1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Wondwossen A. Gebreyes1,2, Daral Jackwood3,4, Celso Jose Bruno de Oliveira5,6, Chang-Won Lee7,8, Armando E. Hoet9,10, Siddhartha Thakur11
  • Editors: Lee W. Riley12, Ronald E. Blanton13
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210; 2: Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210; 3: Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210; 4: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691; 5: Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210; 6: Department of Animal Science, College for Agricultural Sciences, Federal University of Paraiba (CCA/UFPB), Areia, PB, Brazil; 7: Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210; 8: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691; 9: Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210; 10: Global One Health initiative (GOHi), The Ohio State University, Columbus, OH 43210; 11: Population Health and Pathobiology (PHP), College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606; 12: Divisions of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA; 13: Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
  • Received 01 June 2019 Accepted 11 December 2019 Published 27 March 2020
  • Wondwossen A. Gebreyes, [email protected]
image of Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases<span class="xref">
<a href="#fn1">*</a>
</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/8/2/AME-0011-2019-1.gif /docserver/preview/fulltext/microbiolspec/8/2/AME-0011-2019-2.gif
  • Abstract:

    Zoonotic and livestock diseases are very important globally both in terms of direct impact on human and animal health and in terms of their relationship to the livelihood of farming communities, as they affect income generation and food security and have other, indirect consequences on human lives. More than two-thirds of emerging infectious diseases in humans today are known to be of animal origin. Bacterial, viral, and parasitic infections that originate from animals, including hypervirulent and multidrug-resistant (MDR) bacterial pathogens, such as livestock-associated methicillin-resistant (LA-MRSA), invasive nontyphoidal of animal origin, hyperviruent , and others, are of major significance to public health. Understanding the origin, risk factors, transmission, prevention, and control of such strains has been a challenge for various reasons, particularly due to the transdisciplinary partnership between and among human, environment, and animal health sectors. MDR bacteria greatly complicate the clinical management of human infections. Food animal farms, pets in communities, and veterinary hospital environments are major sources of such infections. However, attributing such infections and pinpointing sources requires highly discriminatory molecular methods as outlined in other parts of this curated series. Genotyping methods, such as multilocus sequence typing, pulsed-field gel electrophoresis, restriction fragment length polymorphism, and several others, have been used to decipher sources of foodborne and other zoonotic infectious diseases. In recent years, whole-genome-sequence-based approaches have been increasingly used for molecular epidemiology of diseases at the interface of humans, animals, and the environment. This part of the series highlights the major zoonotic and foodborne disease issues.

    *This article is part of a curated collection.

  • Citation: Gebreyes W, Jackwood D, de Oliveira C, Lee C, Hoet A, Thakur S. 2020. Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases * . Microbiol Spectrum 8(2):AME-0011-2019. doi:10.1128/microbiolspec.AME-0011-2019.

