No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Functions of Antibodies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    336.18 Kb
  • XML
    207.59 Kb
  • HTML
    216.71 Kb
  • Author: Donald N. Forthal1
  • Editors: James E. Crowe Jr.2, Diana Boraschi3, Rino Rappuoli4
    Affiliations: 1: Department of Infectious Diseases, University of California, Irvine, Irvine, CA 92617; 2: Vanderbilt University School of Medicine, Nashville, TN; 3: National Research Council, Pisa, Italy; 4: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.AID-0019-2014
  • Received 23 April 2014 Accepted 23 April 2014 Published 15 August 2014
  • : Donald N. Forthal, [email protected]
image of Functions of Antibodies
    Preview this microbiology spectrum article:
    Zoom in

    Functions of Antibodies, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/4/AID-0019-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/4/AID-0019-2014-2.gif
  • Abstract:

    Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen . In addition, models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism . The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.

  • Citation: Forthal D. 2014. Functions of Antibodies. Microbiol Spectrum 2(4):AID-0019-2014. doi:10.1128/microbiolspec.AID-0019-2014.


1. Hessell AJ, Hangartner L, Hunter M, Havenith CE, Beurskens FJ, Bakker JM, Lanigan CM, Landucci G, Forthal DN, Parren PW, Marx PA, Burton DR. 2007. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449:101–104. [PubMed][CrossRef]
2. Brandtzaeg P. 2007. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25:5467–5484. [PubMed][CrossRef]
3. Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17:107–115. [PubMed][CrossRef]
4. Brioen P, Dekegel D, Boeye A. 1983. Neutralization of poliovirus by antibody-mediated polymerization. Virology 127:463–468. [CrossRef]
5. Thomas AA, Vrijsen R, Boeye A. 1986. Relationship between poliovirus neutralization and aggregation. J Virol 59:479–485. [PubMed]
6. Lin TL, Clark TG, Dickerson H. 1996. Passive immunization of channel catfish (Ictalurus punctatus) against the ciliated protozoan parasite Ichthyophthirius multifiliis by use of murine monoclonal antibodies. Infect Immun 64:4085–4090. [PubMed]
7. Campodonico VL, Llosa NJ, Grout M, Doring G, Maira-Litran T, Pier GB. 2010. Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect Immun 78:746–755. [PubMed][CrossRef]
8. Bishop AL, Schild S, Patimalla B, Klein B, Camilli A. 2010. Mucosal immunization with Vibrio cholerae outer membrane vesicles provides maternal protection mediated by antilipopolysaccharide antibodies that inhibit bacterial motility. Infect Immun 78:4402–4420. [PubMed][CrossRef]
9. Hope T. 2010. Defining the interaction of HIV with the mucosal barriers to gain insights into the mechanisms of sexual transmission. Abstr. AIDS Vaccine Conference 2010, Atlanta, GA.
10. McCullough KC, Smale CJ, Carpenter WC, Crowther JR, Brocchi E, De Simone F. 1987 . Conformational alteration in foot-and-mouth disease virus virion capsid structure after complexing with monospecific antibody. Immunology 60:75–82. [PubMed]
11. Hernandez R, Paredes A, Brown DT. 2008. Sindbis virus conformational changes induced by a neutralizing anti-E1 monoclonal antibody. J Virol 82:5750–5760. [PubMed][CrossRef]
12. Klasse PJ, Sattentau QJ. 2002. Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83:2091–2108 [PubMed]
13. LaRocca TJ, Holthausen DJ, Hsieh C, Renken C, Mannella CA, Benach JL. 2009. The bactericidal effect of a complement-independent antibody is osmolytic and specific to Borrelia. Proc Natl Acad Sci USA 106:10752–10757. [PubMed][CrossRef]
14. Matthews RC, Rigg G, Hodgetts S, Carter T, Chapman C, Gregory C, Illidge C, Burnie J. 2003. Preclinical assessment of the efficacy of mycograb, a human recombinant antibody against fungal HSP90. Antimicrob Agents Chemother 47:2208–2216. [PubMed][CrossRef]
15. Pachl J, Svoboda P, Jacobs F, Vandewoude K, van der Hoven B, Spronk P, Masterson G, Malbrain M, Aoun M, Garbino J, Takala J, Drgona L, Burnie J, Matthews R. 2006. A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42:1404–1413. [PubMed][CrossRef]
16. Nooney L, Matthews RC, Burnie JP. 2005. Evaluation of Mycograb, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn Microbiol Infect Dis 51:19–29. [PubMed][CrossRef]
17. McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A. 2010. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120:1355–1361. [PubMed][CrossRef]
18. Watanabe M, Blobel G. 1989. Site-specific antibodies against the PrlA (secY) protein of Escherichia coli inhibit protein export by interfering with plasma membrane binding of preproteins. Proc Natl Acad Sci USA 86:1895–1899. [PubMed][CrossRef]
19. Gregory RL, Michalek S M, Shechmeister IL, McGhee JR. 1984. Function of anti- Streptococcus mutans antibodies: anti-ribosomal antibodies inhibit acid production, growth, and glucose phosphotransferase activity. Infect Immun 45:286–289. [PubMed]
20. Casadevall A, Pirofski LA. 2012. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 11:447–456. [PubMed][CrossRef]
21. Klasse PJ, Sanders RW, Cerutti A, Moore JP. 2012. How can HIV-type-1-Env immunogenicity be improved to facilitate antibody-based vaccine development? AIDS Res Hum Retroviruses 28:1–15. [PubMed][CrossRef]
22. He RT, Innis BL, Nisalak A, Usawattanakul W, Wang S, Kalayanarooj S, Anderson R. 1995. Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45:451–461. [CrossRef]
23. Iorio RM, Glickman RL, Riel AM, Sheehan JP, Bratt MA. 1989. Functional and neutralization profile of seven overlapping antigenic sites on the HN glycoprotein of Newcastle disease virus: monoclonal antibodies to some sites prevent viral attachment. Virus Res 13:245–261. [CrossRef]
24. Booy FP, Roden RB, Greenstone HL, Schiller JT, Trus BL. 1998. Two antibodies that neutralize papillomavirus by different mechanisms show distinct binding patterns at 13 A resolution. J Mol Biol 281:95–106. [PubMed][CrossRef]
25. Ruggeri FM, Greenberg HB. 1991. Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J Virol 65:2211–2219. [PubMed]
26. Smith TJ, Olson NH, Cheng RH, Liu H, Chase ES, Lee WM, Leippe DM, Mosser AG, Rueckert RR, Baker TS. 1993. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J Virol 67:1148–1158. [PubMed]
27. Della-Porta AJ, Westaway EG. 1978. A multi-hit model for the neutralization of animal viruses. J Gen Virol 38:1–19. [PubMed][CrossRef]
28. Platt EJ, Gomes MM, Kabat D. 2012. Kinetic mechanism for HIV-1 neutralization by antibody 2G12 entails reversible glycan binding that slows cell entry. Proc Natl Acad Sci USA 109:7829–7834. [PubMed][CrossRef]
29. Reading SA, Dimmock NJ. 2007. Neutralization of animal virus infectivity by antibody. Arch Virol 152:1047–1059. [PubMed][CrossRef]
30. Klemm P, Vejborg RM, Hancock V. 2010. Prevention of bacterial adhesion. Appl Microbiol Biotechnol 88:451–459. [PubMed][CrossRef]
31. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. 2008. The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27. [PubMed][CrossRef]
32. Smani Y, McConnell MJ, Pachón J. 2012. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS One 7:e33073. doi: 10.1371/journal.pone.0033073. [PubMed][CrossRef]
33. Tsang TM, Annis DS, Kronshage M, Fenno JT, Usselman LD, Mosher DF, Krukonis ES. 2012. Ail protein binds ninth type III fibronectin repeat (9FNIII) within central 120-kDa region of fibronectin to facilitate cell binding by Yersinia pestis. J Biol Chem 287:16759–16767. [PubMed][CrossRef]
34. Khan MN, Pichichero ME. 2012. Vaccine candidates PhtD and PhtE of Streptococcus pneumoniae are adhesins that elicit functional antibodies in humans. Vaccine 30:2900–2907. [PubMed][CrossRef]
35. Langermann S, Ballou WR. 2003. Development of a recombinant FimCH vaccine for urinary tract infections. Adv Exp Med Biol 539:635–648. [PubMed]
36. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611. [PubMed][CrossRef]
37. Langermann S, Mollby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Soderhall M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778. [PubMed][CrossRef]
38. Kain R, Exner M, Brandes R, Ziebermayr R, Cunningham D, Alderson CA, Davidovits A, Raab I, Jahn R, Ashour O, Spitzauer S, Sunder-Plassmann G, Fukuda M, Klemm P, Rees AJ, Kerjaschki D. 2008. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 14:1088–1096. [PubMed][CrossRef]
39. Manjarrez-Hernandez HA, Gavilanes-Parra S, Chavez-Berrocal E, Navarro-Ocana A, Cravioto A. 2000. Antigen detection in enteropathogenic Escherichia coli using secretory immunoglobulin A antibodies isolated from human breast milk. Infect Immun 68:5030–5036. [PubMed][CrossRef]
40. Schlesinger LS, Hull SR, Kaufman TM. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152:4070–4079. [PubMed]
41. Kornspan JD, Tarshis M, Rottem S. 2011. Adhesion and biofilm formation of Mycoplasma pneumoniae on an abiotic surface. Arch Microbiol 193:833–836. [PubMed][CrossRef]
42. Holder AA, Freeman RR. 1981. Immunization against blood-stage rodent malaria using purified parasite antigens. Nature 294:361–364. [PubMed][CrossRef]
43. Perkins ME, Rocco LJ. 1988. Sialic acid-dependent binding of Plasmodium falciparum merozoite surface antigen, Pf200, to human erythrocytes. J Immunol 141: 3190–3196. [PubMed]
44. Bolad A, Berzins K. 2000. Antigenic diversity of Plasmodium falciparum and antibody-mediated parasite neutralization. Scand J Immunol 52:233–239. [PubMed][CrossRef]
45. Clausen TM, Christoffersen S, Dahlback M, Langkilde AE, Jensen KE, Resende M, Agerbaek MO, Andersen D, Berisha B, Ditlev SB, Pinto VV, Nielsen MA, Theander TG, Larsen S, Salanti A. 2012. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J Biol Chem 287:23332–23345. [PubMed][CrossRef]
46. Yun CH, Lillehoj HS, Lillehoj EP. 2000. Intestinal immune responses to coccidiosis. Dev Comp Immunol 24:303–324. [PubMed][CrossRef]
47. Eckmann L. 2003. Mucosal defences against Giardia. Parasite Immunol 25:259–270. [PubMed][CrossRef]
48. Negrao-Correa D. 2001. Importance of immunoglobulin E (IgE) in the protective mechanism against gastrointestinal nematode infection: looking at the intestinal mucosae. Rev Inst Med Trop Sao Paulo 43:291–299. [PubMed][CrossRef]
49. Cevallos AM, Zhang X, Waldor MK, Jaison S, Zhou X, Tzipori S, Neutra MR, Ward HD. 2000. Molecular cloning and expression of a gene encoding Cryptosporidium parvum glycoproteins gp40 and gp15. Infect Immun 68:4108–4116. [PubMed][CrossRef]
50. Lopalco L, Barassi C, Pastori C, Longhi R, Burastero SE, Tambussi G, Mazzotta F, Lazzarin A, Clerici M, Siccardi AG. 2000. CCR5-reactive antibodies in seronegative partners of HIV-seropositive individuals down-modulate surface CCR5 in vivo and neutralize the infectivity of R5 strains of HIV-1 In vitro. J Immunol 164:3426–3433. [PubMed][CrossRef]
51. Barassi C, Soprana E, Pastori C, Longhi R, Buratti E, Lillo F, Marenzi C, Lazzarin A, Siccardi AG, Lopalco L. 2005. Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J Virol 79:6848–6858. [PubMed][CrossRef]
52. Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S, Pulmanausahakul R, Auewarakul P, Kasinrerk W, Weng WY, Panyasrivanit M, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. 2012. Identification of prohibitin as a Chikungunya virus receptor protein. J Med Virol 84:1757–1770. [PubMed][CrossRef]
53. Kondratowicz AS, Lennemann NJ, Sinn PL, Davey RA, Hunt CL, Moller-Tank S, Meyerholz DK, Rennert P, Mullins RF, Brindley M, Sandersfeld LM, Quinn K, Weller M, McCray PB, Jr, Chiorini J, Maury W. 2011. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA 108:8426–8431. [PubMed][CrossRef]
54. Bruno CJ, Jacobson JM. 2010. Ibalizumab: an anti-CD4 monoclonal antibody for the treatment of HIV-1 infection. J Antimicrob Chemother 65:1839–1841. [PubMed][CrossRef]
55. Meuleman P, Hesselgesser J, Paulson M, Vanwolleghem T, Desombere I, Reiser H, Leroux-Roels G. 2008. Anti-CD81 antibodies can prevent a hepatitis C virus infection in vivo. Hepatology 48:1761–1768. [PubMed][CrossRef]
56. Silvie O, Rubinstein E, Franetich JF, Prenant M, Belnoue E, Renia L, Hannoun L, Eling W, Levy S, Boucheix C, Mazier D. 2003. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9:93–96. [PubMed][CrossRef]
57. Schubert A, Zakikhany K, Pietrocola G, Meinke A, Speziale P, Eikmanns BJ, Reinscheid DJ. 2004. The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 72:6197–6205. [PubMed][CrossRef]
58. Edwards MJ, Dimmock NJ. 2001. Hemagglutinin 1-specific immunoglobulin G and Fab molecules mediate postattachment neutralization of influenza A virus by inhibition of an early fusion event. J Virol 75:10208–10218. [PubMed][CrossRef]
59. de Rosny E, Vassell R, Jiang S, Kunert R, Weiss CD. 2004. Binding of the 2F5 monoclonal antibody to native and fusion-intermediate forms of human immunodeficiency virus type 1 gp41: implications for fusion-inducing conformational changes. J Virol 78:2627–2631. [PubMed][CrossRef]
60. Lorizate M, Cruz A, Huarte N, Kunert R, Perez-Gil J, Nieva JL. 2006. Recognition and blocking of HIV-1 gp41 pre-transmembrane sequence by monoclonal 4E10 antibody in a Raft-like membrane environment. J Biol Chem 281:39598–39606. [PubMed][CrossRef]
61. Kaufmann B, Nybakken GE, Chipman PR, Zhang W, Diamond MS, Fremont DH, Kuhn RJ, Rossmann MG. 2006. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci USA 103:12400–12404. [PubMed][CrossRef]
62. Pierson TC, Diamond MS. 2008. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev Mol Med 10:e12. doi: 10.1017/S1462399408000665. [CrossRef]
63. Barbey-Martin C, Gigant B, Bizebard T, Calder LJ, Wharton SA, Skehel JJ, Knossow M. 2002. An antibody that prevents the hemagglutinin low pH fusogenic transition. Virology 294:70–74. [PubMed][CrossRef]
64. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–251. [PubMed][CrossRef]
