1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Distinguishing Pathovars from Nonpathovars: Escherichia coli *

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Lee W. Riley1
  • Editor: Ronald E. Blanton2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720; 2: Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec December 2020 vol. 8 no. 4 doi:10.1128/microbiolspec.AME-0014-2020
  • Received 11 November 2020 Accepted 21 December 2020 Published 31 December 2020
  • Lee W. Riley, [email protected]
image of Distinguishing Pathovars from Nonpathovars: Escherichia coli<span class="xref">
<a href="#fn1">*</a>
</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Distinguishing Pathovars from Nonpathovars: Escherichia coli * , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/8/4/AME-0014-2020-1.gif /docserver/preview/fulltext/microbiolspec/8/4/AME-0014-2020-2.gif
  • Abstract:

    is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of that cause diarrhea are often described as intestinal pathogenic (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of or pathovars. While IPEC can be distinguished from commensal based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by .

    *This article is part of a curated collection.

  • Citation: Riley L. 2020. Distinguishing Pathovars from Nonpathovars: Escherichia coli * . Microbiol Spectrum 8(4):AME-0014-2020. doi:10.1128/microbiolspec.AME-0014-2020.

References

1. Dallal RM, Harbrecht BG, Boujoukas AJ, Sirio CA, Farkas LM, Lee KK, Simmons RL. 2002. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 235:363–372 http://dx.doi.org/10.1097/00000658-200203000-00008 [PubMed].
2. McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, Johnson S, Gerding DN. 2005. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441 http://dx.doi.org/10.1056/NEJMoa051590. [PubMed]
3. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC. 2005. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 http://dx.doi.org/10.1016/S0140-6736(05)67420-X.
4. O’Connor JR, Johnson S, Gerding DN. 2009. Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain. Gastroenterology 136:1913–1924 http://dx.doi.org/10.1053/j.gastro.2009.02.073. [PubMed]
5. Escherich T. 1885. Die Darmbacterien des Neugeborenen und Sαuglings. Fortschr Med 3:515.
6. Cooke EM. 1974. Escherichia coli and man. Churchill Livingstone, Ediburgh and London.
7. Farmer JJ III, Boatwright KD, Janda JM. 2007. Enterobacteriaceae: Introduction and identification. In Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
8. Kauffmann F. 1947. The serology of the coli group. J Immunol 57:71–100.
9. Fratamico PM, DebRoy C, Liu Y, Needleman DS, Baranzoni GM, Feng P. 2016. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front Microbiol 7:644 http://dx.doi.org/10.3389/fmicb.2016.00644.
10. Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ, Olcott ES, Johnson LM, Hargrett NT, Blake PA, Cohen ML. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685 http://dx.doi.org/10.1056/NEJM198303243081203. [PubMed]
11. Boyce TG, Pemberton AG, Wells JG, Griffin PM. 1995. Screening for Escherichia coli O157:H7--a nationwide survey of clinical laboratories. J Clin Microbiol 33:3275–3277 http://dx.doi.org/10.1128/JCM.33.12.3275-3277.1995. [PubMed]
12. Council of State and Territorial Epidemiologists. 1993. CSTE position statement #4: national surveillance of Escherichia coli O157:H7. Council of State and Territorial Epidemiologists, Atlanta.
13. Centers for Disease Control and Prevention. 1994. E. coli O157:H7: procedure for isolation and identification from stool specimens. Centers for Disease Control and Prevention, Atlanta.
14. Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462 http://dx.doi.org/10.1126/science.277.5331.1453. [PubMed]
15. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G, Hackett J, Klink S, Boutin A, Shao Y, Miller L, Grotbeck EJ, Davis NW, Lim A, Dimalanta ET, Potamousis KD, Apodaca J, Anantharaman TS, Lin J, Yen G, Schwartz DC, Welch RA, Blattner FR. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533 http://dx.doi.org/10.1038/35054089. [PubMed]
16. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J. 2008. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893 http://dx.doi.org/10.1128/JB.00619-08. [PubMed]
17. Kaas RS, Friis C, Ussery DW, Aarestrup FM. 2012. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13:577 http://dx.doi.org/10.1186/1471-2164-13-577. [PubMed]
18. Yang ZK, Luo H, Zhang Y, Wang B, Gao F. 2018. Pan-genomic analysis provides novel insights into the association of E. coli with human host and its minimal genome. Bioinformatics 10.1093/bioinformatics/bty938. [PubMed]
19. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. 2005. The microbial pan-genome. Curr Opin Genet Dev 15:589–594 http://dx.doi.org/10.1016/j.gde.2005.09.006. [PubMed]
20. Her HL, Wu YW. 2018. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics 34:i89–i95 http://dx.doi.org/10.1093/bioinformatics/bty276. [PubMed]
21. Sun S, Xiao J, Zhang H, Zhang Z. 2016. Pangenome Evidence for Higher Codon Usage Bias and Stronger Translational Selection in Core Genes of Escherichia coli. Front Microbiol 7:1180 http://dx.doi.org/10.3389/fmicb.2016.01180.
