1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Population Structure and Dynamics of Helminthic Infection: Schistosomiasis *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Ronald E. Blanton1
  • Editors: Michael Sadowsky2, Lee W. Riley3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44120; 2: BioTechnology Institute, University of Minnesota, St. Paul, MN; 3: Divisions of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0009-2019
  • Received 26 March 2019 Accepted 02 April 2019 Published 19 July 2019
  • Ronald E. Blanton, [email protected]
image of Population Structure and Dynamics of Helminthic Infection: Schistosomiasis<span class="xref">
<a href="#fn1">*</a>
</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Population Structure and Dynamics of Helminthic Infection: Schistosomiasis * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/AME-0009-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/4/AME-0009-2019-2.gif
  • Abstract:

    While disease and outbreaks are mainly clonal for bacteria and other asexually reproducing organisms, sexual reproduction in schistosomes and other helminths usually results in unique individuals. For sexually reproducing organisms, the traits conserved in clones will instead be conserved in the group of organisms that tends to breed together, the population. While the same tools are applied to characterize DNA, how results are interpreted can be quite different at times (see another article in this collection, http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.AME-0002-2018). It is difficult to know what the real effect any control program has on the parasite population without assessing the health of this population, how they respond to the control measure, and how they recover, if they do. This review, part of the Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, concentrates on one approach using pooled samples to study schistosome populations and shows how this and other approaches have contributed to our understanding of this parasite family’s biology and epidemiology.

    *This article is part of a curated collection.

  • Citation: Blanton R. 2019. Population Structure and Dynamics of Helminthic Infection: Schistosomiasis * . Microbiol Spectrum 7(4):AME-0009-2019. doi:10.1128/microbiolspec.AME-0009-2019.

References

1. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis 6:411–425. http://dx.doi.org/10.1016/S1473-3099(06)70521-7.
2. Assis AM, Prado MS, Barreto ML, Reis MG, Conceição Pinheiro SM, Parraga IM, Blanton RE. 2004. Childhood stunting in Northeast Brazil: the role of Schistosoma mansoni infection and inadequate dietary intake. Eur J Clin Nutr 58:1022–1029. http://dx.doi.org/10.1038/sj.ejcn.1601926. [PubMed]
3. Colley DG, Bustinduy AL, Secor WE, King CH. 2014. Human schistosomiasis. Lancet 383:2253–2264. http://dx.doi.org/10.1016/S0140-6736(13)61949-2.
4. Secor WE. 2012. The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Curr Opin HIV AIDS 7:254–259. http://dx.doi.org/10.1097/COH.0b013e328351b9e3. [PubMed]
5. Katz N, Chaves A, Pellegrino J. 1972. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop São Paulo 14:397–400.
6. Bell DR. 1963. A new method for counting Schistosoma mansoni eggs in faeces: with special reference to therapeutic trials. Bull World Health Organ 29:525–530.
7. King CH, Bertsch D. 2013. Meta-analysis of urine heme dipstick diagnosis of Schistosoma haematobium infection, including low-prevalence and previously-treated populations. PLoS Negl Trop Dis 7:e2431. http://dx.doi.org/10.1371/journal.pntd.0002431. [PubMed]
8. de Jonge N, Kremsner PG, Krijger FW, Schommer G, Fillié YE, Kornelis D, van Zeyl RJ, van Dam GJ, Feldmeier H, Deelder AM. 1990. Detection of the schistosome circulating cathodic antigen by enzyme immunoassay using biotinylated monoclonal antibodies. Trans R Soc Trop Med Hyg 84:815–818. http://dx.doi.org/10.1016/0035-9203(90)90094-U.
9. Colley DG, Binder S, Campbell C, King CH, Tchuem Tchuenté LA, N’Goran EK, Erko B, Karanja DMS, Kabatereine NB, van Lieshout L, Rathbun S. 2013. A five-country evaluation of a point-of-care circulating cathodic antigen urine assay for the prevalence of Schistosoma mansoni. Am J Trop Med Hyg 88:426–432. http://dx.doi.org/10.4269/ajtmh.12-0639. [PubMed]
10. Coelho PM, Siqueira LM, Grenfell RF, Almeida NB, Katz N, Almeida Á, Carneiro NF, Oliveira E. 2016. Improvement of POC-CCA interpretation by using lyophilization of urine from patients with Schistosoma mansoni low worm burden: towards an elimination of doubts about the concept of trace. PLoS Negl Trop Dis 10:e0004778. http://dx.doi.org/10.1371/journal.pntd.0004778. [PubMed]
11. Hamburger J, Hoffman O, Kariuki HC, Muchiri EM, Ouma JH, Koech DK, Sturrock RF, King CH. 2004. Large-scale, polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: a new tool for studying the dynamics of snail infection. Am J Trop Med Hyg 71:765–773. http://dx.doi.org/10.4269/ajtmh.2004.71.765. [PubMed]
12. Hamburger J, Turetski T, Kapeller I, Deresiewicz R. 1991. Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe. Mol Biochem Parasitol 44:73–80. http://dx.doi.org/10.1016/0166-6851(91)90222-R.