References

1. Kilbourne ED. 1973. The molecular epidemiology of influenza. J Infect Dis 127:478–487 http://dx.doi.org/10.1093/infdis/127.4.478. [PubMed]
2. Poutanen SM, Simor AE. 2004. Clostridium difficile-associated diarrhea in adults. CMAJ 171:51–58 http://dx.doi.org/10.1503/cmaj.1031189.[PubMed]
3. Warriner K, Xu C, Habash M, Sultan S, Weese SJ. 2017. Dissemination of Clostridium difficile in food and the environment: significant sources of C. difficile community-acquired infection? J Appl Microbiol 122:542–553 http://dx.doi.org/10.1111/jam.13338. [PubMed]
4. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB, Wegener HC, Aarestrup FM. 2011. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900 http://dx.doi.org/10.1089/fpd.2010.0787. [PubMed]
5. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889 http://dx.doi.org/10.1086/650733. [PubMed]
6. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 17:7–15 http://dx.doi.org/10.3201/eid1701.P11101. [PubMed]
7. EFSA. 2015. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13:191.
8. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654 http://dx.doi.org/10.1073/pnas.1503141112. [PubMed]
9. FDA. 2015. 2014 Summary Report on Antimicrobials Sold or Distributed For Use in Food-Producing Animals. FDA, Washington, DC.
10. Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238 http://dx.doi.org/10.1128/AAC.01707-08. [PubMed]
11. Yang B, Qu D, Zhang X, Shen J, Cui S, Shi Y, Xi M, Sheng M, Zhi S, Meng J. 2010. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China. Int J Food Microbiol 141:63–72 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.04.015. [PubMed]
12. Sjölund-Karlsson M, Howie RL, Blickenstaff K, Boerlin P, Ball T, Chalmers G, Duval B, Haro J, Rickert R, Zhao S, Fedorka-Cray PJ, Whichard JM. 2013. Occurrence of β-lactamase genes among non-Typhi Salmonella enterica isolated from humans, food animals, and retail meats in the United States and Canada. Microb Drug Resist 19:191–197 http://dx.doi.org/10.1089/mdr.2012.0178. [PubMed]
13. Clemente L, Manageiro V, Ferreira E, Jones-Dias D, Correia I, Themudo P, Albuquerque T, Caniça M. 2013. Occurrence of extended-spectrum β-lactamases among isolates of Salmonella enterica subsp. enterica from food-producing animals and food products, in Portugal. Int J Food Microbiol 167:221–228 http://dx.doi.org/10.1016/j.ijfoodmicro.2013.08.009. [PubMed]
14. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Cloeckaert A, Praud K, Claeys G, Catry B, Herman L, Haesebrouck F, Butaye P. 2009. Comparative analysis of extended-spectrum-β-lactamase-carrying plasmids from different members of Enterobacteriaceae isolated from poultry, pigs and humans: evidence for a shared β-lactam resistance gene pool? J Antimicrob Chemother 63:1286–1288 http://dx.doi.org/10.1093/jac/dkp101. [PubMed]
15. Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C. 2002. β-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46:3156–3163 http://dx.doi.org/10.1128/AAC.46.10.3156-3163.2002. [PubMed]
16. Guenther S, Ewers C, Wieler LH. 2011. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246 http://dx.doi.org/10.3389/fmicb.2011.00246. [PubMed]
17. Hendriksen RS, Bangtrakulnonth A, Pulsrikarn C, Pornreongwong S, Hasman H, Song SW, Aarestrup FM. 2008. Antimicrobial resistance and molecular epidemiology of Salmonella Rissen from animals, food products, and patients in Thailand and Denmark. Foodborne Pathog Dis 5:605–619 http://dx.doi.org/10.1089/fpd.2007.0075. [PubMed]
18. Thai TH, Yamaguchi R. 2012. Molecular characterization of antibiotic-resistant Salmonella isolates from retail meat from markets in Northern Vietnam. J Food Prot 75:1709–1714 http://dx.doi.org/10.4315/0362-028X.12-101. [PubMed]
19. Murphy CP, Reid-Smith RJ, Boerlin P, Weese JS, Prescott JF, Janecko N, Hassard L, McEwen SA. 2010. Escherichia coli and selected veterinary and zoonotic pathogens isolated from environmental sites in companion animal veterinary hospitals in southern Ontario. Can Vet J 51:963–972.
20. Walther B, Tedin K, Lübke-Becker A. 2017. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol 200:71–78 http://dx.doi.org/10.1016/j.vetmic.2016.05.017. [PubMed]
21. Benedict KM, Morley PS, Van Metre DC. 2008. Characteristics of biosecurity and infection control programs at veterinary teaching hospitals. J Am Vet Med Assoc 233:767–773 http://dx.doi.org/10.2460/javma.233.5.767. [PubMed]
