No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Population Genetics and Molecular Epidemiology of Eukaryotes *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Ronald E. Blanton1
  • Editors: Michael Sadowsky2, Lee W. Riley3
    Affiliations: 1: Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106; 2: BioTechnology Institute, University of Minnesota, St. Paul, MN; 3: Divisions of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
  • Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0002-2018
  • Received 14 March 2018 Accepted 06 August 2018 Published 02 November 2018
  • Ronald E. Blanton, [email protected]
image of Population Genetics and Molecular Epidemiology of Eukaryotes<span class="xref">
<a href="#fn1">*</a>
    Preview this microbiology spectrum article:
    Zoom in

    Population Genetics and Molecular Epidemiology of Eukaryotes * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/6/AME-0002-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/6/AME-0002-2018-2.gif
  • Abstract:

    Molecular epidemiology uses the distribution and organization of a pathogen’s DNA to understand the distribution and determinants of disease. Since the biology of DNA for eukaryotic pathogens differs substantially from that of bacteria, the analytic approach to their molecular epidemiology can also differ. While many of the genotyping techniques presented earlier in this series, “Advances in Molecular Epidemiology of Infectious Diseases,” can be applied to eukaryotes, the output must be interpreted in the light of how DNA is distributed from one generation to the next. In some cases, parasite populations can be evaluated in ways reminiscent of bacteria. They differ, however, when analyzed as sexually reproducing organisms, where all individuals are unique but the genetic composition of the population does not change unless a limited set of events occurs. It is these events (migration, mutation, nonrandom mating, selection, and genetic drift) that are of interest. At a given time, not all of them are likely to be equally important, so the list can easily be narrowed down to understand the driving forces behind the population as it is now and even what it will look like in the future. The main population characteristics measured to assess these events are differentiation and diversity, interpreted in the light of what is known about the population from observation. The population genetics of eukaryotes is important for planning and evaluation of control measures, surveillance, outbreak investigation, and monitoring of the development and spread of drug resistance.

    *This article is part of a curated collection.

  • Citation: Blanton R. 2018. Population Genetics and Molecular Epidemiology of Eukaryotes * . Microbiol Spectrum 6(6):AME-0002-2018. doi:10.1128/microbiolspec.AME-0002-2018.


1. Rougeron V, De Meeûs T, Kako Ouraga S, Hide M, Bañuls AL. 2010. “Everything you always wanted to know about sex (but were afraid to ask)” in Leishmania after two decades of laboratory and field analyses. PLoS Pathog 6:e1001004. http://dx.doi.org/10.1371/journal.ppat.1001004. [PubMed]
2. Rosen MJ, Davison M, Bhaya D, Fisher DS. 2015. Microbial diversity. Fine-scale diversity and extensive recombination in a quasisexual bacterial population occupying a broad niche. Science 348:1019–1023. http://dx.doi.org/10.1126/science.aaa4456. [PubMed]
3. Krause DJ, Whitaker RJ. 2015. Inferring speciation processes from patterns of natural variation in microbial genomes. Syst Biol 64:926–935. http://dx.doi.org/10.1093/sysbio/syv050.
4. Falconer D. 1960. Introduction to Quantitative Genetics. Ronald Press Company, New York, NY.
5. Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445. http://dx.doi.org/10.1038/nrg1348. [PubMed]
6. Hartl DL. 2014. Essential Genetics, 6th ed. Jones & Bartlett Learning, Burlington, MA.
7. Tautz D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471. http://dx.doi.org/10.1093/nar/17.16.6463. [PubMed]
8. Hoeh WR, Blakley KH, Brown WM. 1991. Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251:1488–1490. http://dx.doi.org/10.1126/science.1672472. [PubMed]
9. Schindel DE, Miller SE. 2005. DNA barcoding a useful tool for taxonomists. Nature 435:17. http://dx.doi.org/10.1038/435017b. [PubMed]
10. Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323. http://dx.doi.org/10.1073/pnas.70.12.3321. [PubMed]
11. Hedrick PW. 2005. A standardized genetic differentiation measure. Evolution 59:1633–1638. http://dx.doi.org/10.1111/j.0014-3820.2005.tb01814.x. [PubMed]
12. Jost L, Archer F, Flanagan S, Gaggiotti O, Hoban S, Latch E. 2 January 2018. Differentiation measures for conservation genetics. Evol Appl https://doi.org/10.1111/eva.12590.
13. Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491. [PubMed]
14. Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462. [PubMed]
15. Weir BS, Cockerham CC. 1984. Estimating F-statistics for analysis of population structure. Evolution 38:1358–1370. [PubMed]
16. Jost L. 2008. G( ST) and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. http://dx.doi.org/10.1111/j.1365-294X.2008.03887.x.