13. Meurs L, Brienen E, Mbow M, Ochola EA, Mboup S, Karanja DM, Secor WE, Polman K, van Lieshout L. 2015. Is PCR the next reference standard for the diagnosis of Schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Negl Trop Dis 9:e0003959. http://dx.doi.org/10.1371/journal.pntd.0003959. [PubMed]
14. Danso-Appiah A, Olliaro PL, Donegan S, Sinclair D, Utzinger J. 2014. Drugs for treating Schistosoma mansoni infection. Cochrane Database Syst Rev 2013(2) :CD000528. doi:10.1002/14651858.CD000528.pub2:CD000528. [PubMed]
15. Kramer CV, Zhang F, Sinclair D, Olliaro PL. 2014. Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev 2014(8) :CD000053. doi:10.1002/14651858.CD000053.pub3:CD000053.
16. Coeli R, Baba EH, Araujo N, Coelho PM, Oliveira G. 2013. Praziquantel treatment decreases Schistosoma mansoni genetic diversity in experimental infections. PLoS Negl Trop Dis 7:e2596. http://dx.doi.org/10.1371/journal.pntd.0002596. [PubMed]
17. Coles GC, Bruce JI. 1987. In vitro selection of drug resistant Schistosoma mansoni. Int J Parasitol 17:767–771. http://dx.doi.org/10.1016/0020-7519(87)90057-9.
18. Fallon PG, Doenhoff MJ. 1994. Drug-resistant schistosomiasis: resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am J Trop Med Hyg 51:83–88. http://dx.doi.org/10.4269/ajtmh.1994.51.83. [PubMed]
19. Coelho PM, Lima e Silva FC, Nogueira-Machado JA. 1997. Resistance to oxamniquine of a Schistosoma mansoni strain isolated from patient submitted to repeated treatments. Rev Inst Med Trop Sao Paulo 39:101–106. http://dx.doi.org/10.1590/S0036-46651997000200007. [PubMed]
20. Valentim CL, Cioli D, Chevalier FD, Cao X, Taylor AB, Holloway SP, Pica-Mattoccia L, Guidi A, Basso A, Tsai IJ, Berriman M, Carvalho-Queiroz C, Almeida M, Aguilar H, Frantz DE, Hart PJ, LoVerde PT, Anderson TJ. 2013. Genetic and molecular basis of drug resistance and species-specific drug action in schistosome parasites. Science 342:1385–1389. http://dx.doi.org/10.1126/science.1243106. [PubMed]
21. Dias LC, Olivier CE. 1986. Failure at inducing resistance to schistosomicidal drugs in a Brazilian human strain of Schistosoma mansoni. Rev Inst Med Trop Sao Paulo 28:352–357. http://dx.doi.org/10.1590/S0036-46651986000500010. [PubMed]
22. Ismail MM, Taha SA, Farghaly AM, el-Azony AS. 1994. Laboratory induced resistance to praziquantel in experimental schistosomiasis. J Egypt Soc Parasitol 24:685–695.
23. Li HJ, Liang YS, Dai JR, Wang W, Qu GL, Li YZ, Xing YT, Tao YH, Qian K, Jia Y, Yang ZK, Wei JY. 2011. Studies on resistance of Schistosoma to praziquantel XIV experimental comparison of susceptibility to praziquantel between PZQ-resistant isolates and PZQ-susceptible isolates of Schistosoma japonicum in stages of adult worms, miracidia and cercariae. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 23:611–619. (In Chinese.)