65. Cao Z, Meng J, Li X, Wu R, Huang Y, He Y. 2012. The epitope and neutralization mechanism of AVFluIgG01, a broad-reactive human monoclonal antibody against H5N1 influenza virus. PLoS One 7:e38126. doi: 10.1371/journal.pone.0038126. [PubMed][CrossRef]
66. Bai Y, Ye L, Tesar DB, Song H, Zhao D, Bjorkman PJ, Roopenian DC, Zhu X. 2011. Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport. Proc Natl Acad Sci USA 108:18406–18411. [PubMed][CrossRef]
67. Stewart PL, Nemerow GR. 1997. Recent structural solutions for antibody neutralization of viruses. Trends Microbiol 5:229–233. [PubMed][CrossRef]
68. Wien MW, Filman DJ, Stura EA, Guillot S, Delpeyroux F, Crainic R, Hogle JM. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat Struct Biol 2:232–243. [PubMed][CrossRef]
69. Maciejewski JP, Weichold FF, Young NS, Cara A, Zella D, Reitz MS, Jr, Gallo RC. 1995. Intracellular expression of antibody fragments directed against HIV reverse transcriptase prevents HIV infection in vitro. Nat Med 1:667–673. [PubMed][CrossRef]
70. Varghese R, Mikyas Y, Stewart PL, Ralston R. 2004. Postentry neutralization of adenovirus type 5 by an antihexon antibody. J Virol 78:12320–12332. [PubMed][CrossRef]
71. Ishii Y, Tanaka K, Kondo K, Takeuchi T, Mori S, Kanda T. 2010. Inhibition of nuclear entry of HPV16 pseudovirus-packaged DNA by an anti-HPV16 L2 neutralizing antibody. Virology 406:181–188. [PubMed][CrossRef]
72. Mazanec MB, Kaetzel CS, Lamm ME, Fletcher D, Nedrud JG. 1992. Intracellular neutralization of virus by immunoglobulin A antibodies. Proc Natl Acad Sci USA 89:6901–6905. [PubMed][CrossRef]
73. Yan H, Lamm ME, Bjorling E, Huang YT. 2002. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J Virol 76:10972–10979. [PubMed][CrossRef]
74. Mazanec MB, Coudret CL, Fletcher DR. 1995. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 69:1339–1343. [PubMed]
75. Zhou D, Zhang Y, Li Q, Chen Y, He B, Yang J, Tu H, Lei L, Yan H. 2011. Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization. J Virol 85:11090–11097. [PubMed][CrossRef]
76. Bomsel M, Heyman M, Hocini H, Lagaye S, Belec L, Dupont C, Desgranges C. 1998. Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9:277–287. [CrossRef]
77. Corthesy B, Benureau Y, Perrier C, Fourgeux C, Parez N, Greenberg H, Schwartz-Cornil I. 2006. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol 80:10692–10699. [PubMed][CrossRef]
78. Feng N, Lawton JA, Gilbert J, Kuklin N, Vo P, Prasad BV, Greenberg HB. 2002. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 109:1203–1213. [PubMed][CrossRef]
79. Thouvenin E, Schoehn G, Rey F, Petitpas I, Mathieu M, Vaney MC, Cohen J, Kohli E, Pothier P, Hewat E. 2001. Antibody inhibition of the transcriptase activity of the rotavirus DLP: a structural view. J Mol Biol 307:161–172. [PubMed][CrossRef]
80. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC. 2010. Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proc Natl Acad Sci USA 107:19985–19990. [PubMed][CrossRef]
81. Wang X, Kikuchi T, Rikihisa Y. 2006. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infect Immun 74:1873–1882. [PubMed][CrossRef]
82. Edelson BT, Unanue ER. 2001. Intracellular antibody neutralizes Listeria growth. Immunity 14:503–512. [PubMed][CrossRef]
83. Bout D, Moretto M, Dimier-Poisson I, Gatel DB. 1999. Interaction between Toxoplasma gondii and enterocyte. Immunobiology 201:225–228. [PubMed][CrossRef]
84. Mineo JR, Khan IA, Kasper LH. 1994. Toxoplasma gondii: a monoclonal antibody that inhibits intracellular replication. Exp Parasitol 79:351–361. [PubMed][CrossRef]
85. Webster RG, Laver WG. 1967. Preparation and properties of antibody directed specifically against the neuraminidase of influenza virus. J Immunol 99:49–55. [PubMed]
86. Hughey PG, Roberts PC, Holsinger LJ, Zebedee SL, Lamb RA, Compans RW. 1995. Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212:411–421. [PubMed][CrossRef]
87. Corboba P, Grutadauria S, Cuffini C, Zapata M. 2000. Neutralizing monoclonal antibody to the E1 glycoprotein epitope of rubella virus mediates virus arrest in VERO cells. Viral Immunol 13:83–92. [PubMed][CrossRef]
88. Murphy K, Travers P, Walport M. 2008. The complement system and innate immunity, p 61–80. Janeway's Immunobiology, 7th ed. Garland Science, New York, NY.
89. DiScipio RG, Schraufstatter IU. 2007. The role of the complement anaphylatoxins in the recruitment of eosinophils. Int Immunopharmacol 7:1909–1923. [PubMed][CrossRef]
90. Walport MJ. 2001. Complement. First of two parts. N Engl J Med 344:1058–1066. [PubMed][CrossRef]
91. Prodinger WM, Wurzner R, Stoiber H, Dierich MP. 2003. Complement, p 1077–1103. In Paul W (ed), Fundamental Immunology, 5th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
92. Diamond MS, Shrestha B, Mehlhop E, Sitati E, Engle M. 2003. Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16:259–278. [PubMed][CrossRef]
93. Vogt MR, Dowd KA, Engle M, Tesh RB, Johnson S, Pierson TC, Diamond MS. 2011. Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement-dependent effector mechanisms. J Virol 85:11567–11580. [PubMed][CrossRef]
94. Kruijsen D, Bakkers MJ, van Uden NO, Viveen MC, van der Sluis TC, Kimpen JL, Leusen JH, Coenjaerts FE, van Bleek GM. 2010. Serum antibodies critically affect virus-specific CD4+/CD8+ T cell balance during respiratory syncytial virus infections. J Immunol 185:6489–6498. [PubMed][CrossRef]
95. Terajima M, Cruz J, Co MD, Lee JH, Kaur K, Wrammert J, Wilson PC, Ennis FA. 2011. Complement-dependent lysis of influenza a virus-infected cells by broadly cross-reactive human monoclonal antibodies. J Virol 85:13463–13467. [PubMed][CrossRef]
96. Frank AL, Puck J, Hughes BJ, Cate TR. 1980. Microneutralization test for influenza A and B and parainfluenza 1 and 2 viruses that uses continuous cell lines and fresh serum enhancement. J Clin Microbiol 12:426–432. [PubMed]
97. Linscott WD, Levinson WE. 1969. Complement components required for virus neutralization by early immunoglobulin antibody. Proc Natl Acad Sci USA 64:520–527. [PubMed][CrossRef]
98. Yoshino K, Taniguchi S. 1965. Studies on the neutralization of herpes simplex virus. I. Appearance of neutralizing antibodies having different grades of complement requirement. Virology 26:44–53. [PubMed][CrossRef]
99. Ozaki Y, Tabeyi K. 1967. Studies on the neutralization of Japanese encephalitis virus. I. Application of kinetic neutralization to the measurement of the neutralizing potency of antiserum. J Immunol 98:1218–1223. [PubMed]
100. Johnson JB, Capraro GA, Parks GD. 2008. Differential mechanisms of complement-mediated neutralization of the closely related paramyxoviruses simian virus 5 and mumps virus. Virology 376:112–123. [PubMed][CrossRef]
101. Corbeil S, Seguin C, Trudel M. 1996. Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2. Vaccine 14:521–525. [PubMed][CrossRef]
102. Boere WA, Benaissa-Trouw BJ, Harmsen T, Erich T, Kraaijeveld CA, Snippe H. 1986. The role of complement in monoclonal antibody-mediated protection against virulent Semliki Forest virus. Immunology 58:553–559. [PubMed]