17. Whitlock MC. 2011. G’ST and D do not replace FST. Mol Ecol 20:1083–1091. http://dx.doi.org/10.1111/j.1365-294X.2010.04996.x. [PubMed]
18. Blank WA, Test MR, Liu SF, Lewis FA, Blanton RE. 2010. Long-term genetic stability and population dynamics of laboratory strains of Schistosoma mansoni. J Parasitol 96:900–907. http://dx.doi.org/10.1645/GE-2463.1. [PubMed]
19. Fumagalli M, Vieira FG, Korneliussen TS, Linderoth T, Huerta-Sánchez E, Albrechtsen A, Nielsen R. 2013. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195:979–992. http://dx.doi.org/10.1534/genetics.113.154740. [PubMed]
20. Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945–959. [PubMed]
21. Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664. http://dx.doi.org/10.1101/gr.094052.109. [PubMed]
22. Leberg PL. 2002. Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449. http://dx.doi.org/10.1046/j.1365-294X.2002.01612.x. [PubMed]
23. Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F. 2011. Understanding and estimating effective population size for practical application in marine species management. Conserv Biol 25:438–449. http://dx.doi.org/10.1111/j.1523-1739.2010.01637.x. [PubMed]
24. Palstra FP, Ruzzante DE. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447. http://dx.doi.org/10.1111/j.1365-294X.2008.03842.x. [PubMed]
25. Wang J, Caballero A. 1999. Developments in predicting the effective size of subdivided populations. Heredity 82:212–226. http://dx.doi.org/10.1038/sj.hdy.6884670.
26. Franklin I, Frankham R. 1998. How large must populations be to retain evolutionary potential? Anim Conserv 1:69–73. http://dx.doi.org/10.1111/j.1469-1795.1998.tb00228.x.
27. Lande R. 1995. Mutation and conservation. Conserv Biol 9:782–791. http://dx.doi.org/10.1046/j.1523-1739.1995.09040782.x.
28. Spielman D, Brook BW, Frankham R. 2004. Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci U S A 101:15261–15264. http://dx.doi.org/10.1073/pnas.0403809101. [PubMed]
29. Flather CH, Hayward GD, Beissinger SR, Stephens PA. 2011. Minimum viable populations: is there a ‘magic number’ for conservation practitioners? Trends Ecol Evol 26:307–316. http://dx.doi.org/10.1016/j.tree.2011.03.001. [PubMed]
30. Traill LW, Bradshaw CJ, Brook BW. 2007. Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166. http://dx.doi.org/10.1016/j.biocon.2007.06.011.
31. Assefa SA, Preston MD, Campino S, Ocholla H, Sutherland CJ, Clark TG. 2014. estMOI: estimating multiplicity of infection using parasite deep sequencing data. Bioinformatics 30:1292–1294. http://dx.doi.org/10.1093/bioinformatics/btu005. [PubMed]
32. Stothard JR, Sousa-Figueiredo JC, Betson M, Adriko M, Arinaitwe M, Rowell C, Besiyge F, Kabatereine NB. 2011. Schistosoma mansoni infections in young children: when are schistosome antigens in urine, eggs in stool and antibodies to eggs first detectable? PLoS Negl Trop Dis 5:e938. http://dx.doi.org/10.1371/journal.pntd.0000938. [PubMed]
33. Llewellyn S, Inpankaew T, Nery SV, Gray DJ, Verweij JJ, Clements AC, Gomes SJ, Traub R, McCarthy JS. 2016. Application of a multiplex quantitative PCR to assess prevalence and intensity of intestinal parasite infections in a controlled clinical trial. PLoS Negl Trop Dis 10:e0004380. http://dx.doi.org/10.1371/journal.pntd.0004380. [PubMed]
34. Meredith SE, Lando G, Gbakima AA, Zimmerman PA, Unnasch TR. 1991. Onchocerca volvulus: application of the polymerase chain reaction to identification and strain differentiation of the parasite. Exp Parasitol 73:335–344. http://dx.doi.org/10.1016/0014-4894(91)90105-6.
35. Zhan B, Li T, Xiao S, Zheng F, Hawdon JM. 2001. Species-specific identification of human hookworms by PCR of the mitochondrial cytochrome oxidase I gene. J Parasitol 87:1227–1229. http://dx.doi.org/10.1645/0022-3395(2001)087[1227:SSIOHH]2.0.CO;2.
36. Bensoussan E, Nasereddin A, Jonas F, Schnur LF, Jaffe CL. 2006. Comparison of PCR assays for diagnosis of cutaneous leishmaniasis. J Clin Microbiol 44:1435–1439. http://dx.doi.org/10.1128/JCM.44.4.1435-1439.2006.
37. Jara M, Adaui V, Valencia BM, Martinez D, Alba M, Castrillon C, Cruz M, Cruz I, Van der Auwera G, Llanos-Cuentas A, Dujardin JC, Arevalo J. 2013. Real-time PCR assay for detection and quantification of Leishmania ( Viannia) organisms in skin and mucosal lesions: exploratory study of parasite load and clinical parameters. J Clin Microbiol 51:1826–1833. http://dx.doi.org/10.1128/JCM.00208-13. [PubMed]
38. Slatkin M. 2008. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477–485. http://dx.doi.org/10.1038/nrg2361. [PubMed]
39. Messerli C, Hofmann NE, Beck HP, Felger I. 2016. Critical evaluation of molecular monitoring in malaria drug efficacy trials and pitfalls of length-polymorphic markers. Antimicrob Agents Chemother 61:61.
40. Snounou G, Beck HP. 1998. The use of PCR genotyping in the assessment of recrudescence or reinfection after antimalarial drug treatment. Parasitol Today 14:462–467. http://dx.doi.org/10.1016/S0169-4758(98)01340-4.
41. Felger I, Snounou G. 2008. Recommended Genotyping Procedures (RGPs) To Identify Parasite Populations. World Health Organization and Medicines for Malaria Venture, Geneva, Switzerland.