24. Lamberton PHL, Faust CL, Webster JP. 2017. Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study. Infect Dis Poverty 6:110. http://dx.doi.org/10.1186/s40249-017-0324-0. [PubMed]
25. Colley DG, Andros TS, Campbell CH, Jr. 2017. Schistosomiasis is more prevalent than previously thought: what does it mean for public health goals, policies, strategies, guidelines and intervention programs? Infect Dis Poverty 6:63. http://dx.doi.org/10.1186/s40249-017-0275-5. [PubMed]
26. Gryseels B, Mbaye A, De Vlas SJ, Stelma FF, Guissé F, Van Lieshout L, Faye D, Diop M, Ly A, Tchuem-Tchuenté LA, Engels D, Polman K. 2001. Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop Med Int Health 6:864–873. http://dx.doi.org/10.1046/j.1365-3156.2001.00811.x. [PubMed]
27. Ismail M, Metwally A, Farghaly A, Bruce J, Tao LF, Bennett JL. 1996. Characterization of isolates of Schistosoma mansoni from Egyptian villagers that tolerate high doses of praziquantel. Am J Trop Med Hyg 55:214–218. http://dx.doi.org/10.4269/ajtmh.1996.55.214. [PubMed]
28. Melman SD, Steinauer ML, Cunningham C, Kubatko LS, Mwangi IN, Wynn NB, Mutuku MW, Karanja DM, Colley DG, Black CL, Secor WE, Mkoji GM, Loker ES. 2009. Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3:e504. http://dx.doi.org/10.1371/journal.pntd.0000504. [PubMed]
29. Silva IM, Thiengo R, Conceição MJ, Rey L, Lenzi HL, Pereira Filho E, Ribeiro PC. 2005. Therapeutic failure of praziquantel in the treatment of Schistosoma haematobium infection in Brazilians returning from Africa. Mem Inst Oswaldo Cruz 100:445–449. http://dx.doi.org/10.1590/S0074-02762005000400018. [PubMed]
30. Crellen T, Walker M, Lamberton PH, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP. 2016. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin Infect Dis 63:1151–1159. [PubMed]
31. Huyse T, Van den Broeck F, Jombart T, Webster BL, Diaw O, Volckaert FA, Balloux F, Rollinson D, Polman K. 2013. Regular treatments of praziquantel do not impact on the genetic make-up of Schistosoma mansoni in Northern Senegal. Infect Genet Evol 18:100–105. http://dx.doi.org/10.1016/j.meegid.2013.05.007. [PubMed]
32. King CH, Muchiri EM, Ouma JH. 2000. Evidence against rapid emergence of praziquantel resistance in Schistosoma haematobium, Kenya. Emerg Infect Dis 6:585–594. http://dx.doi.org/10.3201/eid0606.000606. [PubMed]
33. Coles GC. 1970. A comparison of some isoenzymes of Schistosoma mansoni and Schistosoma haematobium. Comp Biochem Physiol 33:549–558. http://dx.doi.org/10.1016/0010-406X(70)90370-1.
34. McCutchan TF, Simpson AJ, Mullins JA, Sher A, Nash TE, Lewis F, Richards C. 1984. Differentiation of schistosomes by species, strain, and sex by using cloned DNA markers. Proc Natl Acad Sci U S A 81:889–893. http://dx.doi.org/10.1073/pnas.81.3.889. [PubMed]
35. Dias Neto E, de Souza CP, Rollinson D, Katz N, Pena SD, Simpson AJ. 1993. The random amplification of polymorphic DNA allows the identification of strains and species of schistosome. Mol Biochem Parasitol 57:83–88. http://dx.doi.org/10.1016/0166-6851(93)90246-T.
36. Le TH, Blair D, McManus DP. 2000. Mitochondrial DNA sequences of human schistosomes: the current status. Int J Parasitol 30:283–290. http://dx.doi.org/10.1016/S0020-7519(99)00204-0.
37. Zarowiecki MZ, Huyse T, Littlewood DT. 2007. Making the most of mitochondrial genomes—markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes: digenea). Int J Parasitol 37:1401–1418. http://dx.doi.org/10.1016/j.ijpara.2007.04.014. [PubMed]
38. Curtis J, Fraga LA, de Souza CP, Corrêa-Oliveira R, Minchella DJ. 2001. Widespread heteroplasmy in schistosomes makes an mtVNTR marker “nearsighted.” J Hered 92:248–253. http://dx.doi.org/10.1093/jhered/92.3.248. [PubMed]
39. Jannotti-Passos LK, Souza CP, Parra JC, Simpson AJ. 2001. Biparental mitochondrial DNA inheritance in the parasitic trematode Schistosoma mansoni. J Parasitol 87:79–82. http://dx.doi.org/10.1645/0022-3395(2001)087[0079:BMDIIT]2.0.CO;2.