22. Tavares A, Miragaia M, Rolo J, Coelho C, de Lencastre H, CA-MRSA/MSSA working group. 2013. High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus in the community in Portugal: evidence for the blurring of community-hospital boundaries. Eur J Clin Microbiol Infect Dis 32:1269–1283 http://dx.doi.org/10.1007/s10096-013-1872-2. [PubMed]
24. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM. 2012. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio 3:e00305–e00311 http://dx.doi.org/10.1128/mBio.00305-11. [PubMed]
25. van Balen J, Kelley C, Nava-Hoet RC, Bateman S, Hillier A, Dyce J, Wittum TE, Hoet AE. 2013. Presence, distribution, and molecular epidemiology of methicillin-resistant Staphylococcus aureus in a small animal teaching hospital: a year-long active surveillance targeting dogs and their environment. Vector Borne Zoonotic Dis 13:299–311 http://dx.doi.org/10.1089/vbz.2012.1142. [PubMed]
26. Patchanee P, Tadee P, Ingkaninan P, Tankaew P, Hoet AE, Chupia V. 2014. Distribution and characterization of methicillin-resistant Staphylococcus aureus (MRSA) at the small animal hospital, faculty of veterinary medicine, Chiang Mai University, Thailand. Southeast Asian J Trop Med Public Health 45:413–420.
27. van Balen J, Mowery J, Piraino-Sandoval M, Nava-Hoet RC, Kohn C, Hoet AE. 2014. Molecular epidemiology of environmental MRSA at an equine teaching hospital: introduction, circulation and maintenance. Vet Res (Faisalabad) 45:31 http://dx.doi.org/10.1186/1297-9716-45-31. [PubMed]
28. Liu J, Chen D, Peters BM, Li L, Li B, Xu Z, Shirliff ME. 2016. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb Pathog 101:56–67 http://dx.doi.org/10.1016/j.micpath.2016.10.028. [PubMed]
29. Baker SA, Van-Balen J, Lu B, Hillier A, Hoet AE. 2012. Antimicrobial drug use in dogs prior to admission to a veterinary teaching hospital. J Am Vet Med Assoc 241:210–217 http://dx.doi.org/10.2460/javma.241.2.210. [PubMed]
30. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK, Active Bacterial Core surveillance (ABCs) MRSA Investigators. 2007. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771 http://dx.doi.org/10.1001/jama.298.15.1763. [PubMed]
31. Hoet AE, van Balen J, Nava-Hoet RC, Bateman S, Hillier A, Dyce J, Wittum TE. 2013. Epidemiological profiling of methicillin-resistant Staphylococcus aureus-positive dogs arriving at a veterinary teaching hospital. Vector Borne Zoonotic Dis 13:385–393 http://dx.doi.org/10.1089/vbz.2012.1089. [PubMed]
32. Wettstein Rosenkranz K, Rothenanger E, Brodard I, Collaud A, Overesch G, Bigler B, Marschall J, Perreten V. 2014. Nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) among Swiss veterinary health care providers: detection of livestock- and healthcare-associated clones. Schweiz Arch Tierheilkd 156:317–325 http://dx.doi.org/10.1024/0036-7281/a000601. [PubMed]
33. Li S, Li J, Qiao Y, Ning X, Zeng T, Shen X. 2014. Prevalence and invasiveness of community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis. Indian J Pathol Microbiol 57:418–422 http://dx.doi.org/10.4103/0377-4929.138737. [PubMed]
34. Cuny C, Nathaus R, Layer F, Strommenger B, Altmann D, Witte W. 2009. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs. PLoS One 4:e6800 http://dx.doi.org/10.1371/journal.pone.0006800. [PubMed]
35. Smith TC, Pearson N. 2011. The emergence of Staphylococcus aureus ST398. Vector Borne Zoonotic Dis 11:327–339 http://dx.doi.org/10.1089/vbz.2010.0072. [PubMed]
36. Monaco M, Pedroni P, Sanchini A, Bonomini A, Indelicato A, Pantosti A. 2013. Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming. BMC Infect Dis 13:258 http://dx.doi.org/10.1186/1471-2334-13-258. [PubMed]
37. Smith TC, Gebreyes WA, Abley MJ, Harper AL, Forshey BM, Male MJ, Martin HW, Molla BZ, Sreevatsan S, Thakur S, Thiruvengadam M, Davies PR. 2013. Methicillin-resistant Staphylococcus aureus in pigs and farm workers on conventional and antibiotic-free swine farms in the USA. PLoS One 8:e63704 http://dx.doi.org/10.1371/journal.pone.0063704. [PubMed]
38. Garcia-Graells C, van Cleef BA, Larsen J, Denis O, Skov R, Voss A. 2013. Dynamic of livestock-associated methicillin-resistant Staphylococcus aureus CC398 in pig farm households: a pilot study. PLoS One 8:e65512 http://dx.doi.org/10.1371/journal.pone.0065512. [PubMed]
39. Voss A, Loeffen F, Bakker J, Klaassen C, Wulf M. 2005. Methicillin-resistant Staphylococcus aureus in pig farming. Emerg Infect Dis 11:1965–1966 http://dx.doi.org/10.3201/eid1112.050428. [PubMed]
40. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, Pluister GN, Voss A, Wannet WJ, de Neeling AJ. 2006. Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5:26 http://dx.doi.org/10.1186/1476-0711-5-26. [PubMed]
41. Lewis HC, Mølbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, Skov RL. 2008. Pigs as source of methicillin-resistant Staphylococcus aureus CC398 infections in humans, Denmark. Emerg Infect Dis 14:1383–1389 http://dx.doi.org/10.3201/eid1409.071576. [PubMed]
42. Schulz J, Friese A, Klees S, Tenhagen BA, Fetsch A, Rösler U, Hartung J. 2012. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78:5666–5671 http://dx.doi.org/10.1128/AEM.00550-12. [PubMed]
43. Graveland H, Wagenaar JA, Bergs K, Heesterbeek H, Heederik D. 2011. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS One 6:e16830 http://dx.doi.org/10.1371/journal.pone.0016830. [PubMed]
44. Broens EM, Graat EA, Van der Wolf PJ, Van de Giessen AW, De Jong MC. 2011. Prevalence and risk factor analysis of livestock associated MRSA-positive pig herds in The Netherlands. Prev Vet Med 102:41–49 http://dx.doi.org/10.1016/j.prevetmed.2011.06.005. [PubMed]
45. Huang JY, Henao OL, Griffin PM, Vugia DJ, Cronquist AB, Hurd S, Tobin-D’Angelo M, Ryan P, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG, Wolpert BJ, Patrick ME. 2016. Infection with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance—Foodborne Diseases Active Surveillance Network, 10 US sites, 2012–2015. MMWR Morb Mortal Wkly Rep 65:368–371 http://dx.doi.org/10.15585/mmwr.mm6514a2. [PubMed]
46. Roberts T, Kowalcyk B, Buck P, Blaser MJ, Frenkel J, Lorber B, Smith J, Tarr P. 2009. The long-term health outcomes of selected foodborne pathogens. The Center for Foodborne Illness Research & Prevention https://foodsafety.osu.edu/sites/cfi/files/imce/DocumentLibrary/Publications/Roberts%20et%20al.%20-%202009%20-%20LTHOs.pdf.
47. Newell DG, Elvers KT, Dopfer D, Hansson I, Jones P, James S, Gittins J, Stern NJ, Davies R, Connerton I, Pearson D, Salvat G, Allen VM. 2011. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl Environ Microbiol 77:8605–8614 http://dx.doi.org/10.1128/AEM.01090-10. [PubMed]
48. Hansson I, Pudas N, Harbom B, Engvall EO. 2010. Within-flock variations of Campylobacter loads in caeca and on carcasses from broilers. Int J Food Microbiol 141:51–55 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.04.019. [PubMed]
49. Gürtler M, Alter T, Kasimir S, Fehlhaber K. 2005. The importance of Campylobacter coli in human campylobacteriosis: prevalence and genetic characterization. Epidemiol Infect 133:1081–1087 http://dx.doi.org/10.1017/S0950268805004164. [PubMed]
50. Chai S, Mahon B. 2011. Memorandum to record. Foodborne illness from Salmonella and Campylobacter associated with poultry. US Department of Health and Human Services, Washington, DC.
51. Silva J, Leite D, Fernandes M, Mena C, Gibbs PA, Teixeira P. 2011. Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol 2:200 http://dx.doi.org/10.3389/fmicb.2011.00200.
52. Noormohamed A, Fakhr MK. 2014. Prevalence and antimicrobial susceptibility of Campylobacter spp. in Oklahoma conventional and organic retail poultry. Open Microbiol J 8:130–137 http://dx.doi.org/10.2174/1874285801408010130. [PubMed]
53. Luo N, Pereira S, Sahin O, Lin J, Huang S, Michel L, Zhang Q. 2005. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc Natl Acad Sci USA 102:541–546 http://dx.doi.org/10.1073/pnas.0408966102. [PubMed]
54. Price LB, Lackey LG, Vailes R, Silbergeld E. 2007. The persistence of fluoroquinolone-resistant Campylobacter in poultry production. Environ Health Perspect 115:1035–1039 http://dx.doi.org/10.1289/ehp.10050. [PubMed]
55. Bae J, Jeon B. 2013. Increased emergence of fluoroquinolone-resistant Campylobacter jejuni in biofilm. Antimicrob Agents Chemother 57:5195–5196 http://dx.doi.org/10.1128/AAC.00995-13. [PubMed]
56. Taylor NM, Wales AD, Ridley AM, Davies RH. 2016. Farm level risk factors for fluoroquinolone resistance in E. coli and thermophilic Campylobacter spp. on poultry farms. Avian Pathol 45:559–568 http://dx.doi.org/10.1080/03079457.2016.1185510. [PubMed]
57. Snowder GD, Van Vleck LD, Cundiff LV, Bennett GL. 2006. Bovine respiratory disease in feedlot cattle: environmental, genetic, and economic factors. J Anim Sci 84:1999–2008 http://dx.doi.org/10.2527/jas.2006-046. [PubMed]
58. Becht H. 1980. Infectious bursal disease virus. Curr Top Microbiol Immunol 90:107–121 http://dx.doi.org/10.1007/978-3-642-67717-5_5. [PubMed]