103. Saifuddin M, Parker CJ, Peeples ME, Gorny MK, Zolla-Pazner S, Ghassemi M, Rooney IA, Atkinson JP, Spear GT. 1995. Role of virion-associated glycosylphosphatidylinositol-linked proteins CD55 and CD59 in complement resistance of cell line-derived and primary isolates of HIV-1. J Exp Med 182:501–509. [PubMed][CrossRef]
104. Schmitz J, Zimmer JP, Kluxen B, Aries S, Bogel M, Gigli I, Schmitz H. 1995. Antibody-dependent complement-mediated cytotoxicity in sera from patients with HIV-1 infection is controlled by CD55 and CD59. J Clin Invest 96:1520–1526. [PubMed][CrossRef]
105. Zhou ZH, Wild T, Xiong Y, Sylvers P, Zhang Y, Zhang L, Wahl L, Wahl SM, Kozlowski S, Notkins AL. 2013. Polyreactive Antibodies Plus Complement Enhance the Phagocytosis of Cells Made Apoptotic by UV-Light or HIV. Sci Rep 3:2271. doi: 10.1038/srep02271. [PubMed][CrossRef]
106. Willey S, Aasa-Chapman MM, O'Farrell S, Pellegrino P, Williams I, Weiss RA, Neil SJ. 2011. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 8:16. doi: 10.1186/1742-4690-8-16. [PubMed][CrossRef]
107. Stoiber H, Banki Z, Wilflingseder D, Dierich MP. 2008. Complement-HIV interactions during all steps of viral pathogenesis. Vaccine 26: 3046–3054. [PubMed][CrossRef]
108. Huber G, Banki Z, Lengauer S, Stoiber H. 2011. Emerging role for complement in HIV infection. Curr Opin HIV AIDS 6:419–426. [PubMed][CrossRef]
109. Jayasekera JP, Moseman EA, Carroll MC. 2007. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J Virol 81:3487–3494. [PubMed][CrossRef]
110. Carroll MC. 2004. The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986. [PubMed][CrossRef]
111. Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF, Brombacher F, Kaye PM. 2003. Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell responses. Nat Med 9:1287–1292. [PubMed][CrossRef]
112. Lindorfer MA, Hahn CS, Foley PL, Taylor RP. 2001. Heteropolymer-mediated clearance of immune complexes via erythrocyte CR1: mechanisms and applications. Immunol Rev 183:10–24. [PubMed][CrossRef]
113. Nelson RA, Jr. 1953. The immune-adherence phenomenon; an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis. Science 118:733–737. [CrossRef]
114. Ram S, Lewis LA, Rice PA. 2010. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23:740–780. [PubMed][CrossRef]
115. Amir J, Scott MG, Nahm MH, Granoff DM. 1990. Bactericidal and opsonic activity of IgG1 and IgG2 anticapsular antibodies to Haemophilus influenzae type b. J Infect Dis 162:163–171. [PubMed][CrossRef]
116. Frasch CE, Borrow R, Donnelly J. 2009. Bactericidal antibody is the immunologic surrogate of protection against meningococcal disease. Vaccine 27(Suppl 2) :B112–B116. [PubMed][CrossRef]
117. Welsch JA, Moe GR, Rossi R, Adu-Bobie J, Rappuoli R, Granoff DM. 2003. Antibody to genome-derived neisserial antigen 2132, a Neisseria meningitidis candidate vaccine, confers protection against bacteremia in the absence of complement-mediated bactericidal activity. J Infect Dis 188:1730–1740. [PubMed][CrossRef]
118. Plested JS, Welsch JA, Granoff DM. 2009. Ex vivo model of meningococcal bacteremia using human blood for measuring vaccine-induced serum passive protective activity. Clin Vaccine Immunol 16:785–791. [PubMed][CrossRef]
119. Granoff DM. 2009. Relative importance of complement-mediated bactericidal and opsonic activity for protection against meningococcal disease. Vaccine 27(Suppl 2) :B117–B125. [PubMed][CrossRef]
120. Horwitz MA, Silverstein SC. 1981. Interaction of the Legionnaires' disease bacterium (Legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclear leukocytes, antibody, and complement. J Exp Med 153:386–397. [PubMed][CrossRef]
121. Lindow JC, Fimlaid KA, Bunn JY, Kirkpatrick BD. 2011. Antibodies in action: role of human opsonins in killing Salmonella enterica serovar Typhi. Infect Immun 79:3188–3194. [PubMed][CrossRef]
122. Cheng SC, Sprong T, Joosten LA, van der Meer JW, Kullberg BJ, Hube B, Schejbel L, Garred P, van Deuren M, Netea MG. 2012. Complement plays a central role in Candida albicans-induced cytokine production by human PBMCs. Eur J Immunol 42:993–1004. [PubMed][CrossRef]
123. Han Y, Kozel TR, Zhang MX, MacGill RS, Carroll MC, Cutler JE. 2001. Complement is essential for protection by an IgM and an IgG3 monoclonal antibody against experimental, hematogenously disseminated candidiasis. J Immunol 167:1550–1557. [PubMed][CrossRef]
124. Zaragoza O, Casadevall A. 2006. Monoclonal antibodies can affect complement deposition on the capsule of the pathogenic fungus Cryptococcus neoformans by both classical pathway activation and steric hindrance. Cell Microbiol 8:1862–1876. [PubMed][CrossRef]
125. Zhong Z, Pirofski LA. 1998. Antifungal activity of a human antiglucuronoxylomannan antibody. Clin Diagn Lab Immunol 5:58–64. [PubMed]
126. Taborda CP, Casadevall A. 2002. CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16:791–802. [CrossRef]
127. Ayi K, Turrini F, Piga A, Arese P. 2004. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood 104:3364–3371. [PubMed][CrossRef]
128. Luzzi GA, Merry AH, Newbold CI, Marsh K, Pasvol G. 1991. Protection by alpha-thalassaemia against Plasmodium falciparum malaria: modified surface antigen expression rather than impaired growth or cytoadherence. Immunol Lett 30:233–240. [CrossRef]
129. Yuthavong Y, Bunyaratvej A, Kamchonwongpaisan S. 1990. Increased susceptibility of malaria-infected variant erythrocytes to the mononuclear phagocyte system. Blood Cells 16:591–597. [PubMed]
130. Cappadoro M, Giribaldi G, O'Brien E, Turrini F, Mannu F, Ulliers D, Simula G, Luzzatto L, Arese P. 1998. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood 92:2527–2534. [PubMed]
131. Kumaratilake LM, Ferrante A, Jaeger T, Morris-Jones SD. 1997. The role of complement, antibody, and tumor necrosis factor alpha in the killing of Plasmodium falciparum by the monocytic cell line THP-1. Infect Immun 65:5342–5345. [PubMed]
132. Salmon D, Vilde JL, Andrieu B, Simonovic R, Lebras J. 1986. Role of immune serum and complement in stimulation of the metabolic burst of human neutrophils by Plasmodium falciparum. Infect Immun 51:801–806. [PubMed]
133. Pang XL, Horii T. 1998. Complement-mediated killing of Plasmodium falciparum erythrocytic schizont with antibodies to the recombinant serine repeat antigen (SERA). Vaccine 16:1299–1305. [PubMed][CrossRef]
134. Healer J, McGuinness D, Hopcroft P, Haley S, Carter R, Riley E. 1997. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infect Immun 65:3017–3023. [PubMed]
135. Read D, Lensen AH, Begarnie S, Haley S, Raza A, Carter R. 1994. Transmission-blocking antibodies against multiple, non-variant target epitopes of the Plasmodium falciparum gamete surface antigen Pfs230 are all complement-fixing. Parasite Immunol 16:511–519. [PubMed][CrossRef]
136. Rener J, Graves PM, Carter R, Williams JL, Burkot TR. 1983. Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. J Exp Med 158:976–981. [PubMed][CrossRef]
