No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    102.79 Kb
  • PDF
    293.59 Kb
  • HTML
    107.37 Kb
  • Authors: Scott A. Smith1, James E. Crowe, Jr.2
  • Editors: James E. Crowe Jr.3, Diana Boraschi4, Rino Rappuoli5
    Affiliations: 1: Vanderbilt Vaccine Center and Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232; 2: Vanderbilt Vaccine Center and Departments of Pediatrics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; 3: Vanderbilt University School of Medicine, Nashville, TN; 4: National Research Council, Pisa, Italy; 5: Novartis Vaccines, Siena, Italy
  • Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.AID-0027-2014
  • Received 22 November 2014 Accepted 25 November 2014 Published 30 January 2015
  • James E. Crowe, Jr., [email protected]
image of Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies
    Preview this microbiology spectrum article:
    Zoom in

    Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/1/AID-0027-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/1/AID-0027-2014-2.gif
  • Abstract:

    The human hybridoma technique offers an important approach for isolation of human monoclonal antibodies. A diversity of approaches can be used with varying success. Recent technical advances in expanding the starting number of human antigen-specific B cells, improving fusion efficiency, and isolating new myeloma partners and new cell cloning methods have enabled the development of protocols that make the isolation of human monoclonal antibodies from blood samples feasible. Undoubtedly, additional innovations that could improve efficiency are possible.

  • Citation: Smith S, Crowe, Jr. J. 2015. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies. Microbiol Spectrum 3(1):AID-0027-2014. doi:10.1128/microbiolspec.AID-0027-2014.


1. Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. [PubMed][CrossRef]
2. Schwaber J, Cohen EP. 1973. Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature 244:444–447. [PubMed][CrossRef]
3. Bloom AD, Nakamura FT. 1974. Establishment of a tetraploid, immunoglobulin producing cell line from the hybridization of two human lymphocyte lines. Proc Natl Acad Sci USA 71:2689–2692. [PubMed][CrossRef]
4. Olsson L, Kaplan HS. 1980. Human–human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc Natl Acad Sci USA 77:5429–5431. [PubMed][CrossRef]
5. Stevens RH, Macy E, Morrow C, Saxon A. 1979. Characterization of a circulating subpopulation of spontaneous anti-tetanus toxoid antibody producing B cells following in vivo booster immunization. J Immunol 122:2498–2504. [PubMed]
6. Casali P, Inghirami G, Nakamura M, Davies TF, Notkins AL. 1986. Human monoclonals from antigen-specific selection of B lymphocytes and transformation by EBV. Science 234:476–479. [PubMed][CrossRef]
7. Kozbor D, Roder JC. 1981. Requirements for the establishment of high titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J Immunol 127:1275–1280. [PubMed]
8. Crawford DH, Ando I. 1986. EB virus induction is associated with B-cell maturation. Immunology 59:405–409. [PubMed]
9. Roder JC, Cole SP, Kozbor D. 1986. The EBV-hybridoma technique. Methods Enzymol 121:140–167. [PubMed][CrossRef]
10. Steinitz M, Koskimies S, Klein G, Makela O. 1978. Establishment of specific antibody producing human lines by antigen preselection and EBV transformation. Curr Top Microbiol Immunol 81:156–163. [PubMed]
11. Bernasconi NL, Traggiai E, Lanzavecchia A. 2002. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298:2199–2202. [PubMed][CrossRef]
12. Hartmann G, Krieg AM. 2000. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164:944–953. [PubMed][CrossRef]
13. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10:871–875. [PubMed][CrossRef]
14. Kozbor D, Roder JC, Chang TH, Steplewski Z, Koprowski H. 1982. Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma 1:323–328. [PubMed][CrossRef]
15. Foung SK, Perkins S, Raubitschek A, Larrick J, Lizak G, Fishwild D, Engleman EG, Grumet FC. 1984. Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. J Immunol Methods 70:83–90. [PubMed][CrossRef]