59. Woolhouse ME, Gowtage-Sequeria S. 2005. Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847 http://dx.doi.org/10.3201/eid1112.050997. [PubMed]
60. Lambert LC, Fauci AS. 2010. Influenza vaccines for the future. N Engl J Med 363:2036–2044 http://dx.doi.org/10.1056/NEJMra1002842. [PubMed]
61. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. 2014. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol 22:183–191 http://dx.doi.org/10.1016/j.tim.2014.01.010. [PubMed]
62. Swayne DE, Suarez DLLDS. 2014. Influenza, p 181–218. In Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Nair V (ed), Diseases of Poultry. Wiley-Blackwell Press, Ames, IA.
63. Lai S, Qin Y, Cowling BJ, Ren X, Wardrop NA, Gilbert M, Tsang TK, Wu P, Feng L, Jiang H, Peng Z, Zheng J, Liao Q, Li S, Horby PW, Farrar JJ, Gao GF, Tatem AJ, Yu H. 2016. Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997-2015: a systematic review of individual case data. Lancet Infect Dis 16:e108–e118 http://dx.doi.org/10.1016/S1473-3099(16)00153-5.
64. McCluskey B, US Department of Agriculture. 2015. Epidemiologic and Other Analyses of HPAI-Affected Poultry Flocks: July 15, 2015 Report. US Department of Agriculture, Fort Collins, CO.
65. Neumann G, Kawaoka Y. 2011. The first influenza pandemic of the new millennium. Influenza Other Respir Viruses 5:157–166 http://dx.doi.org/10.1111/j.1750-2659.2011.00231.x. [PubMed]
66. Lindstrom S, Garten R, Balish A, Shu B, Emery S, Berman L, Barnes N, Sleeman K, Gubareva L, Villanueva J, Klimov A. 2012. Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis 18:834–837 http://dx.doi.org/10.3201/eid1805.111922. [PubMed]
67. Nelson MI, Vincent AL, Kitikoon P, Holmes EC, Gramer MR. 2012. Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009-2011. J Virol 86:8872–8878 http://dx.doi.org/10.1128/JVI.00259-12. [PubMed]
68. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EP, Chen L, Smith C, Hill RC, Ferro P, Pompey J, Bright RA, Medina MJ, Johnson CM, Olsen CW, Cox NJ, Klimov AI, Katz JM, Donis RO. 2005. Transmission of equine influenza virus to dogs. Science 310:482–485 http://dx.doi.org/10.1126/science.1117950. [PubMed]
69. Li S, Shi Z, Jiao P, Zhang G, Zhong Z, Tian W, Long L-P, Cai Z, Zhu X, Liao M, Wan XF. 2010. Avian-origin H3N2 canine influenza A viruses in Southern China. Infect Genet Evol 10:1286–1288 http://dx.doi.org/10.1016/j.meegid.2010.08.010. [PubMed]
70. Song DS, An DJ, Moon HJ, Yeom MJ, Jeong HY, Jeong WS, Park SJ, Kim HK, Han SY, Oh JS, Park BK, Kim JK, Poo H, Webster RG, Jung K, Kang BK. 2011. Interspecies transmission of the canine influenza H3N2 virus to domestic cats in South Korea, 2010. J Gen Virol 92:2350–2355 http://dx.doi.org/10.1099/vir.0.033522-0. [PubMed]
71. Schwartz DC, Cantor CR. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75 http://dx.doi.org/10.1016/0092-8674(84)90301-5.
72. Rupnik M, Avesani V, Janc M, von Eichel-Streiber C, Delmée M. 1998. A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36:2240–2247 http://dx.doi.org/10.1128/JCM.36.8.2240-2247.1998. [PubMed]
73. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535 http://dx.doi.org/10.1093/nar/18.22.6531. [PubMed]
74. Stern MJ, Ames GF-L, Smith NH, Robinson EC, Higgins CF. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026 http://dx.doi.org/10.1016/0092-8674(84)90436-7.
75. Versalovic J, Koeuth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831 http://dx.doi.org/10.1093/nar/19.24.6823. [PubMed]
76. Gebreyes WA, Altier C, Thakur S. 2006. Molecular epidemiology and diversity of Salmonella serovar Typhimurium in pigs using phenotypic and genotypic approaches. Epidemiol Infect 134:187–198 http://dx.doi.org/10.1017/S0950268805004723. [PubMed]
77. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414 http://dx.doi.org/10.1093/nar/23.21.4407. [PubMed]
78. Tietze E, Dabrowski PW, Prager R, Radonic A, Fruth A, Auraß P, Nitsche A, Mielke M, Flieger A. 2015. Comparative genomic analysis of two novel sporadic Shiga toxin-producing Escherichia coli O104:H4 strains isolated 2011 in Germany. PLoS One 10:e0122074 http://dx.doi.org/10.1371/journal.pone.0122074. [PubMed]
79. Hoffmann M, Luo Y, Monday SR, Gonzalez-Escalona N, Ottesen AR, Muruvanda T, Wang C, Kastanis G, Keys C, Janies D, Senturk IF, Catalyurek UV, Wang H, Hammack TS, Wolfgang WJ, Schoonmaker-Bopp D, Chu A, Myers R, Haendiges J, Evans PS, Meng J, Strain EA, Allard MW, Brown EW. 2016. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. J Infect Dis 213:502–508 http://dx.doi.org/10.1093/infdis/jiv297. [PubMed]