137. Roeffen W, Geeraedts F, Eling W, Beckers P, Wizel B, Kumar N, Lensen T, Sauerwein R. 1995. Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect Immun 63:467–471. [PubMed]
138. Macaskill JA, Holmes PH, Whitelaw DD, McConnell I, Jennings FW, Urquhart GM. 1980. Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. II. Mechanisms in immune animals. Immunology 40:629–635. [PubMed]
139. Pan W, Ogunremi O, Wei G, Shi M, Tabel H. 2006. CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor alpha and nitric oxide. Microbes Infect 8:1209–1218. [PubMed][CrossRef]
140. Owuor BO, Odhiambo CO, Otieno WO, Adhiambo C, Makawiti DW, Stoute JA. 2008. Reduced immune complex binding capacity and increased complement susceptibility of red cells from children with severe malaria-associated anemia. Mol Med 14:89–97. [PubMed][CrossRef]
141. Patel SN, Berghout J, Lovegrove FE, Ayi K, Conroy A, Serghides L, Min-oo G, Gowda DC, Sarma JV., Rittirsch D, Ward PA, Liles WC, Gros P, Kain KC. 2008. C5 deficiency and C5a or C5aR blockade protects against cerebral malaria. J Exp Med 205:1133–1143. [PubMed][CrossRef]
142. Farrell HE, Shellam GR. 1991. Protection against murine cytomegalovirus infection by passive transfer of neutralizing and non-neutralizing monoclonal antibodies. J Gen Virol 72(Pt 1) :149–156. [PubMed][CrossRef]
143. Horton RE, Vidarsson G. 2013. Antibodies and their receptors: different potential roles in mucosal defense. Front Immunol 4:200. doi: 10.3389/fimmu.2013.00200. [PubMed][CrossRef]
144. Takai T. 2002. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2:580–592. [PubMed]
145. Clark MR, Clarkson SB, Ory PA, Stollman N, Goldstein IM. 1989. Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J Immunol 143:1731–1734. [PubMed]
146. Warmerdam PA, van de Winkel JG, Vlug A, Westerdaal NA, Capel PJ. 1991. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 147:1338–1343. [PubMed]
147. Ravetch JV, Perussia B. 1989. Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170:481–497. [PubMed][CrossRef]
148. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB. 1989. Characterization of polymorphic forms of Fc receptor III on human neutrophils. J Clin Invest 83:1676–1681. [PubMed][CrossRef]
149. Ory PA, Clark MR, Kwoh EE, Clarkson SB, Goldstein IM. 1989. Sequences of complementary DNAs that encode the NA1 and NA2 forms of Fc receptor III on human neutrophils. J Clin Invest 84:1688–1691. [PubMed][CrossRef]
150. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daeron M. 2009. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood 113:3716–3725. [PubMed][CrossRef]
151. Wiener E, Jolliffe VM, Scott HC, Kumpel BM, Thompson KM, Melamed MD, Hughes-Jones NC. 1988. Differences between the activities of human monoclonal IgG1 and IgG3 anti-D antibodies of the Rh blood group system in their abilities to mediate effector functions of monocytes. Immunology 65:159–163. [PubMed]
152. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. 2002. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740. [PubMed][CrossRef]
153. Forthal DN, Gach JS, Landucci G, Jez J, Strasser R, Kunert R, Steinkellner H. 2010. Fc-glycosylation influences Fcgamma receptor binding and cell-mediated anti-HIV activity of monoclonal antibody 2G12. J Immunol 185:6876–6882. [PubMed][CrossRef]
154. Lux A, Nimmerjahn F. 2011. Impact of differential glycosylation on IgG activity. Adv Exp Med Biol 780:113–124. [PubMed][CrossRef]
155. Moldt B, Shibata-Koyama M, Rakasz EG, Schultz N, Kanda Y, Dunlop DC, Finstad SL, Jin C, Landucci G, Alpert MD, Dugast AS, Parren PW, Nimmerjahn F, Evans DT, Alter G, Forthal DN, Schmitz JE, Iida S, Poignard P, Watkins DI, Hessell AJ, Burton DR. 2012. A nonfucosylated variant of the anti-HIV-1 monoclonal antibody b12 has enhanced FcgammaRIIIa-mediated antiviral activity in vitro but does not improve protection against mucosal SHIV challenge in macaques. J Virol 86:6189–6196. [PubMed][CrossRef]
156. Forthal DN, Moog C. 2009. Fc receptor-mediated antiviral antibodies. Curr Opin HIV AIDS 4:388–393. [PubMed][CrossRef]
157. Lyerly HK, Reed DL, Matthews TJ, Langlois AJ, Ahearne PA, Petteway SR, Jr, Weinhold KJ. 1987. Anti-GP 120 antibodies from HIV seropositive individuals mediate broadly reactive anti-HIV ADCC. AIDS Res Hum Retroviruses 3:409–422. [PubMed][CrossRef]
158. Torben W, Ahmad G, Zhang W, Nash S, Le L, Karmakar S, Siddiqui AA. 2012. Role of antibody dependent cell mediated cytotoxicity (ADCC) in Sm-p80-mediated protection against Schistosoma mansoni. Vaccine 30:6753–6758. [PubMed][CrossRef]
159. Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P. 1995. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med 182:409–418. [PubMed][CrossRef]
160. Forthal DN, Landucci G, Daar ES. 2001. Antibody from patients with acute human immunodeficiency virus (HIV) infection inhibits primary strains of HIV type 1 in the presence of natural-killer effector cells. J Virol 75:6953–6961. [PubMed][CrossRef]
161. Weber S, Tian H, van Rooijen N, Pirofski LA. 2012. A serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibody requires Fcgamma receptor III and macrophages to mediate protection against pneumococcal pneumonia in mice. Infect Immun 80:1314–1322. [PubMed][CrossRef]
162. Sun D, Raisley B, Langer M, Iyer JK, Vedham V, Ballard JL, James JA, Metcalf J, Coggeshall KM. 2012. Anti-peptidoglycan antibodies and Fcgamma receptors are the key mediators of inflammation in Gram-positive sepsis. J Immunol 189:2423–2431. [PubMed][CrossRef]
163. Song X, Tanaka S, Cox D, Lee SC. 2004. Fcgamma receptor signaling in primary human microglia: differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol 75:1147–1155. [PubMed][CrossRef]
164. Porcherie A, Mathieu C, Peronet R, Schneider E, Claver J, Commere PH, Kiefer-Biasizzo H, Karasuyama H, Milon G, Dy M, Kinet JP, Louis J, Blank U, Mecheri S. 2011. Critical role of the neutrophil-associated high-affinity receptor for IgE in the pathogenesis of experimental cerebral malaria. J Exp Med 208:2225–2236. [PubMed][CrossRef]
165. Forthal DN, Landucci G, Phan TB, Becerra J. 2005. Interactions between natural killer cells and antibody Fc result in enhanced antibody neutralization of human immunodeficiency virus type 1. J Virol 79:2042–2049. [PubMed][CrossRef]
166. Brown BK, Wieczorek L, Kijak G, Lombardi K, Currier J, Wesberry M, Kappes JC, Ngauy V, Marovich M, Michael N, Ochsenbauer C, Montefiori DC, Polonis VR. 2012. The role of natural killer (NK) cells and NK cell receptor polymorphisms in the assessment of HIV-1 neutralization. PLoS One 7:e29454. doi: 10.1371/journal.pone.0029454. [CrossRef]
167. Holl V, Peressin M, Decoville T, Schmidt S, Zolla-Pazner S, Aubertin AM, Moog C. 2006. Nonneutralizing antibodies are able to inhibit human immunodeficiency virus type 1 replication in macrophages and immature dendritic cells. J Virol 80:6177–6181. [PubMed][CrossRef]
