1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Lee W. Riley1
  • Editors: Michael Sadowsky2, Ronald E. Blanton3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720; 2: BioTechnology Institute, University of Minnesota, St. Paul, MN; 3: Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0007-2019
  • Received 13 March 2019 Accepted 01 April 2019 Published 19 July 2019
  • Lee W. Riley, [email protected]
image of Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence<span class="xref">
<a href="#fn1">*</a>
</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/AME-0007-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/AME-0007-2019-2.gif
  • Abstract:

    One important scope of work of epidemiology is the investigation of infectious diseases that cluster in time and place. Clusters of infectious disease may represent outbreaks or epidemics in which the cases share in common a point source exposure or an infectious agent in a chain of transmission pathways. Investigations of outbreaks of an illness can facilitate identification of a source, risk, or cause of the illness. However, most infectious disease episodes occur not as part of any apparent outbreaks but as sporadic infections. Multiple sporadic infections that occur steadily in time and place are referred to as endemic disease. How does one investigate sources and risk factors for sporadic or endemic infections? As part of the Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, this review discusses limitations of traditional approaches and advantages of molecular epidemiology approaches to investigate sporadic and endemic infections. Using specific examples, the discussions show that most sporadic infections are actually part of unrecognized outbreaks and that what appears to be endemic disease occurrence is actually comprised of multiple small outbreaks. These molecular epidemiologic investigations have unmasked modes of transmission of infectious agents not known to cause outbreaks. They have also raised questions about the traditional ways to measure incidence and assess sources of drug-resistant infections in community settings. The discoveries made by the application of molecular microbiology methods in epidemiologic investigations have led to creation of new public health intervention strategies that have not been previously considered.

    *This article is part of a curated collection.

  • Citation: Riley L. 2019. Differentiating Epidemic from Endemic or Sporadic Infectious Disease Occurrence * . Microbiol Spectrum 7(4):AME-0007-2019. doi:10.1128/microbiolspec.AME-0007-2019.

References

1. Centers for Disease Control and Prevention. 2000. Probable locally acquired mosquito-transmitted Plasmodium vivax infection—Suffolk County, New York, 1999. MMWR Morb Mortal Wkly Rep 49:495–498.
2. Cohen ML, Tauxe RV. 1986. Drug-resistant Salmonella in the United States: an epidemiologic perspective. Science 234:964–969. http://dx.doi.org/10.1126/science.3535069. [PubMed]
3. Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. http://dx.doi.org/10.1128/AAC.45.4.1151-1161.2001. [PubMed]
4. Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y. 2008. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 52:1413–1418. http://dx.doi.org/10.1128/AAC.01103-07. [PubMed]
5. Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, Rahal JJ, Brooks S, Cebular S, Quale J. 2004. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 39:55–60. http://dx.doi.org/10.1086/421495. [PubMed]
6. Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Quale J. 2005. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435. http://dx.doi.org/10.1001/archinte.165.12.1430. [PubMed]
7. Bratu S, Mooty M, Nichani S, Landman D, Gullans C, Pettinato B, Karumudi U, Tolaney P, Quale J. 2005. Emergence of KPC-possessing Klebsiella pneumoniae in Brooklyn, New York: epidemiology and recommendations for detection. Antimicrob Agents Chemother 49:3018–3020. http://dx.doi.org/10.1128/AAC.49.7.3018-3020.2005. [PubMed]
8. Hujer AM, Keslar KS, Dietenberger NJ, Bethel CR, Endimiani A, Bonomo RA. 2009. Detection of SHV beta-lactamases in Gram-negative bacilli using fluorescein-labeled antibodies. BMC Microbiol 9:46. http://dx.doi.org/10.1186/1471-2180-9-46. [PubMed]
9. Gupta N, Limbago BM, Patel JB, Kallen AJ. 2011. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53:60–67. http://dx.doi.org/10.1093/cid/cir202. [PubMed]
10. Adams DA, Thomas KR, Jajosky RA, Foster L, Sharp P, Onweh DH, Schley AW, Anderson WJ, Nationally Notifiable Infectious Conditions Group. 2016. Summary of notifiable infectious diseases and conditions—United States, 2014. MMWR Morb Mortal Wkly Rep 63:1–152. http://dx.doi.org/10.15585/mmwr.mm6354a1. [PubMed]
11. Riley LW, DiFerdinando GT, Jr, DeMelfi TM, Cohen ML. 1983. Evaluation of isolated cases of salmonellosis by plasmid profile analysis: introduction and transmission of a bacterial clone by precooked roast beef. J Infect Dis 148:12–17. http://dx.doi.org/10.1093/infdis/148.1.12. [PubMed]
12. Bender JB, Hedberg CW, Besser JM, Boxrud DJ, MacDonald KL, Osterholm MT. 1997. Surveillance for Escherichia coli O157:H7 infections in Minnesota by molecular subtyping. N Engl J Med 337:388–394. http://dx.doi.org/10.1056/NEJM199708073370604. [PubMed]
13. Blake PA, Allegra DT, Snyder JD, Barrett TJ, McFarland L, Caraway CT, Feeley JC, Craig JP, Lee JV, Puhr ND, Feldman RA. 1980. Cholera—a possible endemic focus in the United States. N Engl J Med 302:305–309. http://dx.doi.org/10.1056/NEJM198002073020601. [PubMed]
14. Bender JB, Hedberg CW, Boxrud DJ, Besser JM, Wicklund JH, Smith KE, Osterholm MT. 2001. Use of molecular subtyping in surveillance for Salmonella enterica serotype typhimurium. N Engl J Med 344:189–195. http://dx.doi.org/10.1056/NEJM200101183440305. [PubMed]
15. Smith KE, Besser JM, Hedberg CW, Leano FT, Bender JB, Wicklund JH, Johnson BP, Moore KA, Osterholm MT, Investigation Team. 1999. Quinolone-resistant Campylobacter jejuni infections in Minnesota, 1992–1998. N Engl J Med 340:1525–1532. http://dx.doi.org/10.1056/NEJM199905203402001. [PubMed]
16. Heir E, Lindstedt BA, Nygård I, Vardund T, Hasseltvedt V, Kapperud G. 2002. Molecular epidemiology of Salmonella typhimurium isolates from human sporadic and outbreak cases. Epidemiol Infect 128:373–382. http://dx.doi.org/10.1017/S0950268802007045. [PubMed]
17. Kapperud G, Gustavsen S, Hellesnes I, Hansen AH, Lassen J, Hirn J, Jahkola M, Montenegro MA, Helmuth R. 1990. Outbreak of Salmonella typhimurium infection traced to contaminated chocolate and caused by a strain lacking the 60-megadalton virulence plasmid. J Clin Microbiol 28:2597–2601.
18. Mullner P, Shadbolt T, Collins-Emerson JM, Midwinter AC, Spencer SE, Marshall J, Carter PE, Campbell DM, Wilson DJ, Hathaway S, Pirie R, French NP. 2010. Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors. Epidemiol Infect 138:1372–1383. http://dx.doi.org/10.1017/S0950268809991579. [PubMed]
19. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. 2015. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J Clin Microbiol 53:1063–1071. http://dx.doi.org/10.1128/JCM.03235-14. [PubMed]
20. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, Wain J, Heyderman RS, Obaro S, Alonso PL, Mandomando I, MacLennan CA, Tapia MD, Levine MM, Tennant SM, Parkhill J, Dougan G. 2012. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 44:1215–1221. http://dx.doi.org/10.1038/ng.2423. [PubMed]
21. Mather AE, Reid SW, Maskell DJ, Parkhill J, Fookes MC, Harris SR, Brown DJ, Coia JE, Mulvey MR, Gilmour MW, Petrovska L, de Pinna E, Kuroda M, Akiba M, Izumiya H, Connor TR, Suchard MA, Lemey P, Mellor DJ, Haydon DT, Thomson NR. 2013. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341:1514–1517. http://dx.doi.org/10.1126/science.1240578. [PubMed]
22. Hawkey J, Edwards DJ, Dimovski K, Hiley L, Billman-Jacobe H, Hogg G, Holt KE. 2013. Evidence of microevolution of Salmonella Typhimurium during a series of egg-associated outbreaks linked to a single chicken farm. BMC Genomics 14:800. http://dx.doi.org/10.1186/1471-2164-14-800. [PubMed]
23. Tullus K, Hörlin K, Svenson SB, Källenius G. 1984. Epidemic outbreaks of acute pyelonephritis caused by nosocomial spread of P fimbriated Escherichia coli in children. J Infect Dis 150:728–736. http://dx.doi.org/10.1093/infdis/150.5.728. [PubMed]
24. Okuda T, Endo N, Osada Y, Zen-Yoji H. 1984. Outbreak of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol 20:691–695. [PubMed]
25. Su LH, Ou JT, Leu HS, Chiang PC, Chiu YP, Chia JH, Kuo AJ, Chiu CH, Chu C, Wu TL, Sun CF, Riley TV, Chang BJ, Infection Control Group. 2003. Extended epidemic of nosocomial urinary tract infections caused by Serratia marcescens. J Clin Microbiol 41:4726–4732. http://dx.doi.org/10.1128/JCM.41.10.4726-4732.2003. [PubMed]
26. Ikram R, Psutka R, Carter A, Priest P. 2015. An outbreak of multi-drug resistant Escherichia coli urinary tract infection in an elderly population: a case-control study of risk factors. BMC Infect Dis 15:224. http://dx.doi.org/10.1186/s12879-015-0974-0. [PubMed]
27. Foxman B, Brown P. 2003. Epidemiology of urinary tract infections: transmission and risk factors, incidence, and costs. Infect Dis Clin North Am 17:227–241. http://dx.doi.org/10.1016/S0891-5520(03)00005-9.
28. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE, Infectious Diseases Society of America, European Society for Microbiology and Infectious Diseases. 2011. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52:e103–e120. http://dx.doi.org/10.1093/cid/ciq257. [PubMed]
29. Foxman B, Barlow R, D’Arcy H, Gillespie B, Sobel JD. 2000. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 10:509–515. http://dx.doi.org/10.1016/S1047-2797(00)00072-7.
30. Naber KG, Schito G, Botto H, Palou J, Mazzei T. 2008. Surveillance study in Europe and Brazil on clinical aspects and antimicrobial resistance epidemiology in females with cystitis (ARESC): implications for empiric therapy. Eur Urol 54:1164–1175. http://dx.doi.org/10.1016/j.eururo.2008.05.010. [PubMed]
31. Suskind AM, Saigal CS, Hanley JM, Lai J, Setodji CM, Clemens JQ, Urologic Diseases of America Project. 2016. Incidence and management of uncomplicated recurrent urinary tract infections in a national sample of women in the United States. Urology 90:50–55. http://dx.doi.org/10.1016/j.urology.2015.11.051. [PubMed]
32. Phillips I, Eykyn S, King A, Gransden WR, Rowe B, Frost JA, Gross RJ. 1988. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1:1038–1041. http://dx.doi.org/10.1016/S0140-6736(88)91853-3.