40. Subramanian S, Mishra RK, Singh L. 2003. Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4:R13. http://dx.doi.org/10.1186/gb-2003-4-2-r13. [PubMed]
41. Criscione CD, Valentim CL, Hirai H, LoVerde PT, Anderson TJ. 2009. Genomic linkage map of the human blood fluke Schistosoma mansoni. Genome Biol 10:R71. http://dx.doi.org/10.1186/gb-2009-10-6-r71. [PubMed]
42. Rodrigues NB, Loverde PT, Romanha AJ, Oliveira G. 2002. Characterization of new Schistosoma mansoni microsatellite loci in sequences obtained from public DNA databases and microsatellite enriched genomic libraries. Mem Inst Oswaldo Cruz 97(Suppl 1) :71–75. http://dx.doi.org/10.1590/S0074-02762002000900015. [PubMed]
43. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D, International SNP Map Working Group. 2001. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933. http://dx.doi.org/10.1038/35057149. [PubMed]
44. Shortt JA, Card DC, Schield DR, Liu Y, Zhong B, Castoe TA, Carlton EJ, Pollock DD. 2017. Whole genome amplification and reduced-representation genome sequencing of Schistosoma japonicum miracidia. PLoS Negl Trop Dis 11:e0005292. http://dx.doi.org/10.1371/journal.pntd.0005292. [PubMed]
45. Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D. 2013. Introgressive hybridization of Schistosoma haematobium group species in Senegal: species barrier break down between ruminant and human schistosomes. PLoS Negl Trop Dis 7:e2110. http://dx.doi.org/10.1371/journal.pntd.0002110. [PubMed]
46. Boissier J, Grech-Angelini S, Webster BL, Allienne JF, Huyse T, Mas-Coma S, Toulza E, Barré-Cardi H, Rollinson D, Kincaid-Smith J, Oleaga A, Galinier R, Foata J, Rognon A, Berry A, Mouahid G, Henneron R, Moné H, Noel H, Mitta G. 2016. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect Dis 16:971–979. http://dx.doi.org/10.1016/S1473-3099(16)00175-4.
47. Souza SS, Barbosa LM, Guimarães IC, Blank WA, Reis RB, Reis MG, Blanton RE, Andrade ZA. 2012. Genetic population structure of cercariae from an urban foci of Schistosoma mansoni, Brazil. Am J Trop Med Hyg 87:843–849. http://dx.doi.org/10.4269/ajtmh.2012.11-0641. [PubMed]
48. Wilson RA, van Dam GJ, Kariuki TM, Farah IO, Deelder AM, Coulson PS. 2006. The detection limits for estimates of infection intensity in schistosomiasis mansoni established by a study in non-human primates. Int J Parasitol 36:1241–1244. http://dx.doi.org/10.1016/j.ijpara.2006.07.002. [PubMed]
49. Fumagalli M. 2013. Assessing the effect of sequencing depth and sample size in population genetics inferences. PLoS One 8:e79667. http://dx.doi.org/10.1371/journal.pone.0079667. [PubMed]
50. Anderson R. 1987. Determinants of infection in human schistosomiasis, p 279–300. In Mahmoud A (ed), Ballière’s Clinical Tropical Medicine and Communicable Diseases, vol 2. Ballière Tindall, London, United Kingdom.
51. von Lichtenberg E. 1987. Consequences of infections with schistosomes, p 185–232. In Rollinson D, Simpson A (ed), The Biology of Schistosomes from Genes to Latrines. Acadamic Press, London, United Kingdom.