42. Adjuik M, Agnamey P, Babiker A, Borrmann S, Brasseur P, Cisse M, Cobelens F, Diallo S, Faucher JF, Garner P, Gikunda S, Kremsner PG, Krishna S, Lell B, Loolpapit M, Matsiegui PB, Missinou MA, Mwanza J, Ntoumi F, Olliaro P, Osimbo P, Rezbach P, Some E, Taylor WR. 2002. Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359:1365–1372. http://dx.doi.org/10.1016/S0140-6736(02)08348-4.
43. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N, International Artemisinin Study Group. 2004. Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363:9–17. http://dx.doi.org/10.1016/S0140-6736(03)15162-8.
44. Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. 2003. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp-1, msp-2, and glurp. Am J Trop Med Hyg 68:133–139. [PubMed]
45. Happi CT, Gbotosho GO, Sowunmi A, Falade CO, Akinboye DO, Gerena L, Kyle DE, Milhous W, Wirth DF, Oduola AM. 2004. Molecular analysis of Plasmodium falciparum recrudescent malaria infections in children treated with chloroquine in Nigeria. Am J Trop Med Hyg 70:20–26. [PubMed]
46. Imwong M, Jindakhad T, Kunasol C, Sutawong K, Vejakama P, Dondorp AM. 2015. An outbreak of artemisinin resistant falciparum malaria in Eastern Thailand. Sci Rep 5:17412. http://dx.doi.org/10.1038/srep17412. [PubMed]
47. Mugittu K, Adjuik M, Snounou G, Ntoumi F, Taylor W, Mshinda H, Olliaro P, Beck HP. 2006. Molecular genotyping to distinguish between recrudescents and new infections in treatment trials of Plasmodium falciparum malaria conducted in Sub-Saharan Africa: adjustment of parasitological outcomes and assessment of genotyping effectiveness. Trop Med Int Health 11:1350–1359. http://dx.doi.org/10.1111/j.1365-3156.2006.01688.x. [PubMed]
48. Mutabingwa TK, Anthony D, Heller A, Hallett R, Ahmed J, Drakeley C, Greenwood BM, Whitty CJ. 2005. Amodiaquine alone, amodiaquine+sulfadoxine-pyrimethamine, amodiaquine+artesunate, and artemether-lumefantrine for outpatient treatment of malaria in Tanzanian children: a four-arm randomised effectiveness trial. Lancet 365:1474–1480. http://dx.doi.org/10.1016/S0140-6736(05)66417-3.
49. Mwingira F, Nkwengulila G, Schoepflin S, Sumari D, Beck HP, Snounou G, Felger I, Olliaro P, Mugittu K. 2011. Plasmodium falciparum msp1, msp2 and glurp allele frequency and diversity in sub-Saharan Africa. Malar J 10:79. http://dx.doi.org/10.1186/1475-2875-10-79. [PubMed]
50. Oyebola MK, Idowu ET, Olukosi YA, Iwalokun BA, Agomo CO, Ajibaye OO, Tola M, Otubanjo AO. 2014. Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria. Asian Pac J Trop Biomed 4(Suppl 1) :S87–S91. http://dx.doi.org/10.12980/APJTB.4.2014C1301. [PubMed]
51. Rouse P, Mkulama MA, Thuma PE, Mharakurwa S. 2008. Distinction of Plasmodium falciparum recrudescence and re-infection by MSP2 genotyping: a caution about unstandardized classification criteria. Malar J 7:185. http://dx.doi.org/10.1186/1475-2875-7-185. [PubMed]
52. Sirima SB, Tiono AB, Gansané A, Diarra A, Ouédraogo A, Konaté AT, Kiechel JR, Morgan CC, Olliaro PL, Taylor WR. 2009. The efficacy and safety of a new fixed-dose combination of amodiaquine and artesunate in young African children with acute uncomplicated Plasmodium falciparum. Malar J 8:48. http://dx.doi.org/10.1186/1475-2875-8-48. [PubMed]
53. Van Ha N, Dyk Dao L, Rabinovich SA. 2002. Use of nested PCR for differential diagnosis of falciparum malaria reinfection and relapse in drug-resistant patients. Bull Exp Biol Med 134:379–381. http://dx.doi.org/10.1023/A:1021968517124. [PubMed]
54. Alam MS, Elahi R, Mohon AN, Al-Amin HM, Kibria MG, Khan WA, Khanum H, Haque R. 2016. Plasmodium falciparum genetic diversity in Bangladesh does not suggest a hypoendemic population structure. Am J Trop Med Hyg 94:1245–1250. http://dx.doi.org/10.4269/ajtmh.15-0446. [PubMed]
55. Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. 2016. Genetic diversity of Plasmodium falciparum populations in malaria declining areas of Sabah, East Malaysia. PLoS One 11:e0152415. http://dx.doi.org/10.1371/journal.pone.0152415.