80. Zilberberg MD, Tillotson GS, McDonald C. 2010. Clostridium difficile infections among hospitalized children, United States, 1997-2006. Emerg Infect Dis 16:604–609 http://dx.doi.org/10.3201/eid1604.090680. [PubMed]
81. Voth DE, Ballard JD. Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263 http://dx.doi.org/10.1128/CMR.18.2.247-263.2005. [PubMed]
82. Killgore G, Thompson A, Johnson S, Brazier J, Kuijper E, Pepin J, Frost EH, Savelkoul P, Nicholson B, van den Berg RJ, Kato H, Sambol SP, Zukowski W, Woods C, Limbago B, Gerding DN, McDonald LC. 2008. Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. J Clin Microbiol 46:431–437 http://dx.doi.org/10.1128/JCM.01484-07. [PubMed]
83. Fry PR, Thakur S, Abley M, Gebreyes WA. 2012. Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin. J Clin Microbiol 50:2366–2372 http://dx.doi.org/10.1128/JCM.06581-11. [PubMed]
84. Debast SB, van Leengoed LA, Goorhuis A, Harmanus C, Kuijper EJ, Bergwerff AA. 2009. Clostridium difficile PCR ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 11:505–511 http://dx.doi.org/10.1111/j.1462-2920.2008.01790.x. [PubMed]
85. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B, Barrett TJ. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3:59–67 http://dx.doi.org/10.1089/fpd.2006.3.59. [PubMed]
86. Gieraltowski L, Higa J, Peralta V, Green A, Schwensohn C, Rosen H, Libby T, Kissler B, Marsden-Haug N, Booth H, Kimura A, Grass J, Bicknese A, Tolar B, Defibaugh-Chávez S, Williams I, Wise M, Salmonella Heidelberg Investigation Team. 2016. National outbreak of multidrug resistant Salmonella Heidelberg infections linked to a single poultry company. PLoS One 11:e0162369 http://dx.doi.org/10.1371/journal.pone.0162369. [PubMed]
87. Benacer D, Thong KL, Watanabe H, Puthucheary SD. 2010. Characterization of drug resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes and PFGE. J Microbiol Biotechnol 20:1042–1052 http://dx.doi.org/10.4014/jmb.0910.10028.
88. Dutta S, Das S, Mitra U, Jain P, Roy I, Ganguly SS, Ray U, Dutta P, Paul DK. 2014. Antimicrobial resistance, virulence profiles and molecular subtypes of Salmonella enterica serovars Typhi and Paratyphi A blood isolates from Kolkata, India during 2009-2013. PLoS One 9:e101347 http://dx.doi.org/10.1371/journal.pone.0101347. [PubMed]
89. Chiou C-S, Lauderdale T-L, Phung DC, Watanabe H, Kuo J-C, Wang P-J, Liu Y-Y, Liang S-Y, Chen P-C. 2014. Antimicrobial resistance in Salmonella enterica Serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob Agents Chemother 58:6501–6507 http://dx.doi.org/10.1128/AAC.03608-14. [PubMed]
90. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239 http://dx.doi.org/10.1128/JCM.33.9.2233-2239.1995. [PubMed]
91. Sabat AJ, Budimir A, Nashev D, Sá-Leão R, van Dijl J, Laurent F, Grundmann H, Friedrich AW, ESCMID Study Group of Epidemiological Markers (ESGEM). 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Euro Surveill 18:20380 http://dx.doi.org/10.2807/ese.18.04.20380-en.
92. Machalaba CC, Elwood SE, Forcella S, Smith KM, Hamilton K, Jebara KB, Swayne DE, Webby RJ, Mumford E, Mazet JA, Gaidet N, Daszak P, Karesh WB. 2015. Global avian influenza surveillance in wild birds: a strategy to capture viral diversity. Emerg Infect Dis 21:e1–e7 http://dx.doi.org/10.3201/eid2104.141415. [PubMed]
93. Xu X, Subbarao K, Cox NJ, Guo Y. 1999. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261:15–19 http://dx.doi.org/10.1006/viro.1999.9820. [PubMed]
94. Lei F, Shi W. 2011. Prospective of genomics in revealing transmission, reassortment and evolution of wildlife-borne avian influenza A (H5N1) viruses. Curr Genomics 12:466–474 http://dx.doi.org/10.2174/138920211797904052. [PubMed]
95. Liang L, Xu B, Chen Y, Liu Y, Cao W, Fang L, Feng L, Goodchild MF, Gong P. 2010. Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission. PLoS One 5:e13575 http://dx.doi.org/10.1371/journal.pone.0013575. [PubMed]
96. Lee D-H, Torchetti MK, Winker K, Ip HS, Song C-S, Swayne DE. 2015. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol 89:6521–6524 http://dx.doi.org/10.1128/JVI.00728-15. [PubMed]
97. Verhagen JH, Herfst S, Fouchier RA. 2015. Infectious disease. How a virus travels the world. Science 347:616–617 http://dx.doi.org/10.1126/science.aaa6724. [PubMed]
98. Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, Seale H, MacIntyre CR. 2016. A systematic review of the comparative epidemiology of avian and human influenza A H5N1 and H7N9—lessons and unanswered questions. Transbound Emerg Dis 63:602–620 http://dx.doi.org/10.1111/tbed.12327. [PubMed]