168. Holl V, Hemmerter S, Burrer R, Schmidt S, Bohbot A, Aubertin AM, Moog C. 2004. Involvement of Fc gamma RI (CD64) in the mechanism of HIV-1 inhibition by polyclonal IgG purified from infected patients in cultured monocyte-derived macrophages. J Immunol 173:6274–6283. [PubMed][CrossRef]
169. Anderson DR, Grillo-Lopez A, Varns C, Chambers KS, Hanna N. 1997. Targeted anti-cancer therapy using rituximab, a chimaeric anti-CD20 antibody (IDEC-C2B8) in the treatment of non-Hodgkin's B-cell lymphoma. Biochem Soc Trans 25:705–708. [PubMed]
170. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. 1999. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26:60–70. [PubMed]
171. Clynes RA, Towers TL, Presta LG, Ravetch JV. 2000. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 6:443–446. [PubMed][CrossRef]
172. Shore SL, Nahmias AJ, Starr SE, Wood PA, McFarlin DE. 1974. Detection of cell-dependent cytotoxic antibody to cells infected with herpes simplex virus. Nature 251:350–352. [PubMed][CrossRef]
173. Balachandran N, Bacchetti S, Rawls WE. 1982. Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37:1132–1137. [PubMed]
174. Gorander S, Harandi AM, Lindqvist M, Bergstrom T, Liljeqvist JA. 2012. Glycoprotein G of herpes simplex virus 2 as a novel vaccine antigen for immunity to genital and neurological disease. J Virol 86:7544–7553. [PubMed][CrossRef]
175. Chu CF, Meador MG, Young CG, Strasser JE, Bourne N, Milligan GN. 2008. Antibody-mediated protection against genital herpes simplex virus type 2 disease in mice by Fc gamma receptor-dependent and -independent mechanisms. J Reprod Immunol 78:58–67. [PubMed][CrossRef]
176. Jegerlehner A, Schmitz N, Storni T, Bachmann MF. 2004. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J Immunol 172:5598–5605. [PubMed][CrossRef]
177. Forthal D, Hope TJ, Alter G. 2013. New paradigms for functional HIV-specific nonneutralizing antibodies. Curr Opin HIV AIDS 8:392–400. [PubMed][CrossRef]
178. Lowell GH, Smith LF, Artenstein MS, Nash GS, MacDermott RP, Jr. 1979. Antibody-dependent cell-mediated antibacterial activity of human mononuclear cells. I. K lymphocytes and monocytes are effective against meningococi in cooperation with human imune sera. J Exp Med 150:127–137. [PubMed][CrossRef]
179. Lowell GH, MacDermott RP, Summers PL, Reeder AA, Bertovich MJ, Formal SB. 1980. Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes, and granulocytes are effective against shigella. J Immunol 125:2778–2784. [PubMed]
180. Tagliabue A, Nencioni L, Villa L, Keren DF, Lowell GH, Boraschi D. 1983. Antibody-dependent cell-mediated antibacterial activity of intestinal lymphocytes with secretory IgA. Nature 306:184–186. [PubMed][CrossRef]
181. Tagliabue A, Boraschi D, Villa L, Keren DF, Lowell GH, Rappuoli R, Nencioni L. 1984. IgA-dependent cell-mediated activity against enteropathogenic bacteria: distribution, specificity, and characterization of the effector cells. J Immunol 133:988–992. [PubMed]
182. Sestini P, Nencioni L, Villa L, Boraschi D, Tagliabue A. 1988. IgA-driven antibacterial activity against Streptococcus pneumoniae by mouse lung lymphocytes. Am Rev Respir Dis 137:138–143. [PubMed][CrossRef]
183. Messick JB, Rikihisa Y. 1992. Presence of parasite antigen on the surface of P388D1 cells infected with Ehrlichia risticii. Infect Immun 60:3079–3086. [PubMed]
184. Koster FT, Kirkpatrick TL, Rowatt JD, Baca OG. 1984. Antibody-dependent cellular cytotoxicity of Coxiella burnetii-infected J774 macrophage target cells. Infect Immun 43:253–256.
185. Galdiero F, Romano Carratelli C, Nuzzo I, Folgore A. 1985. Cytotoxic antibody dependent cells in mice experimentally infected with Brucella abortus. Microbiologica 8:217–224. [PubMed]
186. Shannon JG, Cockrell DC, Takahashi K, Stahl GL, Heinzen RA. 2009. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10:26. doi: 10.1186/1471-2172-10-26. [CrossRef]
187. Kazura JW. 1981. Host defense mechanisms against nematode parasites: destruction of newborn Trichinella spiralis larvae by human antibodies and granulocytes. J Infect Dis 143:712–718. [PubMed][CrossRef]
188. Venturiello SM, Giambartolomei GH, Costantino SN. 1993. Immune killing of newborn Trichinella larvae by human leucocytes. Parasite Immunol 15:559–564. [PubMed]
189. Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M. 1994. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186. [PubMed][CrossRef]
190. Capron M, Capron A. 1994. Immunoglobulin E and effector cells in schistosomiasis. Science 264:1876–1877. [PubMed][CrossRef]
191. Zhou S, Liu S, Song G, Xu Y, Sun W. 2000. Protective immunity induced by the full-length cDNA encoding paramyosin of Chinese Schistosoma japonicum. Vaccine 18:3196–3204. [PubMed][CrossRef]
192. Capron A. 1998. Schistosomiasis: forty years' war on the worm. Parasitol Today 14:379–384. [PubMed][CrossRef]
193. Joseph M, Auriault C, Capron A, Vorng H, Viens P. 1983. A new function for platelets: IgE-dependent killing of schistosomes. Nature 303:810–812. [PubMed][CrossRef]
194. Khalife J, Capron M, Capron A, Grzych JM, Butterworth AE, Dunne DW, Ouma JH. 1986. Immunity in human schistosomiasis mansoni. Regulation of protective immune mechanisms by IgM blocking antibodies. J Exp Med 164:1626–1640. [PubMed][CrossRef]
195. Auriault C, Gras-Masse H, Pierce RJ, Butterworth AE, Wolowczuk I, Capron M, Ouma JH, Balloul JM, Khalife J, Neyrinck JL. 1990. Antibody response of Schistosoma mansoni-infected human subjects to the recombinant P28 glutathione-S-transferase and to synthetic peptides. J Clin Microbiol 28:1918–1924. [PubMed]
196. Demeure CE, Rihet P, Abel L, Ouattara M, Bourgois A, Dessein AJ. 1993. Resistance to Schistosoma mansoni in humans: influence of the IgE/IgG4 balance and IgG2 in immunity to reinfection after chemotherapy. J Infect Dis 168:1000–1008. [PubMed][CrossRef]
197. Lawrence RA. 2001. Immunity to filarial nematodes. Vet Parasitol 100:33–44. [PubMed][CrossRef]
198. Haque A, Joseph M, Ouaissi MA, Capron M, Capron A. 1980. IgE antibody-mediated cytotoxicity of rat macrophages against microfilaria of Dipetalonema citeae in vitro. Clin Exp Immunol 40:487–495. [PubMed]
199. Weiss N, Tanner M. 1979. Studies on Dipetalonema viteae ( Filarioidea) 3. Antibody-dependent cell-mediated destruction of microfilariae in vivo. Tropenmed Parasitol 30:73–80. [PubMed]
200. Mehta K, Sindhu RK, Subrahmanyam D, Hopper K, Nelson DS, Rao CK. 1981. Antibody-dependent cell-mediated effects in bancroftian filariasis. Immunology 43:117–123. [PubMed]
201. Sim BK, Kwa BH, Mak JW. 1982. Immune responses in human Brugia malayi infections: serum dependent cell-mediated destruction of infective larvae in vitro. Trans R Soc Trop Med Hyg 76:362–370. [PubMed][CrossRef]
202. Parab PB, Rajasekariah GR, Chandrashekar R, Alkan SS, Braun DG, Subrahmanyam D. 1988. Characterization of a monoclonal antibody against infective larvae of Brugia malayi. Immunology 64:169–174. [PubMed]
203. Gray CA, Lawrence RA. 2002. A role for antibody and Fc receptor in the clearance of Brugia malayi microfilariae. Eur J Immunol 32:1114–1120. [PubMed][CrossRef]