56. Smith JM, Smith NH, O’Rourke M, Spratt BG. 1993. How clonal are bacteria? Proc Natl Acad Sci U S A 90:4384–4388. http://dx.doi.org/10.1073/pnas.90.10.4384. [PubMed]
57. Arez AP, Snounou G, Pinto J, Sousa CA, Modiano D, Ribeiro H, Franco AS, Alves J, do Rosario VE. 1999. A clonal Plasmodium falciparum population in an isolated outbreak of malaria in the Republic of Cabo Verde. Parasitology 118:347–355. http://dx.doi.org/10.1017/S0031182099003972. [PubMed]
58. Batista CL, Barbosa S, Da Silva Bastos M, Viana SA, Ferreira MU. 2015. Genetic diversity of Plasmodium vivax over time and space: a community-based study in rural Amazonia. Parasitology 142:374–384. http://dx.doi.org/10.1017/S0031182014001176. [PubMed]
59. Parija SC, Mandal J, Ponnambath DK. 2014. Laboratory methods of identification of Entamoeba histolytica and its differentiation from look-alike Entamoeba spp. Trop Parasitol 4:90–95. http://dx.doi.org/10.4103/2229-5070.138535. [PubMed]
60. Eom KS, Rim HJ. 1993. Morphologic descriptions of Taenia asiatica sp. n. Korean J Parasitol 31:1–6. http://dx.doi.org/10.3347/kjp.1993.31.1.1.
61. Jeon HK, Kim KH, Eom KS. 2007. Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica. Parasitol Int 56:243–246. http://dx.doi.org/10.1016/j.parint.2007.04.001. [PubMed]
62. Jeon HK, Lee KH, Kim KH, Hwang UW, Eom KS. 2005. Complete sequence and structure of the mitochondrial genome of the human tapeworm, Taenia asiatica (Platyhelminthes; Cestoda). Parasitology 130:717–726. http://dx.doi.org/10.1017/S0031182004007164. [PubMed]
63. Bowles J, McManus DP. 1994. Genetic characterization of the Asian Taenia, a newly described taeniid cestode of humans. Am J Trop Med Hyg 50:33–44. http://dx.doi.org/10.4269/ajtmh.1994.50.1.TM0500010033. [PubMed]
64. Ale A, Victor B, Praet N, Gabriël S, Speybroeck N, Dorny P, Devleesschauwer B. 2014. Epidemiology and genetic diversity of Taenia asiatica: a systematic review. Parasit Vectors 7:45. http://dx.doi.org/10.1186/1756-3305-7-45. [PubMed]
65. da Silva Alves EB, Conceição MJ, Leles D. 2016. Ascaris lumbricoides, Ascaris suum, or “ Ascaris lumbrisuum”? J Infect Dis 213:1355. [PubMed]
66. Leles D, Gardner SL, Reinhard K, Iñiguez A, Araujo A. 2012. Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors 5:42. http://dx.doi.org/10.1186/1756-3305-5-42. [PubMed]
67. Peng W, Criscione CD. 2012. Ascariasis in people and pigs: new inferences from DNA analysis of worm populations. Infect Genet Evol 12:227–235. http://dx.doi.org/10.1016/j.meegid.2012.01.012. [PubMed]
68. Erttmann KD, Meredith SE, Greene BM, Unnasch TR. 1990. Isolation and characterization of form specific DNA sequences of O. volvulus. Acta Leiden 59:253–260. [PubMed]
69. Erttmann KD, Unnasch TR, Greene BM, Albiez EJ, Boateng J, Denke AM, Ferraroni JJ, Karam M, Schulz-Key H, Williams PN. 1987. A DNA sequence specific for forest form Onchocerca volvulus. Nature 327:415–417 http://dx.doi.org/10.1038/327415a0. [PubMed]
70. Zimmerman PA, Dadzie KY, De Sole G, Remme J, Alley ES, Unnasch TR. 1992. Onchocerca volvulus DNA probe classification correlates with epidemiologic patterns of blindness. J Infect Dis 165:964–968. http://dx.doi.org/10.1093/infdis/165.5.964. [PubMed]
71. World Health Organization. 1995. Onchocerciasis and Its Control. WHO, Geneva, Switzerland.
72. Ogunrinade A, Boakye D, Merriweather A, Unnasch TR. 1999. Distribution of the blinding and nonblinding strains of Onchocerca volvulus in Nigeria. J Infect Dis 179:1577–1579. http://dx.doi.org/10.1086/314784. [PubMed]
73. Gonzalez RJ, Cruz-Ortiz N, Rizzo N, Richards J, Zea-Flores G, Domínguez A, Sauerbrey M, Catú E, Oliva O, Richards FO, Lindblade KA. 2009. Successful interruption of transmission of Onchocerca volvulus in the Escuintla-Guatemala focus, Guatemala. PLoS Negl Trop Dis 3:e404. http://dx.doi.org/10.1371/journal.pntd.0000404.