52. Bush AO, Lafferty KD, Lotz JM, Shostak AW. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583. http://dx.doi.org/10.2307/3284227. [PubMed]
53. Barbosa LM, Silva LK, Reis EA, Azevedo TM, Costa JM, Blank WA, Reis MG, Blanton RE. 2013. Characteristics of the human host have little influence on which local Schistosoma mansoni populations are acquired. PLoS Negl Trop Dis 7:e2572. http://dx.doi.org/10.1371/journal.pntd.0002572. [PubMed]
54. Van den Broeck F, Meurs L, Raeymaekers JA, Boon N, Dieye TN, Volckaert FA, Polman K, Huyse T. 2014. Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations? Heredity (Edinb) 113:32–41. http://dx.doi.org/10.1038/hdy.2014.13. [PubMed]
55. Brouwer KC, Ndhlovu PD, Wagatsuma Y, Munatsi A, Shiff CJ. 2003. Urinary tract pathology attributed to Schistosoma haematobium: does parasite genetics play a role? Am J Trop Med Hyg 68:456–462. http://dx.doi.org/10.4269/ajtmh.2003.68.456. [PubMed]
56. Kassim O, Gibertson DE. 1976. Hatching of Schistosoma mansoni eggs and observations on motility of miracidia. J Parasitol 62:715–720. http://dx.doi.org/10.2307/3278948. [PubMed]
57. Webster JP, Davies CM. 2001. Coevolution and compatibility in the snail-schistosome system. Parasitology 123(Suppl) :S41–S56. http://dx.doi.org/10.1017/S0031182001008071.
58. LoVerde PT, DeWald J, Minchella DJ, Bosshardt SC, Damian RT. 1985. Evidence for host-induced selection in Schistosoma mansoni. J Parasitol 71:297–301. http://dx.doi.org/10.2307/3282010. [PubMed]
59. French MD, Churcher TS, Basáñez MG, Norton AJ, Lwambo NJ, Webster JP. 2013. Reductions in genetic diversity of Schistosoma mansoni populations under chemotherapeutic pressure: the effect of sampling approach and parasite population definition. Acta Trop 128:196–205. http://dx.doi.org/10.1016/j.actatropica.2012.03.001. [PubMed]
60. Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR. 2013. New insights into the molecular epidemiology and population genetics of Schistosoma mansoni in Ugandan pre-school children and mothers. PLoS Negl Trop Dis 7:e2561. http://dx.doi.org/10.1371/journal.pntd.0002561. [PubMed]
61. Barbosa LM, Barros BC, de Souza Rodrigues M, Silva LK, Reis MG, Blanton RE. 2018. The effect of sample size on estimates of genetic differentiation and effective population size for Schistosoma mansoni populations. Int J Parasitol 48:1149–1154. http://dx.doi.org/10.1016/j.ijpara.2018.10.001. [PubMed]
62. Steinauer ML, Agola LE, Mwangi IN, Mkoji GM, Loker ES. 2008. Molecular epidemiology of Schistosoma mansoni: a robust, high-throughput method to assess multiple microsatellite markers from individual miracidia. Infect Genet Evol 8:68–73. http://dx.doi.org/10.1016/j.meegid.2007.10.004. [PubMed]
63. Valentim CL, LoVerde PT, Anderson TJ, Criscione CD. 2009. Efficient genotyping of Schistosoma mansoni miracidia following whole genome amplification. Mol Biochem Parasitol 166:81–84. http://dx.doi.org/10.1016/j.molbiopara.2009.02.010. [PubMed]
64. Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, Egholm M, Rothberg JM, Leamon JH. 2006. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics 7:216. http://dx.doi.org/10.1186/1471-2164-7-216. [PubMed]
65. Sabina J, Leamon JH. 2015. Bias in whole genome amplification: causes and considerations. Methods Mol Biol 1347:15–41. http://dx.doi.org/10.1007/978-1-4939-2990-0_2. [PubMed]
66. England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G. 2006. Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303–308. http://dx.doi.org/10.1007/s10592-005-9103-8.
67. Palstra FP, Ruzzante DE. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447. http://dx.doi.org/10.1111/j.1365-294X.2008.03842.x. [PubMed]
68. Blank WA, Reis EA, Thiong’o FW, Braghiroli JF, Santos JM, Melo PR, Guimarães IC, Silva LK, Carmo TM, Reis MG, Blanton RE. 2009. Analysis of Schistosoma mansoni population structure using total fecal egg sampling. J Parasitol 95:881–889. http://dx.doi.org/10.1645/GE-1895.1. [PubMed]
69. Silva LK, Liu S, Blanton RE. 2006. Microsatellite analysis of pooled Schistosoma mansoni DNA: an approach for studies of parasite populations. Parasitology 132:331–338. http://dx.doi.org/10.1017/S0031182005009066. [PubMed]
70. Shaw SH, Carrasquillo MM, Kashuk C, Puffenberger EG, Chakravarti A. 1998. Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome Res 8:111–123. http://dx.doi.org/10.1101/gr.8.2.111. [PubMed]
71. Curtis J, Sorensen RE, Minchella DJ. 2002. Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125(Suppl) :S51–S59. http://dx.doi.org/10.1017/S0031182002002020.