99. Yassine HM, Lee C-W, Saif YM. 2013. Interspecies transmission of influenza A viruses between swine and poultry. Curr Top Microbiol Immunol 370:227–240 http://dx.doi.org/10.1007/82_2011_180. [PubMed]
100. Hatta M, Gao P, Halfmann P, Kawaoka Y. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 http://dx.doi.org/10.1126/science.1062882. [PubMed]
101. Kayali G, Webby RJ, Ducatez MF, El Shesheny RA, Kandeil AM, Govorkova EA, Mostafa A, Ali MA. 2011. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS One 6:e17730 http://dx.doi.org/10.1371/journal.pone.0017730. [PubMed]
102. Duprex WP, Fouchier RA, Imperiale MJ, Lipsitch M, Relman DA. 2015. Gain-of-function experiments: time for a real debate. Nat Rev Microbiol 13:58–64 http://dx.doi.org/10.1038/nrmicro3405. [PubMed]
103. Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679 http://dx.doi.org/10.1126/science.1118391.
104. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820 http://dx.doi.org/10.1056/NEJMoa1211721. [PubMed]
105. Wang LF, Crameri G. 2014. Emerging zoonotic viral diseases. Rev Sci Tech 33:569–581 http://dx.doi.org/10.20506/rst.33.2.2311. [PubMed]
106. Spaan W, Cavanagh D, Horzinek MC. 1988. Coronaviruses: structure and genome expression. J Gen Virol 69:2939–2952 http://dx.doi.org/10.1099/0022-1317-69-12-2939. [PubMed]
107. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. 2013. Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 368:2487–2494 http://dx.doi.org/10.1056/NEJMoa1303729. [PubMed]
108. Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503:535–538 http://dx.doi.org/10.1038/nature12711. [PubMed]
109. Hulswit RJ, de Haan CA, Bosch B-J. 2016. Coronavirus spike protein and tropism changes. Adv Virus Res 96:29–57 http://dx.doi.org/10.1016/bs.aivir.2016.08.004. [PubMed]
110. Levin BR, Lipsitch M, Bonhoeffer S. 1999. Population biology, evolution, and infectious disease: convergence and synthesis. Science 283:806–809 http://dx.doi.org/10.1126/science.283.5403.806. [PubMed]
111. Dobos P, Hill BJ, Hallett R, Kells DT, Becht H, Teninges D. 1979. Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32:593–605 http://dx.doi.org/10.1128/JVI.32.2.593-605.1979. [PubMed]
112. Müller H, Scholtissek C, Becht H. 1979. The genome of infectious bursal disease virus consists of two segments of double-stranded RNA. J Virol 31:584–589 http://dx.doi.org/10.1128/JVI.31.3.584-589.1979. [PubMed]
113. van den Berg TP, Morales D, Eterradossi N, Rivallan G, Toquin D, Raue R, Zierenberg K, Zhang MF, Zhu YP, Wang CQ, Zheng HJ, Wang X, Chen GC, Lim BL, Müller H. 2004. Assessment of genetic, antigenic and pathotypic criteria for the characterization of IBDV strains. Avian Pathol 33:470–476 http://dx.doi.org/10.1080/03079450400003650. [PubMed]
114. Giambrone JJ, Donahoe JP, Dawe DL, Eidson CS. 1977. Specific suppression of the bursa-dependent immune system of chicks with infectious bursal disease virus. Am J Vet Res 38:581–583.
115. Ismail NM, Saif YM, Wigle WL, Havenstein GB, Jackson C. 1990. Infectious bursal disease virus variant from commercial Leghorn pullets. Avian Dis 34:141–145 http://dx.doi.org/10.2307/1591345. [PubMed]
116. Jackwood DJ, Sommer SE, Knoblich HV. 2001. Amino acid comparison of infectious bursal disease viruses placed in the same or different molecular groups by RT/PCR-RFLP. Avian Dis 45:330–339 http://dx.doi.org/10.2307/1592972. [PubMed]
117. Snyder DB, Vakharia VN, Savage PK. 1992. Naturally occurring-neutralizing monoclonal antibody escape variants define the epidemiology of infectious bursal disease viruses in the United States. Arch Virol 127:89–101 http://dx.doi.org/10.1007/BF01309577. [PubMed]
118. Jackwood DJ, Sommer-Wagner SE. 2011. Amino acids contributing to antigenic drift in the infectious bursal disease Birnavirus (IBDV). Virology 409:33–37 http://dx.doi.org/10.1016/j.virol.2010.09.030. [PubMed]
119. Jackwood DJ, Sommer-Wagner S. 2007. Genetic characteristics of infectious bursal disease viruses from four continents. Virology 365:369–375 http://dx.doi.org/10.1016/j.virol.2007.03.046. [PubMed]
120. Stoute ST, Jackwood DJ, Sommer-Wagner SE, Cooper GL, Anderson ML, Woolcock PR, Bickford AA, Sentíes-Cué CG, Charlton BR. 2009. The diagnosis of very virulent infectious bursal disease in California pullets. Avian Dis 53:321–326 http://dx.doi.org/10.1637/8684-030909-Case.1. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AME-0011-2019
2020-03-27
2020-06-03