74. Lloyd MM, Gilbert R, Taha NT, Weil GJ, Meite A, Kouakou IM, Fischer PU. 2015. Conventional parasitology and DNA-based diagnostic methods for onchocerciasis elimination programmes. Acta Trop 146:114–118. http://dx.doi.org/10.1016/j.actatropica.2015.03.019. [PubMed]
75. Vlaminck J, Fischer PU, Weil GJ. 2015. Diagnostic tools for onchocerciasis elimination programs. Trends Parasitol 31:571–582. http://dx.doi.org/10.1016/j.pt.2015.06.007. [PubMed]
76. Bimi L, Freeman AR, Eberhard ML, Ruiz-Tiben E, Pieniazek NJ. 2005. Differentiating Dracunculus medinensis from D. insignis, by the sequence analysis of the 18S rRNA gene. Ann Trop Med Parasitol 99:511–517. http://dx.doi.org/10.1179/136485905X51355. [PubMed]
77. Callaway E. 2016. Dogs thwart effort to eradicate Guinea worm. Nature 529:10–11. http://dx.doi.org/10.1038/529010a. [PubMed]
78. Eberhard ML, Ruiz-Tiben E, Hopkins DR, Farrell C, Toe F, Weiss A, Withers PC, Jr, Jenks MH, Thiele EA, Cotton JA, Hance Z, Holroyd N, Cama VA, Tahir MA, Mounda T. 2014. The peculiar epidemiology of dracunculiasis in Chad. Am J Trop Med Hyg 90:61–70. http://dx.doi.org/10.4269/ajtmh.13-0554. [PubMed]
79. Macnish MG, Morgan-Ryan UM, Monis PT, Behnke JM, Thompson RC. 2002. A molecular phylogeny of nuclear and mitochondrial sequences in Hymenolepis nana (Cestoda) supports the existence of a cryptic species. Parasitology 125:567–575. http://dx.doi.org/10.1017/S0031182002002366. [PubMed]
80. Nejsum P, Parker ED, Jr, Frydenberg J, Roepstorff A, Boes J, Haque R, Astrup I, Prag J, Skov Sørensen UB. 2005. Ascariasis is a zoonosis in Denmark. J Clin Microbiol 43:1142–1148. http://dx.doi.org/10.1128/JCM.43.3.1142-1148.2005. [PubMed]
81. Bendall RP, Barlow M, Betson M, Stothard JR, Nejsum P. 2011. Zoonotic ascariasis, United Kingdom. Emerg Infect Dis 17:1964–1966. http://dx.doi.org/10.3201/eid1710.101826. [PubMed]
82. Daniels R, Volkman SK, Milner DA, Mahesh N, Neafsey DE, Park DJ, Rosen D, Angelino E, Sabeti PC, Wirth DF, Wiegand RC. 2008. A general SNP-based molecular barcode for Plasmodium falciparum identification and tracking. Malar J 7:223. http://dx.doi.org/10.1186/1475-2875-7-223. [PubMed]
83. Preston MD, Campino S, Assefa SA, Echeverry DF, Ocholla H, Amambua-Ngwa A, Stewart LB, Conway DJ, Borrmann S, Michon P, Zongo I, Ouédraogo JB, Djimde AA, Doumbo OK, Nosten F, Pain A, Bousema T, Drakeley CJ, Fairhurst RM, Sutherland CJ, Roper C, Clark TG. 2014. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun 5:4052. http://dx.doi.org/10.1038/ncomms5052. [PubMed]
84. Su XZ. 2014. Tracing the geographic origins of Plasmodium falciparum malaria parasites. Pathog Glob Health 108:261–262. http://dx.doi.org/10.1179/2047772414Z.000000000225. [PubMed]
85. Baniecki ML, Faust AL, Schaffner SF, Park DJ, Galinsky K, Daniels RF, Hamilton E, Ferreira MU, Karunaweera ND, Serre D, Zimmerman PA, Sá JM, Wellems TE, Musset L, Legrand E, Melnikov A, Neafsey DE, Volkman SK, Wirth DF, Sabeti PC. 2015. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections. PLoS Negl Trop Dis 9:e0003539. http://dx.doi.org/10.1371/journal.pntd.0003539. [PubMed]
86. Culleton R, Coban C, Zeyrek FY, Cravo P, Kaneko A, Randrianarivelojosia M, Andrianaranjaka V, Kano S, Farnert A, Arez AP, Sharp PM, Carter R, Tanabe K. 2011. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing. PLoS One 6:e29137. http://dx.doi.org/10.1371/journal.pone.0029137. [PubMed]
87. Gelabert P, Sandoval-Velasco M, Olalde I, Fregel R, Rieux A, Escosa R, Aranda C, Paaijmans K, Mueller I, Gilbert MT, Lalueza-Fox C. 2016. Mitochondrial DNA from the eradicated European Plasmodium vivax and P. falciparum from 70-year-old slides from the Ebro Delta in Spain. Proc Natl Acad Sci U S A 113:11495–11500. http://dx.doi.org/10.1073/pnas.1611017113. [PubMed]
88. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, Vallejo AF, Herrera S, Arévalo-Herrera M, Fan Q, Wang Y, Cui L, Lucas CM, Durand S, Sanchez JF, Baldeviano GC, Lescano AG, Laman M, Barnadas C, Barry A, Mueller I, Kazura JW, Eapen A, Kanagaraj D, Valecha N, Ferreira MU, Roobsoong W, Nguitragool W, Sattabonkot J, Gamboa D, Kosek M, Vinetz JM, González-Cerón L, Birren BW, Neafsey DE, Carlton JM. 2016. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat Genet 48:953–958. http://dx.doi.org/10.1038/ng.3588. [PubMed]
89. Iwagami M, Hwang SY, Fukumoto M, Hayakawa T, Tanabe K, Kim SH, Kho WG, Kano S. 2010. Geographical origin of Plasmodium vivax in the Republic of Korea: haplotype network analysis based on the parasite’s mitochondrial genome. Malar J 9:184. http://dx.doi.org/10.1186/1475-2875-9-184. [PubMed]
90. Rodrigues PT, Alves JM, Santamaria AM, Calzada JE, Xayavong M, Parise M, da Silva AJ, Ferreira MU. 2014. Using mitochondrial genome sequences to track the origin of imported Plasmodium vivax infections diagnosed in the United States. Am J Trop Med Hyg 90:1102–1108. http://dx.doi.org/10.4269/ajtmh.13-0588. [PubMed]
91. Ferreira MU, Rodrigues PT. 2014. Tracking malaria parasites in the eradication era. Trends Parasitol 30:465–466. http://dx.doi.org/10.1016/j.pt.2014.08.003. [PubMed]
92. Spanakos G, Alifrangis M, Schousboe ML, Patsoula E, Tegos N, Hansson HH, Bygbjerg IC, Vakalis NC, Tseroni M, Kremastinou J, Hadjichristodoulou C. 2013. Genotyping Plasmodium vivax isolates from the 2011 outbreak in Greece. Malar J 12:463. http://dx.doi.org/10.1186/1475-2875-12-463. [PubMed]
93. Gunawardena S, Ferreira MU, Kapilananda GM, Wirth DF, Karunaweera ND. 2014. The Sri Lankan paradox: high genetic diversity in Plasmodium vivax populations despite decreasing levels of malaria transmission. Parasitology 141:880–890. http://dx.doi.org/10.1017/S0031182013002278. [PubMed]
94. Malaria GEN, MalariaGEN Plasmodium falciparum Community Project. 2016. Genomic epidemiology of artemisinin resistant malaria. Elife 5:5.
