotype has to be made carefully to suit the therapeutic applications. Engineering of the Fc region, either by direct targeted mutagenesis or by modifying the nature of its -glycan, has played an important role in recent years in increasing half-life or controlling effector functions. The variable regions of the antibody are responsible for binding affinity and exquisite specificity to the target molecule, which together with the Fc determine the drug's efficacy and influence the drug dose required to obtain the desired effectiveness. A key requirement during antibody development is therefore to affinity mature the variable regions when necessary, so that they bind the therapeutic target with sufficiently high affinity to guarantee effective occupancy over prolonged periods. If the antibody was obtained from a non-human source, such as rodents, a humanization process has to be applied to minimize immunogenicity while maintaining the desired binding affinity and selectivity. Finally, we discuss the next next-generation antibodies, such as antibody-drug conjugates, bispecific antibodies, and immunocytokines, which are being developed to meet future challenges.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Flow chart describing the main decision-making points and their evolution over the years, in a typical CDR-grafting protocol. CDR, complementarity-determining region; HV, hypervariable loops; SDR, specificity-determining regions; MSD, minimum specificity determinant. REI, NEW, and KOL are light or heavy variable region sequences derived from human myeloma cell lines.

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.AID-0007-12
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error