33. Prats G, Mirelis B, Llovet T, Muñoz C, Miró E, Navarro F. 2000. Antibiotic resistance trends in enteropathogenic bacteria isolated in 1985–1987 and 1995–1998 in Barcelona. Antimicrob Agents Chemother 44:1140–1145. http://dx.doi.org/10.1128/AAC.44.5.1140-1145.2000. [PubMed]
34. Johnson JR, Stell AL, O’Bryan TT, Kuskowski M, Nowicki B, Johnson C, Maslow JN, Kaul A, Kavle J, Prats G. 2002. Global molecular epidemiology of the O15:K52:H1 extraintestinal pathogenic Escherichia coli clonal group: evidence of distribution beyond Europe. J Clin Microbiol 40:1913–1923. http://dx.doi.org/10.1128/JCM.40.6.1913-1923.2002. [PubMed]
35. Cagnacci S, Gualco L, Debbia E, Schito GC, Marchese A. 2008. European emergence of ciprofloxacin-resistant Escherichia coli clonal groups O25:H4-ST 131 and O15:K52:H1 causing community-acquired uncomplicated cystitis. J Clin Microbiol 46:2605–2612. http://dx.doi.org/10.1128/JCM.00640-08. [PubMed]
36. Olesen B, Scheutz F, Menard M, Skov MN, Kolmos HJ, Kuskowski MA, Johnson JR. 2009. Three-decade epidemiological analysis of Escherichia coli O15:K52:H1. J Clin Microbiol 47:1857–1862. http://dx.doi.org/10.1128/JCM.00230-09. [PubMed]
37. Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW. 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345:1007–1013. http://dx.doi.org/10.1056/NEJMoa011265. [PubMed]
38. Tartof SY, Solberg OD, Manges AR, Riley LW. 2005. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol 43:5860–5864. http://dx.doi.org/10.1128/JCM.43.12.5860-5864.2005. [PubMed]
39. Colomer-Lluch M, Mora A, López C, Mamani R, Dahbi G, Marzoa J, Herrera A, Viso S, Blanco JE, Blanco M, Alonso MP, Jofre J, Muniesa M, Blanco J. 2013. Detection of quinolone-resistant Escherichia coli isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river water in Barcelona, Spain. J Antimicrob Chemother 68:758–765. http://dx.doi.org/10.1093/jac/dks477. [PubMed]
40. Skjøt-Rasmussen L, Olsen SS, Jakobsen L, Ejrnaes K, Scheutz F, Lundgren B, Frimodt-Møller N, Hammerum AM. 2013. Escherichia coli clonal group A causing bacteraemia of urinary tract origin. Clin Microbiol Infect 19:656–661. http://dx.doi.org/10.1111/j.1469-0691.2012.03961.x. [PubMed]
41. Adams-Sapper S, Sergeevna-Selezneva J, Tartof S, Raphael E, Diep BA, Perdreau-Remington F, Riley LW. 2012. Globally dispersed mobile drug-resistance genes in gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital. J Med Microbiol 61:968–974. http://dx.doi.org/10.1099/jmm.0.041970-0. [PubMed]
42. Ajiboye RM, Solberg OD, Lee BM, Raphael E, Debroy C, Riley LW. 2009. Global spread of mobile antimicrobial drug resistance determinants in human and animal Escherichia coli and Salmonella strains causing community-acquired infections. Clin Infect Dis 49:365–371. http://dx.doi.org/10.1086/600301. [PubMed]
43. Manges AR, Perdreau-Remington F, Solberg O, Riley LW. 2006. Multidrug-resistant Escherichia coli clonal groups causing community-acquired bloodstream infections. J Infect 53:25–29. http://dx.doi.org/10.1016/j.jinf.2005.09.012. [PubMed]
44. Manges AR, Dietrich PS, Riley LW. 2004. Multidrug-resistant Escherichia coli clonal groups causing community-acquired pyelonephritis. Clin Infect Dis 38:329–334. http://dx.doi.org/10.1086/380640. [PubMed]
45. Smith SP, Manges AR, Riley LW. 2008. Temporal changes in the prevalence of community-acquired antimicrobial-resistant urinary tract infection affected by Escherichia coli clonal group composition. Clin Infect Dis 46:689–695. http://dx.doi.org/10.1086/527386. [PubMed]
46. Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390. http://dx.doi.org/10.1111/1469-0691.12646. [PubMed]
47. Johnson JR, Manges AR, O’Bryan TT, Riley LW. 2002. A disseminated multidrug-resistant clonal group of uropathogenic Escherichia coli in pyelonephritis. Lancet 359:2249–2251. http://dx.doi.org/10.1016/S0140-6736(02)09264-4.