95. Miotto O, Amato R, Ashley EA, MacInnis B, Almagro-Garcia J, Amaratunga C, Lim P, Mead D, Oyola SO, Dhorda M, Imwong M, Woodrow C, Manske M, Stalker J, Drury E, Campino S, Amenga-Etego L, Thanh TN, Tran HT, Ringwald P, Bethell D, Nosten F, Phyo AP, Pukrittayakamee S, Chotivanich K, Chuor CM, Nguon C, Suon S, Sreng S, Newton PN, Mayxay M, Khanthavong M, Hongvanthong B, Htut Y, Han KT, Kyaw MP, Faiz MA, Fanello CI, Onyamboko M, Mokuolu OA, Jacob CG, Takala-Harrison S, Plowe CV, Day NP, Dondorp AM, Spencer CC, McVean G, Fairhurst RM, White NJ, Kwiatkowski DP. 2015. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat Genet 47:226–234. http://dx.doi.org/10.1038/ng.3189. [PubMed]
96. Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ. 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418:320–323. http://dx.doi.org/10.1038/nature00813. [PubMed]
97. Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR. 2002. Epidemiology of drug-resistant malaria. Lancet Infect Dis 2:209–218. http://dx.doi.org/10.1016/S1473-3099(02)00239-6.
98. World Health Organization. 2009. Methods for Surveillance of Antimalarial Drug Efficacy. WHO, Geneva, Switzerland.
99. Brown T, Smith LS, Oo EK, Shawng K, Lee TJ, Sullivan D, Beyrer C, Richards AK. 2012. Molecular surveillance for drug-resistant Plasmodium falciparum in clinical and subclinical populations from three border regions of Burma/Myanmar: cross-sectional data and a systematic review of resistance studies. Malar J 11:333. http://dx.doi.org/10.1186/1475-2875-11-333. [PubMed]
100. Koukouikila-Koussounda F, Jeyaraj S, Nguetse CN, Nkonganyi CN, Kokou KC, Etoka-Beka MK, Ntoumi F, Velavan TP. 2017. Molecular surveillance of Plasmodium falciparum drug resistance in the Republic of Congo: four and nine years after the introduction of artemisinin-based combination therapy. Malar J 16:155. http://dx.doi.org/10.1186/s12936-017-1816-x. [PubMed]
101. Lucchi NW, Komino F, Okoth SA, Goldman I, Onyona P, Wiegand RE, Juma E, Shi YP, Barnwell JW, Udhayakumar V, Kariuki S. 2015. In vitro and molecular surveillance for antimalarial drug resistance in Plasmodium falciparum parasites in Western Kenya reveals sustained artemisinin sensitivity and increased chloroquine sensitivity. Antimicrob Agents Chemother 59:7540–7547. http://dx.doi.org/10.1128/AAC.01894-15. [PubMed]
102. Menegon M, Nurahmed AM, Talha AA, Nour BY, Severini C. 2016. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea. Acta Trop 157:158–161. http://dx.doi.org/10.1016/j.actatropica.2016.02.007. [PubMed]
103. Norahmad NA, Mohd Abd Razak MR, Abdullah NR, Sastu UR, Imwong M, Muniandy PK, Saat MN, Muhammad A, Jelip J, Tikuson M, Yusof N, Rundi C, Mudin RN, Syed Mohamed AF. 2016. Prevalence of Plasmodium falciparum molecular markers of antimalarial drug resistance in a residual malaria focus area in Sabah, Malaysia. PLoS One 11:e0165515. http://dx.doi.org/10.1371/journal.pone.0165515. [PubMed]
104. Kateera F, Nsobya SL, Tukwasibwe S, Hakizimana E, Mutesa L, Mens PF, Grobusch MP, van Vugt M, Kumar N. 2016. Molecular surveillance of Plasmodium falciparum drug resistance markers reveals partial recovery of chloroquine susceptibility but sustained sulfadoxine-pyrimethamine resistance at two sites of different malaria transmission intensities in Rwanda. Acta Trop 164:329–336. http://dx.doi.org/10.1016/j.actatropica.2016.09.008. [PubMed]
105. Nyunt MH, Wang B, Aye KM, Aye KH, Han JH, Lee SK, Han KT, Htut Y, Han ET. 2017. Molecular surveillance of artemisinin resistance falciparum malaria among migrant goldmine workers in Myanmar. Malar J 16:97. http://dx.doi.org/10.1186/s12936-017-1753-8. [PubMed]
106. Mint Lekweiry K, Ould Mohamed Salem Boukhary A, Gaillard T, Wurtz N, Bogreau H, Hafid JE, Trape JF, Bouchiba H, Ould Ahmedou Salem MS, Pradines B, Rogier C, Basco LK, Briolant S. 2012. Molecular surveillance of drug-resistant Plasmodium vivax using pvdhfr, pvdhps and pvmdr1 markers in Nouakchott, Mauritania. J Antimicrob Chemother 67:367–374. http://dx.doi.org/10.1093/jac/dkr464. [PubMed]
107. Taylor SM, Antonia AL, Parobek CM, Juliano JJ, Janko M, Emch M, Alam MT, Udhayakumar V, Tshefu AK, Meshnick SR. 2013. Plasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo. Sci Rep 3:1165. http://dx.doi.org/10.1038/srep01165. [PubMed]