72. Théron A, Sire C, Rognon A, Prugnolle F, Durand P. 2004. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology 129:571–585. http://dx.doi.org/10.1017/S0031182004005943. [PubMed]
73. Waples RS, Anderson EC. 2017. Purging putative siblings from population genetic data sets: a cautionary view. Mol Ecol 26:1211–1224. [PubMed]
74. Hanelt B, Steinauer ML, Mwangi IN, Maina GM, Agola LE, Mkoji GM, Loker ES. 2009. A new approach to characterize populations of Schistosoma mansoni from humans: development and assessment of microsatellite analysis of pooled miracidia. Trop Med Int Health 14:322–331. http://dx.doi.org/10.1111/j.1365-3156.2009.02226.x. [PubMed]
75. Aemero M, Boissier J, Climent D, Moné H, Mouahid G, Berhe N, Erko B. 2015. Genetic diversity, multiplicity of infection and population structure of Schistosoma mansoni isolates from human hosts in Ethiopia. BMC Genet 16:137. http://dx.doi.org/10.1186/s12863-015-0297-6. [PubMed]
76. Gower CM, Gouvras AN, Lamberton PH, Deol A, Shrivastava J, Mutombo PN, Mbuh JV, Norton AJ, Webster BL, Stothard JR, Garba A, Lamine MS, Kariuki C, Lange CN, Mkoji GM, Kabatereine NB, Gabrielli AF, Rudge JW, Fenwick A, Sacko M, Dembelé R, Lwambo NJ, Tchuem Tchuenté LA, Rollinson D, Webster JP. 2013. Population genetic structure of Schistosoma mansoni and Schistosoma haematobium from across six sub-Saharan African countries: implications for epidemiology, evolution and control. Acta Trop 128:261–274. http://dx.doi.org/10.1016/j.actatropica.2012.09.014. [PubMed]
77. Guan W, Li SZ, Abe EM, Webster BL, Rollinson D, Zhou XN. 2016. The genetic diversity and geographical separation study of Oncomelania hupensis populations in mainland China using microsatellite loci. Parasit Vectors 9:28. http://dx.doi.org/10.1186/s13071-016-1321-z. [PubMed]
78. Lelo AE, Mburu DN, Magoma GN, Mungai BN, Kihara JH, Mwangi IN, Maina GM, Kinuthia JM, Mutuku MW, Loker ES, Mkoji GM, Steinauer ML. 2014. No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in Mwea, central Kenya, a heavy transmission area. PLoS Negl Trop Dis 8:e3221. http://dx.doi.org/10.1371/journal.pntd.0003221. [PubMed]
79. Van den Broeck F, Maes GE, Larmuseau MH, Rollinson D, Sy I, Faye D, Volckaert FA, Polman K, Huyse T. 2015. Reconstructing colonization dynamics of the human parasite Schistosoma mansoni following anthropogenic environmental changes in Northwest Senegal. PLoS Negl Trop Dis 9:e0003998. http://dx.doi.org/10.1371/journal.pntd.0003998. [PubMed]
80. Steinauer ML, Hanelt B, Agola LE, Mkoji GM, Loker ES. 2009. Genetic structure of Schstosoma mansoni in western Kenya: the effects of geography and host sharing. Int J Parasitol 39:1353–1362. http://dx.doi.org/10.1016/j.ijpara.2009.04.010. [PubMed]
81. Barbosa LM, Reis EA, Dos Santos CR, Costa JM, Carmo TM, Aminu PT, Pitanga TN, Ponce-Terashima R, Blank WA, Silva LK, Reis MG, Blanton RE. 2016. Repeated praziquantel treatments remodel the genetic and spatial landscape of schistosomiasis risk and transmission. Int J Parasitol 46:343–350. http://dx.doi.org/10.1016/j.ijpara.2016.01.007. [PubMed]
82. Blanton RE, Blank WA, Costa JM, Carmo TM, Reis EA, Silva LK, Barbosa LM, Test MR, Reis MG. 2011. Schistosoma mansoni population structure and persistence after praziquantel treatment in two villages of Bahia, Brazil. Int J Parasitol 41:1093–1099. http://dx.doi.org/10.1016/j.ijpara.2011.06.002. [PubMed]
83. Blanton RE, Barbosa LM, Reis EA, Carmo TM, Dos Santos CR, Costa JM, Aminu PT, Blank WA, Reis RB, Guimarães IC, Silva LK, Reis MG. 2015. The relative contribution of immigration or local increase for persistence of urban schistosomiasis in Salvador, Bahia, Brazil. PLoS Negl Trop Dis 9:e0003521. http://dx.doi.org/10.1371/journal.pntd.0003521. [PubMed]
84. Coe R. 2002. It’s the effect size, stupid: what “effect size” is and why it is important, abstr. Ann Conf Br Educ Res Assoc, Exeter, Devon, England, 12 to 14 September.