16. Chiorazzi N, Wasserman RL, Kunkel HG. 1982. Use of Epstein-Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas. J Exp Med 156:930–935. [PubMed][CrossRef]
17. Emanuel D, Gold J, Colacino J, Lopez C, Hammerling U. 1984. A human monoclonal antibody to cytomegalovirus (CMV). J Immunol 133:2202–2205. [PubMed]
18. Lagerkvist AC, Furebring C, Borrebaeck CA. 1995. Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning. Biotechniques 18:862–869. [PubMed]
19. Ding BB, Bi E, Chen H, Yu JJ, Ye BH. 2013. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol 190:1827–1836. [PubMed][CrossRef]
20. Cocks BG, de Waal Malefyt R, Galizzi JP, de Vries JE, Aversa G. 1993. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int Immunol 5:657–663. [PubMed][CrossRef]
21. Orscheschek K, Merz H, Schlegelberger B, Feller AC. 1994. An immortalized cell line with features of human follicular dendritic cells. Antigen and cytokine expression analysis. Eur J Immunol 24:2682–2690. [PubMed][CrossRef]
22. Nilsson K, Sundström C. 1974. Establishment and characteristics of two unique cell lines from patients with lymphosarcoma. Int J Cancer 13:808–823. [PubMed][CrossRef]
23. Zubler RH, Erard F, Lees RK, Van Laer M, Mingari C, Moretta L, MacDonald HR. 1985. Mutant EL-4 thymoma cells polyclonally activate murine and human B cells via direct cell interaction. J Immunol 134:3662–3668. [PubMed]
24. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P, Soppet D, Charters M, Gentz R, Parmelee D, Li Y, Galperina O, Giri J, Roschke V, Nardelli B, Carrell J, Sosnovtseva S, Greenfield W, Ruben SM, Olsen HS, Fikes J, Hilbert DM. 1999. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285:260–263. [PubMed][CrossRef]
25. Gorny MK. 1994. Production of human monoclonal antibodies via fusion of Epstein-Barr virus-transformed lymphocytes with heteromyeloma, p 276–281. In Celis JE (ed), Cell Biology: A Laboratory Handbook, 2nd ed. Academic Press, San Diego, CA.
26. Miller G, Lipman M. 1973. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 70:190–194. [PubMed][CrossRef]
27. Wallace LE, Young LS, Rowe M, Rowe D, Rickinson AB. 1987. Epstein-Barr virus-specific T-cell recognition of B-cell transformants expressing different EBNA 2 antigens. Int J Cancer 39:373–379. [PubMed][CrossRef]
28. Nikitin PA, Yan CM, Forte E, Bocedi A, Tourigny JP, White RE, Allday MJ, Patel A, Dave SS, Kim W, Hu K, Guo J, Tainter D, Rusyn E, Luftig MA. 2010. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8:510–522. [PubMed][CrossRef]
29. Smith SA, Zhou Y, Olivarez NP, Broadwater AH, de Silva AM, Crowe JE, Jr. 2012. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol 86:2665–2675. [PubMed][CrossRef]
30. Okada Y. 1962. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Exp Cell Res 26:98–128. [CrossRef]
31. Morgan C, Howe C. 1968. Structure and development of viruses as observed in the electron microscope. IX. Entry of parainfluenza I (Sendai) virus. J Virol 2:1122–1132. [PubMed]
32. Okada Y. 1993. Sendai virus-induced cell fusion. Methods Enzymol 221:18–41. [PubMed][CrossRef]
33. Nagata S, Yamamoto K, Ueno Y, Kurata T, Chiba J. 1991. Production of monoclonal antibodies by the use of pH-dependent vesicular stomatitis virus-mediated cell fusion. Hybridoma 10:317–322. [PubMed][CrossRef]
34. Nagata S, Yamamoto K, Ueno Y, Kurata T, Chiba J. 1991. Preferential generation of monoclonal IgG-producing hybridomas by use of vesicular stomatitis virus-mediated cell fusion. Hybridoma 10:369–378. [PubMed][CrossRef]
35. Kao KN, Michayluk MR. 1974. A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115:355–367. [PubMed][CrossRef]
36. Lentz BR. 2007. PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326. [PubMed][CrossRef]
37. Kerkis AY, Zhdanova NS. 1992. Formation and ultrastructure of somatic cell hybrids. Electron Microsc Rev 5:1–24. [PubMed][CrossRef]
38. Lane RD, Crissman RS, Lachman MF. 1984. Comparison of polyethylene glycols as fusogens for producing lymphocyte-myeloma hybrids. J Immunol Methods 72:71–76. [PubMed][CrossRef]