48. Dias RC, Marangoni DV, Smith SP, Alves EM, Pellegrino FL, Riley LW, Moreira BM. 2009. Clonal composition of Escherichia coli causing community-acquired urinary tract infections in the State of Rio de Janeiro, Brazil. Microb Drug Resist 15:303–308. http://dx.doi.org/10.1089/mdr.2009.0067. [PubMed]
49. Johnson JR, Murray AC, Kuskowski MA, Schubert S, Prère MF, Picard B, Colodner R, Raz R, Trans-Global Initiative for Antimicrobial Resistance Initiative (TIARA) Investigators. 2005. Distribution and characteristics of Escherichia coli clonal group A. Emerg Infect Dis 11:141–145. http://dx.doi.org/10.3201/eid1101.040418. [PubMed]
50. Johnson JR, Menard M, Johnston B, Kuskowski MA, Nichol K, Zhanel GG. 2009. Epidemic clonal groups of Escherichia coli as a cause of antimicrobial-resistant urinary tract infections in Canada, 2002 to 2004. Antimicrob Agents Chemother 53:2733–2739. http://dx.doi.org/10.1128/AAC.00297-09. [PubMed]
51. Johnson JR, Menard ME, Lauderdale TL, Kosmidis C, Gordon D, Collignon P, Maslow JN, Andrasević AT, Kuskowski MA, Trans-Global Initiative for Antimicrobial Resistance Analysis Investigators. 2011. Global distribution and epidemiologic associations of Escherichia coli clonal group A, 1998–2007. Emerg Infect Dis 17:2001–2009. http://dx.doi.org/10.3201/eid1711.110488. [PubMed]
52. Ramchandani M, Manges AR, DebRoy C, Smith SP, Johnson JR, Riley LW. 2005. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40:251–257. http://dx.doi.org/10.1086/426819. [PubMed]
53. Agersø Y, Jensen JD, Hasman H, Pedersen K. 2014. Spread of extended spectrum cephalosporinase-producing Escherichia coli clones and plasmids from parent animals to broilers and to broiler meat in a production without use of cephalosporins. Foodborne Pathog Dis 11:740–746. http://dx.doi.org/10.1089/fpd.2014.1742. [PubMed]
54. Johnson JR, Porter SB, Johnston B, Thuras P, Clock S, Crupain M, Rangan U. 2017. Extraintestinal pathogenic and antimicrobial-resistant Escherichia coli, including sequence type 131 (ST131), from retail chicken breasts in the United States in 2013. Appl Environ Microbiol 83:e02956-16. http://dx.doi.org/10.1128/AEM.02956-16. [PubMed]
55. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, Galanakis C, Reid-Smith RJ, Tellier PP, Tellis PA, Ziebell K, Manges AR. 2010. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16:88–95. http://dx.doi.org/10.3201/eid1601.091118. [PubMed]
56. Ender PT, Gajanana D, Johnston B, Clabots C, Tamarkin FJ, Johnson JR. 2009. Transmission of an extended-spectrum-beta-lactamase-producing Escherichia coli (sequence type ST131) strain between a father and daughter resulting in septic shock and emphysematous pyelonephritis. J Clin Microbiol 47:3780–3782. http://dx.doi.org/10.1128/JCM.01361-09. [PubMed]
57. Johnson JR, Owens K, Gajewski A, Clabots C. 2008. Escherichia coli colonization patterns among human household members and pets, with attention to acute urinary tract infection. J Infect Dis 197:218–224. http://dx.doi.org/10.1086/524844. [PubMed]
58. Johnson JR, Clabots C. 2006. Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clin Infect Dis 43:e101–e108. http://dx.doi.org/10.1086/508541. [PubMed]
59. Ewers C, Bethe A, Wieler LH, Guenther S, Stamm I, Kopp PA, Grobbel M. 2011. Companion animals: a relevant source of extended-spectrum β-lactamase-producing fluoroquinolone-resistant Citrobacter freundii. Int J Antimicrob Agents 37:86–87. http://dx.doi.org/10.1016/j.ijantimicag.2010.09.007. [PubMed]
60. Platell JL, Cobbold RN, Johnson JR, Heisig A, Heisig P, Clabots C, Kuskowski MA, Trott DJ. 2011. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 55:3782–3787. http://dx.doi.org/10.1128/AAC.00306-11. [PubMed]
61. Bert F, Panhard X, Johnson J, Lecuyer H, Moreau R, Le Grand J, Johnston B, Sinègre M, Valla D, Nicolas-Chanoine MH. 2008. Genetic background of Escherichia coli isolates from patients with spontaneous bacterial peritonitis: relationship with host factors and prognosis. Clin Microbiol Infect 14:1034–1040. http://dx.doi.org/10.1111/j.1469-0691.2008.02088.x. [PubMed]
62. Johnson JR, Miller S, Johnston B, Clabots C, Debroy C. 2009. Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. J Clin Microbiol 47:3721–3725. http://dx.doi.org/10.1128/JCM.01581-09. [PubMed]
63. Adams-Sapper S, Diep BA, Perdreau-Remington F, Riley LW. 2013. Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agents Chemother 57:490–497. http://dx.doi.org/10.1128/AAC.01025-12. [PubMed]
64. Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention, Atlanta, GA.
65. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK. 2016. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:e51–e77. http://dx.doi.org/10.1093/cid/ciw118. [PubMed]
66. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK. 2016. Executive summary: implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:1197–1202. http://dx.doi.org/10.1093/cid/ciw217. [PubMed]
67. Food and Drug Administration. 2010. CVM Updates—CVM Reports on Antimicrobials Sold or Distributed for Food-Producing Animals. Food and Drug Administration, Silver Spring, MD.
68. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A 112:5649–5654. http://dx.doi.org/10.1073/pnas.1503141112. [PubMed]
69. Krishnasamy V, Otte J, Silbergeld E. 2015. Antimicrobial use in Chinese swine and broiler poultry production. Antimicrob Resist Infect Control 4:17. http://dx.doi.org/10.1186/s13756-015-0050-y. [PubMed]
70. Cherubin CE. 1981. Antibiotic resistance of Salmonella in Europe and the United States. Rev Infect Dis 3:1105–1126. http://dx.doi.org/10.1093/clinids/3.6.1105. [PubMed]
71. Cherubin CE, Timoney JF, Sierra MF, Ma P, Marr J, Shin S. 1980. A sudden decline in ampicillin resistance in Salmonella typhimurium. JAMA 243:439–442. http://dx.doi.org/10.1001/jama.1980.03300310027017. [PubMed]
72. Angulo FJ, Johnson KR, Tauxe RV, Cohen ML. 2000. Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microb Drug Resist 6:77–83. http://dx.doi.org/10.1089/mdr.2000.6.77. [PubMed]
73. US Congress Office of Technology Assessment. 1995. Impacts of Antibiotic-Resistant Bacteria. US Government Printing Office, Washington, DC.
74. Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG, Jr. 2002. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci U S A 99:6434–6439. http://dx.doi.org/10.1073/pnas.082188899. [PubMed]
75. Sarmah AK, Meyer MT, Boxall AB. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. http://dx.doi.org/10.1016/j.chemosphere.2006.03.026. [PubMed]
76. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J. 2004. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52. http://dx.doi.org/10.1093/jac/dkg483. [PubMed]
77. Soulsby EJ. 2005. Resistance to antimicrobials in humans and animals. BMJ 331:1219–1220. http://dx.doi.org/10.1136/bmj.331.7527.1219. [PubMed]
78. Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J, Jr, Infectious Diseases Society of America. 2008. The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164. http://dx.doi.org/10.1086/524891. [PubMed]
79. Aitken SL, Dilworth TJ, Heil EL, Nailor MD. 2016. Agricultural applications for antimicrobials. A danger to human health: an official position statement of the Society of Infectious Diseases Pharmacists. Pharmacotherapy 36:422–432. http://dx.doi.org/10.1002/phar.1737. [PubMed]
80. Hu Y, Cheng H. 2016. Health risk from veterinary antimicrobial use in China’s food animal production and its reduction. Environ Pollut 219:993–997. http://dx.doi.org/10.1016/j.envpol.2016.04.099. [PubMed]
81. Cerniglia CE, Pineiro SA, Kotarski SF. 2016. An update discussion on the current assessment of the safety of veterinary antimicrobial drug residues in food with regard to their impact on the human intestinal microbiome. Drug Test Anal 8:539–548. http://dx.doi.org/10.1002/dta.2024. [PubMed]
82. Cabello FC, Godfrey HP. 2016. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environ Microbiol 18:311–313. http://dx.doi.org/10.1111/1462-2920.13247. [PubMed]
83. Aarestrup FM. 2015. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos Trans R Soc Lond B Biol Sci 370:20140085. http://dx.doi.org/10.1098/rstb.2014.0085. [PubMed]
84. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW. 2018. Persistent pandemic lineages of uropathogenic Escherichia coli in a college community—1999–2017. J Clin Microbiol 56:e01834-17. http://dx.doi.org/10.1128/JCM.01834-17. [PubMed]
85. Ko AI, Reis JN, Coppola SJ, Gouveia EL, Cordeiro SM, Lôbo TS, Pinheiro RM, Salgado K, Ribeiro Dourado CM, Tavares-Neto J, Rocha H, Galvão Reis M, Johnson WD Jr, Riley LW. 2000. Clonally related penicillin-nonsusceptible Streptococcus pneumoniae serotype 14 from cases of meningitis in Salvador, Brazil. Clin Infect Dis 30:78–86. http://dx.doi.org/10.1086/313619. [PubMed]
86. Frieden TR, Sherman LF, Maw KL, Fujiwara PI, Crawford JT, Nivin B, Sharp V, Hewlett D Jr, Brudney K, Alland D, Kreisworth BN. 1996. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA 276:1229–1235. http://dx.doi.org/10.1001/jama.1996.03540150031027. [PubMed]
87. Friedman CR, Stoeckle MY, Kreiswirth BN, Johnson WD Jr, Manoach SM, Berger J, Sathianathan K, Hafner A, Riley LW. 1995. Transmission of multidrug-resistant tuberculosis in a large urban setting. Am J Respir Crit Care Med 152:355–359. http://dx.doi.org/10.1164/ajrccm.152.1.7599845. [PubMed]
88. Gandhi NR, Weissman D, Moodley P, Ramathal M, Elson I, Kreiswirth BN, Mathema B, Shashkina E, Rothenberg R, Moll AP, Friedland G, Sturm AW, Shah NS. 2013. Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis 207:9–17. http://dx.doi.org/10.1093/infdis/jis631. [PubMed]
89. Shah NS, Auld SC, Brust JC, Mathema B, Ismail N, Moodley P, Mlisana K, Allana S, Campbell A, Mthiyane T, Morris N, Mpangase P, van der Meulen H, Omar SV, Brown TS, Narechania A, Shaskina E, Kapwata T, Kreiswirth B, Gandhi NR. 2017. Transmission of extensively drug-resistant tuberculosis in South Africa. N Engl J Med 376:243–253. http://dx.doi.org/10.1056/NEJMoa1604544. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AME-0007-2019
2019-07-19
2019-10-14

Abstract:

One important scope of work of epidemiology is the investigation of infectious diseases that cluster in time and place. Clusters of infectious disease may represent outbreaks or epidemics in which the cases share in common a point source exposure or an infectious agent in a chain of transmission pathways. Investigations of outbreaks of an illness can facilitate identification of a source, risk, or cause of the illness. However, most infectious disease episodes occur not as part of any apparent outbreaks but as sporadic infections. Multiple sporadic infections that occur steadily in time and place are referred to as endemic disease. How does one investigate sources and risk factors for sporadic or endemic infections? As part of the Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, this review discusses limitations of traditional approaches and advantages of molecular epidemiology approaches to investigate sporadic and endemic infections. Using specific examples, the discussions show that most sporadic infections are actually part of unrecognized outbreaks and that what appears to be endemic disease occurrence is actually comprised of multiple small outbreaks. These molecular epidemiologic investigations have unmasked modes of transmission of infectious agents not known to cause outbreaks. They have also raised questions about the traditional ways to measure incidence and assess sources of drug-resistant infections in community settings. The discoveries made by the application of molecular microbiology methods in epidemiologic investigations have led to creation of new public health intervention strategies that have not been previously considered.

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error