108. Nsimba B, Jafari-Guemouri S, Malonga DA, Mouata AM, Kiori J, Louya F, Yocka D, Malanda M, Durand R, Le Bras J. 2005. Epidemiology of drug-resistant malaria in Republic of Congo: using molecular evidence for monitoring antimalarial drug resistance combined with assessment of antimalarial drug use. Trop Med Int Health 10:1030–1037. http://dx.doi.org/10.1111/j.1365-3156.2005.01490.x. [PubMed]
109. Abdel-Muhsin AA, Mackinnon MJ, Awadalla P, Ali E, Suleiman S, Ahmed S, Walliker D, Babiker HA. 2003. Local differentiation in Plasmodium falciparum drug resistance genes in Sudan. Parasitology 126:391–400. http://dx.doi.org/10.1017/S0031182003003020. [PubMed]
110. Lanzaro G, Tripet F. 2003. Gene flow among populations of Anopheles gambiae: a critical review, p 109–132. In Takken W, Scott TW (ed), Ecological Aspects for the Application of Genetically Modified Mosquitoes. Frontis Press, Wageningen, the Netherlands.
111. Anderson TJ, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. 2017. Population parameters underlying an ongoing soft sweep in Southeast Asian malaria parasites. Mol Biol Evol 34:131–144. http://dx.doi.org/10.1093/molbev/msw228. [PubMed]
112. Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, Pica-Mattoccia L, Guidi A, Basso A, Tsai IJ, Berriman M, Carvalho-Queiroz C, Almeida M, Aguilar H, Frantz DE, Hart PJ, LoVerde PT, Anderson TJ. 2013. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 342:1385–1389. http://dx.doi.org/10.1126/science.1243106.
113. Diawara A, Halpenny CM, Churcher TS, Mwandawiro C, Kihara J, Kaplan RM, Streit TG, Idaghdour Y, Scott ME, Basáñez MG, Prichard RK. 2013. Association between response to albendazole treatment and β-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis 7:e2247. http://dx.doi.org/10.1371/journal.pntd.0002247. [PubMed]
114. Rebaudet S, Bogreau H, Silaï R, Lepere JF, Bertaux L, Pradines B, Delmont J, Gautret P, Parola P, Rogier C. 2010. Genetic structure of Plasmodium falciparum and elimination of malaria, Comoros archipelago. Emerg Infect Dis 16:1686–1694. http://dx.doi.org/10.3201/eid1611.100694. [PubMed]
115. Mulenge FM, Hunja CW, Magiri E, Culleton R, Kaneko A, Aman RA. 2016. Genetic diversity and population structure of Plasmodium falciparum in Lake Victoria Islands, a region of intense transmission. Am J Trop Med Hyg 95:1077–1085. http://dx.doi.org/10.4269/ajtmh.16-0383. [PubMed]
116. Mobegi VA, Loua KM, Ahouidi AD, Satoguina J, Nwakanma DC, Amambua-Ngwa A, Conway DJ. 2012. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa. Malar J 11:223. http://dx.doi.org/10.1186/1475-2875-11-223. [PubMed]
117. Anthony TG, Conway DJ, Cox-Singh J, Matusop A, Ratnam S, Shamsul S, Singh B. 2005. Fragmented population structure of Plasmodium falciparum in a region of declining endemicity. J Infect Dis 191:1558–1564. http://dx.doi.org/10.1086/429338. [PubMed]
118. Lamberton PH, Cheke RA, Winskill P, Tirados I, Walker M, Osei-Atweneboana MY, Biritwum NK, Tetteh-Kumah A, Boakye DA, Wilson MD, Post RJ, Basañez MG. 2015. Onchocerciasis transmission in Ghana: persistence under different control strategies and the role of the simuliid vectors. PLoS Negl Trop Dis 9:e0003688. http://dx.doi.org/10.1371/journal.pntd.0003688. [PubMed]
119. Fischer PU, King CL, Jacobson JA, Weil GJ. 2017. Potential value of triple drug therapy with ivermectin, diethylcarbamazine, and albendazole (IDA) to accelerate elimination of lymphatic filariasis and onchocerciasis in Africa. PLoS Negl Trop Dis 11:e0005163. http://dx.doi.org/10.1371/journal.pntd.0005163. [PubMed]
120. Daniels RF, Schaffner SF, Wenger EA, Proctor JL, Chang HH, Wong W, Baro N, Ndiaye D, Fall FB, Ndiop M, Ba M, Milner DA, Jr, Taylor TE, Neafsey DE, Volkman SK, Eckhoff PA, Hartl DL, Wirth DF. 2015. Modeling malaria genomics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A 112:7067–7072. http://dx.doi.org/10.1073/pnas.1505691112. [PubMed]
121. Ingasia LA, Cheruiyot J, Okoth SA, Andagalu B, Kamau E. 2016. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya. Infect Genet Evol 39:372–380. http://dx.doi.org/10.1016/j.meegid.2015.10.013. [PubMed]
122. Bonizzoni M, Afrane Y, Baliraine FN, Amenya DA, Githeko AK, Yan G. 2009. Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya. Infect Genet Evol 9:806–812. http://dx.doi.org/10.1016/j.meegid.2009.04.015. [PubMed]
123. Gatei W, Gimnig JE, Hawley W, Ter Kuile F, Odero C, Iriemenam NC, Shah MP, Howard PP, Omosun YO, Terlouw DJ, Nahlen B, Slutsker L, Hamel MJ, Kariuki S, Walker E, Shi YP. 2015. Genetic diversity of Plasmodium falciparum parasite by microsatellite markers after scale-up of insecticide-treated bed nets in western Kenya. Malar J 13(Suppl 1) :495. http://dx.doi.org/10.1186/s12936-015-1003-x. [PubMed]