39. Yu X, McGraw PA, House FS, Crowe JE, Jr. 2008. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J Immunol Methods 336:142–151. [PubMed][CrossRef]
40. Rols MP, Teissie J. 1990. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58:1089–1098. [PubMed][CrossRef]
41. Lo MM, Tsong TY, Conrad MK, Strittmatter SM, Hester LD, Snyder SH. 1984. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310:792–794. [PubMed][CrossRef]
42. Wojchowski DM, Sytkowski AJ. 1986. Hybridoma production by simplified avidin-mediated electrofusion. J Immunol Methods 90:173–177. [PubMed][CrossRef]
43. Hewish DR, Werkmeister JA. 1989. The use of an electroporation apparatus for the production of murine hybridomas. J Immunol Methods 120:285–289. [CrossRef]
44. Bakker Schut TC, Kraan YM, Barlag W, de Leij L, de Grooth BG, Greve J. 1993. Selective electrofusion of conjugated cells in flow. Biophys J 65:568–572. [PubMed][CrossRef]
45. Teissie J, Rols MP. 1986. Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun 140:258–266. [PubMed][CrossRef]
46. Bardsley DW, Liddell JE, Coakley WT, Clarke DJ. 1990. Electroacoustic production of murine hybridomas. J Immunol Methods 129:41–47. [PubMed][CrossRef]
47. Neil GA, Zimmermann U. 1993. Electrofusion. Methods Enzymol 220:174–196. [PubMed][CrossRef]
48. Nilsson K, Bennich H, Johansson SG, Pontén J. 1970. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol 7:477–489. [PubMed]
49. Olsson L, Kaplan HS. 1983. Human–human monoclonal antibody-producing hybridomas: technical aspects. Methods Enzymol 92:3–16. [PubMed][CrossRef]
50. Brodin T, Olsson L, Sjögren HO. 1983. Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer. J Immunol Methods 60:1–7. [PubMed][CrossRef]
51. Cote RJ, Morrissey DM, Houghton AN, Beattie EJ, Jr, Oettgen HF, Old LJ. 1983. Generation of human monoclonal antibodies reactive with cellular antigens. Proc Natl Acad Sci USA 80:2026–2030. [PubMed][CrossRef]
52. Olsson L. 1983. Monoclonal antibodies in clinical immunobiology. Derivation, potential, and limitations. Allergy 38:145–154. [PubMed][CrossRef]
53. Sikora K, Alderson T, Ellis J, Phillips J, Watson J. 1983. Human hybridomas from patients with malignant disease. Br J Cancer 47:135–145. [PubMed][CrossRef]
54. Hibi N, Arii S, Iizumi T, Nemoto T, Chu TM. 1986. Human monoclonal antibody recognizing liver-type aldolase B. Biochem J 240:847–856. [PubMed]
55. Matsuoka Y, Moore GE, Yagi Y, Pressman D. 1967. Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol Med 125:1246–1250. [PubMed][CrossRef]
56. Pickering JW, Gelder FB. 1982. A human myeloma cell line that does not express immunoglobulin but yields a high frequency of antibody-secreting hybridomas. J Immunol 129:406–412. [PubMed]
57. Kozbor D, Tripputi P, Roder JC, Croce CM. 1984. A human hybrid myeloma for production of human monoclonal antibodies. J Immunol 133:3001–3005. [PubMed]
58. Karpas A, Dremucheva A, Czepulkowski BH. 2001. A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc Natl Acad Sci USA 98:1799–1804. [PubMed][CrossRef]
59. Ostberg L, Pursch E. 1983. Human X (mouse X human) hybridomas stably producing human antibodies. Hybridoma 2:361–367. [PubMed][CrossRef]
60. Goldstein NI, Nagle R, Villar H, Hersh E, Fisher PB. 1990. Isolation and characterization of a human monoclonal antibody which reacts with breast and colorectal carcinoma. Anticancer Res 10:1491–1500. [PubMed]
61. Freedman RS, Ioannides CG, Tomasovic B, Patenia R, Zhang HZ, Liang JC, Edwards CL. 1991. Development of a cell surface reacting human monoclonal antibody recognizing ovarian and certain other malignancies. Hybridoma 10:21–33. [PubMed][CrossRef]
62. Teng NN, Lam KS, Calvo Riera F, Kaplan HS. 1983. Construction and testing of mouse–human heteromyelomas for human monoclonal antibody production. Proc Natl Acad Sci USA 80:7308–7312. [PubMed][CrossRef]
63. Gorny MK, Xu JY, Karwowska S, Buchbinder A, Zolla-Pazner S. 1993. Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gp 120. J Immunol 150:635–643. [PubMed]
64. Gorny MK, Wang XH, Williams C, Volsky B, Revesz K, Witover B, Burda S, Urbanski M, Nyambi P, Krachmarov C, Pinter A, Zolla-Pazner S, Nadas A. 2009. Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol Immunol 46:917–926. [PubMed][CrossRef]