204. Albright JW, Stewart MJ, Latham PS, Albright JF. 1994. Antibody-facilitated macrophage killing of Trypanosoma musculi is an extracellular process as studied in several variations of an in vitro analytical system. J Leukoc Biol 56:636–643. [PubMed]
205. Townsend J, Duffus WP. 1982. Trypanosoma theileri: antibody-dependent killing by purified populations of bovine leucocytes. Clin Exp Immunol 48:289–299. [PubMed]
206. Kierszenbaum F, Hayes MM. 1980. Mechanisms of resistance against experimental Trypanosoma cruzi infection. Requirements for cellular destruction of circulating forms of T. cruzi in human and murine in vitro systems. Immunology 40:61–66. [PubMed]
207. Piedrafita D, Parsons JC, Sandeman RM, Wood PR, Estuningsih SE, Partoutomo S, Spithill TW. 2001. Antibody-dependent cell-mediated cytotoxicity to newly excysted juvenile Fasciola hepatica in vitro is mediated by reactive nitrogen intermediates. Parasite Immunol 23:473–482. [PubMed][CrossRef]
208. Nolan TJ, Rotman HL, Bhopale VM, Schad GA, Abraham D. 1995. Immunity to a challenge infection of Strongyloides stercoralis third-stage larvae in the jird. Parasite Immunol 17:599–604. [PubMed][CrossRef]
209. Bekhti K, Kazanji M, Pery P. 1992. In vitro interactions between murine neutrophils and Eimeria falciformis sporozoites. Res Immunol 143:909–917. [PubMed][CrossRef]
210. Smith PD, Keister DB, Elson CO. 1983. Human host response to Giardia lamblia. II. Antibody-dependent killing in vitro. Cell Immunol 82:308–315. [PubMed][CrossRef]
211. Khusmith S, Druilhe P. 1983. Cooperation between antibodies and monocytes that inhibit in vitro proliferation of Plasmodium falciparum. Infect Immun 41:219–223. [PubMed]
212. Jafarshad A, Dziegiel MH, Lundquist R, Nielsen LK, SinghS, Druilhe PL. 2007. A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcgammaRII and FcgammaRIII. J Immunol 178:3099–3106. [PubMed][CrossRef]
213. Forthal DN, Landucci G. 1998. In vitro reduction of virus infectivity by antibody-dependent cell-mediated immunity. J Immunol Methods 220:129–138. [PubMed][CrossRef]
214. Forthal DN, Landucci G, Cole KS, Marthas M, Becerra JC, Van Rompay K. 2006. Rhesus macaque polyclonal and monoclonal antibodies inhibit simian immunodeficiency virus in the presence of human or autologous rhesus effector cells. J Virol 80:9217–9225. [PubMed][CrossRef]
215. Brunner KT, Hurez D, Mc CR, Benacerraf B. 1960. Blood clearance of P32-labeled vesicular stomatitis and Newcastle disease viruses by the reticuloendothelial system in mice. J Immunol 85:99–105. [PubMed]
216. Igarashi T, Brown C, Azadegan A, Haigwood N, Dimitrov D, Martin MA, Shibata R. 1999. Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nat Med 5:211–216. [PubMed][CrossRef]
217. Kim YB, Bradley SG, Watson DW. 1967. Ontogeny of the immune response. IV. The role of antigen elimination in the true primary immune response in germ-free, colostrum-deprived piglets. J Immunol 99:320–326. [PubMed]
218. Glenny AT, Hopkins BE. 1923. Duration of passive immunity. J Hyg (Lond) 22:208–221. [PubMed][CrossRef]
219. Fujisawa H. 2008. Neutrophils play an essential role in cooperation with antibody in both protection against and recovery from pulmonary infection with influenza virus in mice. J Virol 82:2772–2783. [PubMed][CrossRef]
220. Huber VC, Lynch JM, Bucher DJ, Le J, Metzger DW. 2001. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. J Immunol 166:7381–7388. [PubMed][CrossRef]
221. Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, Lim AP, Vasudevan SG, Hanson BJ, Ooi EE. 2011. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. Proc Natl Acad Sci USA 108:12479–12484. [PubMed][CrossRef]
222. Chung KM, Thompson BS, Fremont DH, Diamond MS. 2007. Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile Virus-infected cells. J Virol 81:9551–9555. [PubMed][CrossRef]
223. Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. 2007. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol 178:2448–2457. [PubMed][CrossRef]
224. Ratcliffe DR, Michl J, Cramer EB. 1993. Neutrophils do not bind to or phagocytize human immune complexes formed with influenza virus. Blood 82:1639–1646. [PubMed]
225. Scott CB, Ratcliffe DR, Cramer EB. 1996. Human monocytes are unable to bind to or phagocytize IgA and IgG immune complexes formed with influenza virus in vitro. J Immunol 157:351–359. [PubMed]
226. Hellwig SM, van Oirschot HF, Hazenbos WL, van Spriel AB, Mooi FR, van De Winkel JG. 2001. Targeting to Fcgamma receptors, but not CR3 (CD11b/CD18), increases clearance of Bordetella pertussis. J Infect Dis 183:871–879. [PubMed][CrossRef]
227. Clatworthy MR, Smith KG. 2004. FcgammaRIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med 199:717–723. [PubMed][CrossRef]
228. Mold C, Rodic-Polic B, Du Clos TW. 2002. Protection from Streptococcus pneumoniae infection by C-reactive protein and natural antibody requires complement but not Fc gamma receptors. J Immunol 168:6375–6381. [PubMed][CrossRef]
229. Yee AM, Phan HM, Zuniga R, Salmon JE, Musher DM. 2000. Association between FcgammaRIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis 30:25–28. [PubMed][CrossRef]
230. Yuan FF, Wong M, Pererva N, Keating J, Davis AR, Bryant JA, Sullivan JS. 2003. FcgammaRIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 81:192–195. [PubMed][CrossRef]
231. Rodriguez ME, van der Pol WL, Sanders LA, van de Winkel JG. 1999. Crucial role of FcgammaRIIa (CD32) in assessment of functional anti-Streptococcus pneumoniae antibody activity in human sera. J Infect Dis 179:423–433. [PubMed][CrossRef]
232. Bredius RG, Fijen CA, De Haas M, Kuijper EJ, Weening RS, Van de Winkel JG, Out TA. 1994. Role of neutrophil Fc gamma RIIa (CD32) and Fc gamma RIIIb (CD16) polymorphic forms in phagocytosis of human IgG1- and IgG3-opsonized bacteria and erythrocytes. Immunology 83:624–630. [PubMed]
233. Fijen CA, Bredius RG, Kuijper EJ, Out TA, De Haas M, De Wit AP, Daha MR, De Winkel JG. 2000. The role of Fcgamma receptor polymorphisms and C3 in the immune defence against Neisseria meningitidis in complement-deficient individuals. Clin Exp Immunol 120:338–345. [PubMed][CrossRef]
234. Bredius RG, Derkx BH, Fijen CA, de Wit TP, de Haas M, Weening RS, van de Winkel JG, Out TA. 1994. Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis 170:848–853. [PubMed][CrossRef]
235. Platonov AE, Shipulin GA, Vershinina IV, Dankert J, van de Winkel JG, Kuijper EJ. 1998. Association of human Fc gamma RIIa (CD32) polymorphism with susceptibility to and severity of meningococcal disease. Clin Infect Dis 27:746–750. [PubMed][CrossRef]
236. Domingo P, Muniz-Diaz E, Baraldes MA, Arilla M, Barquet N, Pericas R, Juarez C, Madoz P, Vazquez G. 2002. Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am J Med 112:19–25. [PubMed][CrossRef]