124. Carter TE, Malloy H, Existe A, Memnon G, St Victor Y, Okech BA, Mulligan CJ. 2015. Genetic diversity of Plasmodium falciparum in Haiti: insights from microsatellite markers. PLoS One 10:e0140416. http://dx.doi.org/10.1371/journal.pone.0140416. [PubMed]
125. Sisya TJ, Kamn’gona RM, Vareta JA, Fulakeza JM, Mukaka MF, Seydel KB, Laufer MK, Taylor TE, Nkhoma SC. 2015. Subtle changes in Plasmodium falciparum infection complexity following enhanced intervention in Malawi. Acta Trop 142:108–114. http://dx.doi.org/10.1016/j.actatropica.2014.11.008. [PubMed]
126. Nkhoma SC, Nair S, Cheeseman IH, Rohr-Allegrini C, Singlam S, Nosten F, Anderson TJ. 2012. Close kinship within multiple-genotype malaria parasite infections. Proc Biol Sci 279:2589–2598. http://dx.doi.org/10.1098/rspb.2012.0113. [PubMed]
127. Takezaki N, Nei M, Tamura K. 2014. POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752. [PubMed]
128. Excoffier L, Heckel G. 2006. Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758. [PubMed]
129. Rudge JW, Carabin H, Balolong E, Tallo V, Shrivastava J, Lu DB, Basanez MG, Olveda R, McGarvey ST, Webster JP. 2008. Population genetics of Schistosoma japonicum within the Philippines suggest high levels of transmission between humans and dogs. PLoS Negl Trop Dis 2:e340. [PubMed]

Article metrics loading...



Molecular epidemiology uses the distribution and organization of a pathogen’s DNA to understand the distribution and determinants of disease. Since the biology of DNA for eukaryotic pathogens differs substantially from that of bacteria, the analytic approach to their molecular epidemiology can also differ. While many of the genotyping techniques presented earlier in this series, “Advances in Molecular Epidemiology of Infectious Diseases,” can be applied to eukaryotes, the output must be interpreted in the light of how DNA is distributed from one generation to the next. In some cases, parasite populations can be evaluated in ways reminiscent of bacteria. They differ, however, when analyzed as sexually reproducing organisms, where all individuals are unique but the genetic composition of the population does not change unless a limited set of events occurs. It is these events (migration, mutation, nonrandom mating, selection, and genetic drift) that are of interest. At a given time, not all of them are likely to be equally important, so the list can easily be narrowed down to understand the driving forces behind the population as it is now and even what it will look like in the future. The main population characteristics measured to assess these events are differentiation and diversity, interpreted in the light of what is known about the population from observation. The population genetics of eukaryotes is important for planning and evaluation of control measures, surveillance, outbreak investigation, and monitoring of the development and spread of drug resistance.

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

There are 2 nearly identical copies of all chromosomes for diploid organisms, except those responsible for determining sex. The corresponding location on each chromosome is a locus. Specific differences or similarities within a locus are alleles. The identity of both alleles at a locus is the genotype. In this case the genotype is Aa, i.e., heterozygous. Were it AA, the genotype would be homozygous.

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0002-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Asexual organisms or organelles. Circular genome with bacterial reproduction; diploid linear genome and asexual eukaryotic reproduction. Every time the marker is present, the trait genotype is present. Sexual organisms. Shown are diagrams for sexual reproduction between organisms with diploid chromosomes. Reassortment; recombination and reassortment. Every time the marker is present, the trait genotype may or may not be present.

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0002-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Selected population genetics programs

Source: microbiolspec November 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.AME-0002-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error