65. Gorny MK. 2012. Human hybridoma technology. Antibody Technol J 2:1–5. [CrossRef]
66. Posner MR, Elboim H, Santos D. 1987. The construction and use of a human–mouse myeloma analogue suitable for the routine production of hybridomas secreting human monoclonal antibodies. Hybridoma 6:611–625 [PubMed][CrossRef]
67. Yu X, Tsibane T, McGraw PA, House FS, Keefer CJ, Hicar MD, Tumpey TM, Pappas C, Perrone LA, Martinez O, Stevens J, Wilson IA, Aguilar PV, Altschuler EL, Basler CF, Crowe JE, Jr. 2008. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455:532–536. [PubMed][CrossRef]
68. Smith SA, de Alwis R, Kose N, Durbin AP, Whitehead SS, de Silva AM, Crowe JE, Jr. 2013. Human monoclonal antibodies derived from memory B cells following live attenuated dengue virus vaccination or natural infection exhibit similar characteristics. J Infect Dis 207:1898–1908. [PubMed][CrossRef]
69. Smith SA, de Alwis AR, Kose N, Harris E, Ibarra KD, Kahle KM, Pfaff JM, Xiang X, Doranz BJ, de Silva AM, Austin SK, Sukupolvi-Petty S, Diamond MS, Crowe JE, Jr. 2013. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio 4:e00873–913. doi:10.1128/mBio.00873-13. [CrossRef]
70. Carroll WL, Thielemans K, Dilley J, Levy R. 1986. Mouse x human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods 89:61–72. [PubMed][CrossRef]
71. Carroll WL, Lowder JN, Streifer R, Warnke R, Levy S, Levy R. 1986. Idiotype variant cell populations in patients with B cell lymphoma. J Exp Med 164:1566–1580. [PubMed][CrossRef]
72. Brown S, Dilley J, Levy R. 1980. Immunoglobulin secretion by mouse X human hybridomas: an approach for the production of anti-idiotype reagents useful in monitoring patients with B cell lymphoma. J Immunol 125:1037–1043. [PubMed]
73. da Silva Cardoso M, Siemoneit K, Sturm D, Krone C, Moradpour D, Kubanek B. 1998. Isolation and characterization of human monoclonal antibodies against hepatitis C virus envelope glycoproteins. J Med Virol 55:28–34. [PubMed][CrossRef]
74. Ogura M, Morishima Y, Ohno R, Kato Y, Hirabayashi N, Nagura H, Saito H. 1985. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66:1384–1392. [PubMed]
75. Kubota-Koketsu R, Mizuta H, Oshita M, Ideno S, Yunoki M, Kuhara M, Yamamoto N, Okuno Y, Ikuta K. 2009. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors. Biochem Biophys Res Commun 387:180–185. [PubMed][CrossRef]
76. Pan Y, Sasaki T, Kubota-Koketsu R, Inoue Y, Yasugi M, Yamashita A, Ramadhany R, Arai Y, Du A, Boonsathorn N, Ibrahim MS, Daidoji T, Nakaya T, Ono K, Okuno Y, Ikuta K, Watanabe Y. 2014. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses. Biochem Biophys Res Commun 450:42–48. [PubMed][CrossRef]
77. Akapirat S, Avihingsanon A, Ananworanich J, Schuetz A, Ramasoota P, Luplertlop N, Ono K, Ikuta K, Utachee P, Kameoka M, Leaungwutiwong P. 2013. Variables influencing anti-human immunodeficiency virus type 1 neutralizing human monoclonal antibody (NhMAb) production among infected Thais. Southeast Asian J Trop Med Public Health 44:825–841. [PubMed]
78. Kalantarov GF, Rudchenko SA, Lobel L, Trakht I. 2002. Development of a fusion partner cell line for efficient production of human monoclonal antibodies from peripheral blood lymphocytes. Hum Antibodies 11:85–96. [PubMed]
79. Kirman I, Kalantarov GF, Lobel LI, Hibshoosh H, Estabrook A, Canfield R, Trakht I. 2002. Isolation of native human monoclonal autoantibodies to breast cancer. Hybrid Hybridomics 21:405–414. [PubMed][CrossRef]
80. Calvert AE, Kalantarov GF, Chang GJ, Trakht I, Blair CD, Roehrig JT. 2011. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein. Virology 410:30–37. [PubMed][CrossRef]
81. Dessain SK, Adekar SP, Stevens JB, Carpenter KA, Skorski ML, Barnoski BL, Goldsby RA, Weinberg RA. 2004. High efficiency creation of human monoclonal antibody-producing hybridomas. J Immunol Methods 291:109–122. [PubMed][CrossRef]
82. Kromenaker SJ, Srienc F. 1994. Stability of producer hybridoma cell lines after cell sorting: a case study. Biotechnol Prog 10:299–307. [PubMed][CrossRef]