85. Cohen J. 1992. A power primer. Psychol Bull 112:155–159. http://dx.doi.org/10.1037/0033-2909.112.1.155. [PubMed]
86. Lantz B. 2013. The large sample size fallacy. Scand J Caring Sci 27:487–492. http://dx.doi.org/10.1111/j.1471-6712.2012.01052.x. [PubMed]
87. Sullivan GM, Feinn R. 2012. Using effect size—or why the P value is not enough. J Grad Med Educ 4:279–282. http://dx.doi.org/10.4300/JGME-D-12-00156.1. [PubMed]
88. Barbosa CS, Gonçalves JF, Albuquerque Y, Barbosa FS. 1998. Urban schistosomiasis in Itamaracá Island, Pernambuco, Brazil: epidemiological factors involved in the recent endemic process. Mem Inst Oswaldo Cruz 93(Suppl 1) :265–266. http://dx.doi.org/10.1590/S0074-02761998000700049. [PubMed]
89. Calasans TAS, Souza GTR, Melo CM, Madi RR, Jeraldo VLS. 2018. Socioenvironmental factors associated with Schistosoma mansoni infection and intermediate hosts in an urban area of northeastern Brazil. PLoS One 13:e0195519. http://dx.doi.org/10.1371/journal.pone.0195519. [PubMed]
90. Pinto HA, Mati VL, Melo AL. 2013. The Pampulha reservoir remains a potential urban focus of schistosomiasis mansoni in Brazil: changes in the occurrence patterns of Biomphalaria species and a new record of the parasite. Rev Soc Bras Med Trop 46:478–483. http://dx.doi.org/10.1590/0037-8682-0099-2013. [PubMed]
91. Dabo A, Diarra AZ, Machault V, Touré O, Niambélé DS, Kanté A, Ongoiba A, Doumbo O. 2015. Urban schistosomiasis and associated determinant factors among school children in Bamako, Mali, West Africa. Infect Dis Poverty 4:4. http://dx.doi.org/10.1186/2049-9957-4-4. [PubMed]
92. Ernould JC, Kaman A, Labbo R, Couret D, Chippaux JP. 2000. Recent urban growth and urinary schistosomiasis in Niamey, Niger. Trop Med Int Health 5:431–437. http://dx.doi.org/10.1046/j.1365-3156.2000.00577.x. [PubMed]
93. Guimarães IC, Tavares-Neto J. 2006. Urban transmission of schistosomiasis in children from a neighborhood of Salvador, Bahia. Rev Soc Bras Med Trop 39:451–455. (Article in Portuguese.) [PubMed]
94. Gower CM, Gehre F, Marques SR, Lamberton PHL, Lwambo NJ, Webster JP. 2017. Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme. Parasit Vectors 10:593. http://dx.doi.org/10.1186/s13071-017-2533-6. [PubMed]
95. Frankham R. 2005. Genetics and extinction. Biol Conserv 126:131–140. http://dx.doi.org/10.1016/j.biocon.2005.05.002.
96. Norton AJ, Gower CM, Lamberton PH, Webster BL, Lwambo NJ, Blair L, Fenwick A, Webster JP. 2010. Genetic consequences of mass human chemotherapy for Schistosoma mansoni: population structure pre- and post-praziquantel treatment in Tanzania. Am J Trop Med Hyg 83:951–957. http://dx.doi.org/10.4269/ajtmh.2010.10-0283. [PubMed]
97. Franklin I. 1980. Evolutionary change in small populations, p 135–140. In Soule M, Wilcox B (ed), Conservation Biology: An Evolutionary Ecological Perspective. Sinauer Associates, Sunderland, MA.
98. Franklin I, Frankham R. 1998. How large must populations be to retain evolutionary potential? Anim Conserv 1:69–73. http://dx.doi.org/10.1111/j.1469-1795.1998.tb00228.x.