Abstract:

Zoonotic and livestock diseases are very important globally both in terms of direct impact on human and animal health and in terms of their relationship to the livelihood of farming communities, as they affect income generation and food security and have other, indirect consequences on human lives. More than two-thirds of emerging infectious diseases in humans today are known to be of animal origin. Bacterial, viral, and parasitic infections that originate from animals, including hypervirulent and multidrug-resistant (MDR) bacterial pathogens, such as livestock-associated methicillin-resistant (LA-MRSA), invasive nontyphoidal of animal origin, hyperviruent , and others, are of major significance to public health. Understanding the origin, risk factors, transmission, prevention, and control of such strains has been a challenge for various reasons, particularly due to the transdisciplinary partnership between and among human, environment, and animal health sectors. MDR bacteria greatly complicate the clinical management of human infections. Food animal farms, pets in communities, and veterinary hospital environments are major sources of such infections. However, attributing such infections and pinpointing sources requires highly discriminatory molecular methods as outlined in other parts of this curated series. Genotyping methods, such as multilocus sequence typing, pulsed-field gel electrophoresis, restriction fragment length polymorphism, and several others, have been used to decipher sources of foodborne and other zoonotic infectious diseases. In recent years, whole-genome-sequence-based approaches have been increasingly used for molecular epidemiology of diseases at the interface of humans, animals, and the environment. This part of the series highlights the major zoonotic and foodborne disease issues.

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

An example of a PFGE macrorestriction profile of serovar Typhimurium subtypes.

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

PCR-RFLP (toxinotyping) profiles of . A, AE, BH, and BA refer to four different restriction enzymes.

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phylogenetic analysis of MRSA from veterinary hospitals.

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree of IBDV strains generated using sequences from the hypervariable region of VP2.

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Overview of common genotyping methods used in veterinary medicine and key features

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019
Generic image for table
TABLE 2

Comparison of discriminatory powers of selected genotyping and phenotyping methods as tested for a set of serovar Typhimurium isolates and measured by the Simpson’s index of diversity.

Source: microbiolspec March 2020 vol. 8 no. 2 doi:10.1128/microbiolspec.AME-0011-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error