83. Mann CJ. 2007. Rapid isolation of antigen-specific clones from hybridoma fusions. Nat Methods 4:1–2.
84. Haight FA. 1967. Handbook of the Poisson Distribution. John Wiley & Sons, New York, NY.
85. Coller HA, Coller BS. 1986. Poisson statistical analysis of repetitive sub-cloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121:412–417. [PubMed][CrossRef]
86. Underwood PA, Bean PA. 1987. Hazards of the limiting dilution methods of cloning hybridomas. J Immunol Methods 107:119–128. [PubMed][CrossRef]
87. Brezinsky SCG, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, SiskW, Thill G. 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277:141–155. [PubMed][CrossRef]
88. Parks DR, Bryan VM, Oi VT, Herzenberg LA. 1979. Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter. Proc Natl Acad Sci USA 76:1962–1966. [PubMed][CrossRef]
89. Jantscheff P, Winkler L, Karawajew L, Kaiser G, Böttger V, Micheel B. 1993. Hybrid hybridomas producing bispecific antibodies to CEA and peroxidase isolated by a combination of HAT medium selection and fluorescence activated cell sorting. J Immunol Methods 163:91–97. [PubMed][CrossRef]
90. Dangl JL, Parks DR, Oi VT, Herzenberg LA. 1982. Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting. Cytometry 2:395–401. [PubMed][CrossRef]
91. Martel F, Bazin R, Verrette S, Lemieux R. 1988. Characterization of higher avidity monoclonal antibodies produced by murine B-cell hybridoma variants selected for increased antigen binding of membrane Ig. J Immunol 141:1624–1629. [PubMed]
92. Manz R, Assenmacher M, Pflüger E, Miltenyi S, Radbruch A. 1995. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92:1921–1925. [PubMed][CrossRef]
93. Holmes P, Al-Rubeai M. 1999. Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230:141–147. [PubMed][CrossRef]
94. Weaver J, Williams G, Klibanov A, Demain A. 1988. Gel microdroplets: rapid detection and enumeration of individual microorganisms by their metabolic activity. Nat Biotechnol 6:1084–1089. [CrossRef]
95. Powell KT, Weaver JC. 1990. Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Nat Biotechnol 8:333–337. [PubMed][CrossRef]
96. Kenney JS, Gray F, Ancel MH, Dunne JF. 1995. Production of monoclonal antibodies using a secretion capture report web. Nat Biotechnol 13:787–790. [PubMed][CrossRef]
97. Gray F, Kenney JS, Dunne JF. 1995. Secretion capture and report web: use of affinity derivatised agarose microdroplets for the selection of hybridoma cells. J Immunol Methods 182:155–163. [PubMed][CrossRef]
98. Davis JM, Pennington JE, Kubler AM, Conscience JF. 1982. A simple, single-step technique for selecting and cloning hybridomas for the production of monoclonal antibodies. Immunol Methods 50:161–171. [PubMed][CrossRef]
99. Yokoyama WM, Christensen M, Dos Santos G, Miller D, Ho J, Wu T, Dziegelewski M, Neethling FA. 2013. Production of monoclonal antibodies. Curr Protoc Immunol 102:1–29.

Article metrics loading...



The human hybridoma technique offers an important approach for isolation of human monoclonal antibodies. A diversity of approaches can be used with varying success. Recent technical advances in expanding the starting number of human antigen-specific B cells, improving fusion efficiency, and isolating new myeloma partners and new cell cloning methods have enabled the development of protocols that make the isolation of human monoclonal antibodies from blood samples feasible. Undoubtedly, additional innovations that could improve efficiency are possible.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Lymphoblastoid cell formation from PBMCs.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


(A) Pre- and (B) post-pearl chain formation.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Cloning in (A) semi-solid medium and (B) final human hybridoma.

Source: microbiolspec January 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error