99. Lande R. 1995. Mutation and conservation. Conserv Biol 9:782–791. http://dx.doi.org/10.1046/j.1523-1739.1995.09040782.x.
100. Reed DH, Bryant EH. 2000. Experimental tests of minimum viable population size. Anim Conserv 3:7–14. http://dx.doi.org/10.1111/j.1469-1795.2000.tb00082.x.
101. Prugnolle F, Théron A, Pointier JP, Jabbour-Zahab R, Jarne P, Durand P, de Meeûs T. 2005. Dispersal in a parasitic worm and its two hosts: consequence for local adaptation. Evolution 59:296–303. http://dx.doi.org/10.1111/j.0014-3820.2005.tb00990.x. [PubMed]
102. Sire C, Langand J, Barral V, Théron A. 2001. Parasite ( Schistosoma mansoni) and host ( Biomphalaria glabrata) genetic diversity: population structure in a fragmented landscape. Parasitology 122:545–554. http://dx.doi.org/10.1017/S0031182001007727. [PubMed]
103. Botros S, Sayed H, Amer N, El-Ghannam M, Bennett JL, Day TA. 2005. Current status of sensitivity to praziquantel in a focus of potential drug resistance in Egypt. Int J Parasitol 35:787–791. http://dx.doi.org/10.1016/j.ijpara.2005.02.005. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AME-0009-2019
2019-07-19
2019-10-21

Abstract:

While disease and outbreaks are mainly clonal for bacteria and other asexually reproducing organisms, sexual reproduction in schistosomes and other helminths usually results in unique individuals. For sexually reproducing organisms, the traits conserved in clones will instead be conserved in the group of organisms that tends to breed together, the population. While the same tools are applied to characterize DNA, how results are interpreted can be quite different at times (see another article in this collection, http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.AME-0002-2018). It is difficult to know what the real effect any control program has on the parasite population without assessing the health of this population, how they respond to the control measure, and how they recover, if they do. This review, part of the Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, concentrates on one approach using pooled samples to study schistosome populations and shows how this and other approaches have contributed to our understanding of this parasite family’s biology and epidemiology.

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schistosome life cycle. Shown are developmental stages for the three major species, the three intermediate host snail genera, and the human host. in urine (H, ) or stool (M, ; J, ) hatch on contact with freshwater. The newly hatched finds the appropriate snail host, in which asexual reproduction occurs to produce . Cercariae are released from snails, penetrate the skin of the human host (also other animals for ), and migrate to the hepatic portal vein system. Mated worms take up residence in veins near the intestines ( and ) or the urinary system (). Adult worms reproduce sexually and make eggs that continue the cycle. (Adapted with permission from reference 3 .)

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schistosome subpopulation structures. For infrapopulations, each small box represents the multilocus individual schistosomes (colored dots) from an infected person. For the component population, the large box represents the combined multilocus individual parasites from all humans in the community. New infections conceptually are taken from the human component population, since this over time returns to the snail component population where human infections actually arise.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Electropherograms for multiplexed amplifications of eggs from stool. DNA from infected individuals was first amplified using primers for one marker, and then up to four amplifications from different markers were combined and processed for microsatellite genotyping on an automated sequencer. Results for one infrapopulation and a set of four microsatellite markers. (Top) All markers combined; (middle) two markers with labeled peak characteristics for SMDA23, including size (base pairs), peak height, and peak area; (bottom) three markers showing only trimeric marker SM13-410, yielding peaks with 3-bp spacing. Peaks with spacing not a multiple of three are not recorded. Results for the same marker set as for panel a from three different individuals with different intensities of infection. Allele frequencies were calculated as the peak height or area divided by the sum for the peaks for that allele. Using height or area gave comparable results. Tabs under each peak in the electropherogram identify height, area, and fragment size.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Assessing for selection by population differentiation after treatment with praziquantel. Schistosome infrapopulations are highly variable. If persistent populations arise from stochastic processes (e.g., refractory juvenile parasites or parasites in a protected location), the day after a selective sweep (praziquantel treatment) will leave a residual largely derived from the parent population (small pre-post Di). Assuming that resistance arises on one or a few multilocus backgrounds, the day following a selective sweep will leave a population that is more similar to itself than to the parent population (large pre-post Di). Colored discs represent different classes of multilocus genotypes.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.AME-0009-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error