237. Domingo P, Muniz-Diaz E, Baraldes MA, Arilla M, Barquet N, Pericas R, Juarez C, Madoz P, Vazquez G. 2004. Relevance of genetically determined host factors to the prognosis of meningococcal disease. Eur J Clin Microbiol Infect Dis 23:634–637. [PubMed][CrossRef]
238. Smith I, Vedeler C, Halstensen A. 2003. FcgammaRIIa and FcgammaRIIIb polymorphisms were not associated with meningococcal disease in Western Norway. Epidemiol Infect 130:193–199. [PubMed][CrossRef]
239. Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digard P, Canaday DH, Gustafsson K. 2009. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. J Immunol 183:5622–5629. [PubMed][CrossRef]
240. Schlageter AM, Kozel TR. 1990. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect Immun 58:1914–1918. [PubMed]
241. Sanford JE, Lupan DM, Schlageter AM, Kozel TR. 1990. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect Immun 58:1919–1923. [PubMed]
242. Saylor CA, Dadachova E, Casadevall A. 2010. Murine IgG1 and IgG3 isotype switch variants promote phagocytosis of Cryptococcus neoformans through different receptors. J Immunol 184:336–343. [PubMed][CrossRef]
243. Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. 2013. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. MBio 4. doi: 10.1128/mBio.00265-13. [CrossRef]
244. Murphy K, Travers P, Walport M. 2008. The destruction of antibody-coated pathogens via Fc receptors. In Janeway's Immunobiology, 7th ed. Garland Science, New York
245. Celada A, Cruchaud A, Perrin LH. 1982. Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol 47:635–644. [PubMed]
246. Chan JA, Howell KB, Reiling L, Ataide R, Mackintosh CL, Fowkes FJ, Petter M, Chesson JM, Langer C, Warimwe GM, Duffy MF, Rogerson SJ, Bull PC, Cowman AF, Marsh K, Beeson JG. 2012. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest 122:3227–3238. [PubMed][CrossRef]
247. Tsuboi N, Asano K, Lauterbach M, Mayadas TN. 2008. Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 28:833–846. [PubMed][CrossRef]
248. Lendvai N, Qu XW, Hsueh W, Casadevall A. 2000. Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococcus neoformans-infected mice. J Immunol 164:4367–4374. [PubMed][CrossRef]
249. Alonso A, Bayon Y, Crespo MS. 1996. The expression of cytokine-induced neutrophil chemoattractants (CINC-1 and CINC-2) in rat peritoneal macrophages is triggered by Fc gamma receptor activation: study of the signaling mechanism. Eur J Immunol 26:2165–2171. [PubMed][CrossRef]
250. Fernandez N, Renedo M, Sanchez Crespo M. 2002. FcgammaR receptors activate MAP kinase and up-regulate the cyclooxygenase pathway without increasing arachidonic acid release in monocytic cells. Eur J Immunol 32:383–392. [PubMed][CrossRef]
251. Abrahams VM, Cambridge G, Lydyard PM, Edwards JC. 2000. Induction of tumor necrosis factor alpha production by adhered human monocytes: a key role for Fcgamma receptor type IIIa in rheumatoid arthritis. Arthritis Rheum 43:608–616. [PubMed][CrossRef]
252. Fernandez N, Renedo M, Garcia-Rodriguez C, Sanchez Crespo M. 2002. Activation of monocytic cells through Fc gamma receptors induces the expression of macrophage-inflammatory protein (MIP)-1 alpha, MIP-1 beta, and RANTES. J Immunol 169:3321–3328. [PubMed][CrossRef]
253. Zhang Y, Zhou Y, Yang Q, Mu C, Duan E, Chen J, Yang M, Xia P, Cui B. 2012. Ligation of Fc gamma receptor IIB enhances levels of antiviral cytokine in response to PRRSV infection in vitro. Vet Microbiol 160:473–480. [PubMed][CrossRef]
254. Gallo P, Goncalves R, Mosser DM. 2010. The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol Lett 133:70–77. [PubMed][CrossRef]
255. Parcina M, Wendt C, Goet, F, Zawatzky R, Zahringer U, Heeg K, Bekeredjian-Ding I. 2008. Staphylococcus aureus-induced plasmacytoid dendritic cell activation is based on an IgG-mediated memory response. J Immunol 181:3823–3833. [PubMed][CrossRef]
256. Jancar S, Sanchez Crespo M. 2005. Immune complex-mediated tissue injury: a multistep paradigm. Trends Immunol 26:48–55. [PubMed][CrossRef]
257. Bunk S, Sigel S, Metzdorf D, Sharif O, Triantafilou K, Triantafilou M, Hartung T, Knapp S, von Aulock S. 2010. Internalization and coreceptor expression are critical for TLR2-mediated recognition of lipoteichoic acid in human peripheral blood. J Immunol 185:3708–3717. [PubMed][CrossRef]
258. Lovgren T, Eloranta ML, Kastner B, Wahren-Herlenius M, Alm GV, Ronnblom L. 2006. Induction of interferon-alpha by immune complexes or liposomes containing systemic lupus erythematosus autoantigen- and Sjogren's syndrome autoantigen-associated RNA. Arthritis Rheum 54:1917–1927. [PubMed][CrossRef]
259. Boule MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR. 2004. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 199:1631–1640. [PubMed][CrossRef]
260. Means TK, Latz E, Hayashi F, Murali MR, Golenbock DT, Luster AD. 2005. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 115:407–417. [PubMed][CrossRef]
261. Ierino FL, Powell MS, McKenzie IF, Hogarth PM. 1993. Recombinant soluble human Fc gamma RII: production, characterization, and inhibition of the Arthus reaction. J Exp Med 178:1617–1628. [PubMed][CrossRef]
262. Sylvestre DL, Ravetch JV. 1994. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265:1095–1098. [PubMed][CrossRef]
263. Hogarth PM, Pietersz GA. 2012. Fc receptor-targeted therapies for the treatment of inflammation, cancer and beyond. Nat Rev Drug Discov 11:311–331. [PubMed][CrossRef]
264. Ravetch JV, Lanier LL. 2000. Immune inhibitory receptors. Science 290:84–89. [PubMed][CrossRef]
265. Pearse RN, Kawabe T, Bolland S, Guinamard R, Kurosaki T, Ravetch JV. 1999. SHIP recruitment attenuates Fc gamma RIIB-induced B cell apoptosis. Immunity 10:753–760. [PubMed][CrossRef]
266. Nimmerjahn F, Ravetch JV. 2008. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47. [PubMed][CrossRef]
267. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S. 1999. Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380. [PubMed][CrossRef]
268. DiScipio RG, Daffern PJ, Jagels MA, Broide DH, Sriramarao P. 1999. A comparison of C3a and C5a-mediated stable adhesion of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. J Immunol 162:1127–1136. [PubMed]
269. Godau J, Heller T, Hawlisch H, Trappe M, Howells E, Best J, Zwirner J, Verbeek JS, Hogarth PM, Gerard C, Van Rooijen N, Klos A, Gessner JE, Kohl J. 2004. C5a initiates the inflammatory cascade in immune complex peritonitis. J Immunol 173:3437–3445. [PubMed][CrossRef]
270. Fernandez N, Renedo M, Alonso S, Crespo MS. 2003. Release of arachidonic acid by stimulation of opsonic receptors in human monocytes: the FcgammaR and the complement receptor 3 pathways. J Biol Chem 278:52179–52187 [PubMed][CrossRef]
271. Casadevall A, Scharff MD. 1994. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob Agents Chemother 38:1695–1702. [PubMed][CrossRef]

Article metrics loading...



Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen . In addition, models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism . The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error