22. Bray J. 1945. Isolation of antigenically homogeneous strains of Bact. coli neapolitanum from summer diarrhœa of infants. J Pathol 57:239–247 http://dx.doi.org/10.1002/path.1700570210.
23. Köhler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642–647 http://dx.doi.org/10.1016/j.ijmm.2011.09.006. [PubMed]
24. Russo TA, Johnson JR. 2000. Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181:1753–1754 http://dx.doi.org/10.1086/315418.
25. Lesage AA. 1897. Contribution a l’étude des entérites infantiles—sérodiagnostic des races de Bacterium coli. C R Soc Biol Paris 49:900–901. [PubMed]
26. Rowe B. 1979. The role of Escherichia coli in gastroenteritis. Clin Gastroenterol 8:625–644.
27. Ferguson WW, June RC. 1952. Experiments on feeding adult volunteers with Escherichia coli 111, B4, a coliform organism associated with infant diarrhea. Am J Hyg 55:155–169. [PubMed]
28. Levine MM, Bergquist EJ, Nalin DR, Waterman DH, Hornick RB, Young CR, Sotman S. 1978. Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1:1119–1122 http://dx.doi.org/10.1016/S0140-6736(78)90299-4.
29. Wentworth FH, Brock DW, Stulberg CS, Page RH. 1956. Clinical, bacteriological, and serological observations of two human volunteers following ingestion of Escherichia coli O127:B8. Proc Soc Exp Biol Med 91:586–588 http://dx.doi.org/10.3181/00379727-91-22338. [PubMed]
30. Neter E, Westphal O, Luderitz O, Gino RM, Gorzynski EA. 1955. Demonstration of antibodies against enteropathogenic Escherichia coli in sera of children of various ages. Pediatrics 16:801–808.
31. De SN, Bhattacharya K, Sarkar JK. 1956. A study of the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J Pathol Bacteriol 71:201–209 http://dx.doi.org/10.1002/path.1700710126.
32. Taylor J, Bettelheim KA. 1966. The action of chloroform-killed suspensions of enteropathogenic Escherichia coli on ligated rabbit-gut segments. J Gen Microbiol 42:309–313 http://dx.doi.org/10.1099/00221287-42-2-309. [PubMed]
33. Smith HW, Gyles CL. 1970. The effect of cell-free fluids prepared from cultures of human and animal enteropathogenic strains of Escherichia coli on ligated intestinal segments of rabbits and pigs. J Med Microbiol 3:403–409 http://dx.doi.org/10.1099/00222615-3-3-403. [PubMed]
34. Smith HW, Gyles CL. 1970. The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J Med Microbiol 3:387–401 http://dx.doi.org/10.1099/00222615-3-3-387. [PubMed]
35. Scotland SM, Day NP, Cravioto A, Thomas LV, Rowe B. 1981. Production of heat-labile or heat-stable enterotoxins by strains of Escherichia coli belonging to serogroups O44, O114, and O128. Infect Immun 31:500–503 http://dx.doi.org/10.1128/IAI.31.1.500-503.1981. [PubMed]
36. Spangler BD. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647 http://dx.doi.org/10.1128/MR.56.4.622-647.1992. [PubMed]
37. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201 http://dx.doi.org/10.1128/CMR.11.1.142. [PubMed]
38. Sack DA, Kaminsky DC, Sack RB, Wamola IA, Orskov F, Orskov I, Slack RC, Arthur RR, Kapikian AZ. 1977. Enterotoxigenic Escherichia coli diarrhea of travelers: a prospective study of American Peace Corps volunteers. Johns Hopkins Med J 141:63–70.
39. Shin J, Yoon KB, Jeon DY, Oh SS, Oh KH, Chung GT, Kim SW, Cho SH. 2016. Consecutive Outbreaks of Enterotoxigenic Escherichia coli O6 in Schools in South Korea Caused by Contamination of Fermented Vegetable Kimchi. Foodborne Pathog Dis 13:535–543 http://dx.doi.org/10.1089/fpd.2016.2147. [PubMed]
40. Harada T, Itoh K, Yamaguchi Y, Hirai Y, Kanki M, Kawatsu K, Seto K, Taguchi M, Kumeda Y. 2013. A foodborne outbreak of gastrointestinal illness caused by enterotoxigenic Escherichia coli serotype O169:H41 in Osaka, Japan. Jpn J Infect Dis 66:530–533 http://dx.doi.org/10.7883/yoken.66.530. [PubMed]
41. MacDonald E, Møller KE, Wester AL, Dahle UR, Hermansen NO, Jenum PA, Thoresen L, Vold L. 2015. An outbreak of enterotoxigenic Escherichia coli (ETEC) infection in Norway, 2012: a reminder to consider uncommon pathogens in outbreaks involving imported products. Epidemiol Infect 143:486–493 http://dx.doi.org/10.1017/S0950268814001058. [PubMed]
42. Jain S, Chen L, Dechet A, Hertz AT, Brus DL, Hanley K, Wilson B, Frank J, Greene KD, Parsons M, Bopp CA, Todd R, Hoekstra M, Mintz ED, Ram PK. 2008. An outbreak of enterotoxigenic Escherichia coli associated with sushi restaurants in Nevada, 2004. Clin Infect Dis 47:1–7 http://dx.doi.org/10.1086/588666. [PubMed]
43. Shiga K. 1897. Sekiri byogen kenkyu hokoku (Report on the study of dysentery). Saikingaku Zasshi 25:790–810.
44. Sakazaki R, Tamura K, Saito M. 1967. Enteropathogenic Escherichia coli associated with diarrhea in children and adults. Jpn J Med Sci Biol 20:387–399 http://dx.doi.org/10.7883/yoken1952.20.387. [PubMed]
45. Day NP, Scotland SM, Rowe B. 1981. Comparison of an HEp-2 tissue culture test with the Serény test for detection of enteroinvasiveness in Shigella spp. and Escherichia coli. J Clin Microbiol 13:596–597 http://dx.doi.org/10.1128/JCM.13.3.596-597.1981. [PubMed]
46. Formal SB, Hale TL, Sansonetti PJ. 1983. Invasive enteric pathogens. Rev Infect Dis 5(Suppl 4) :S702–S707 http://dx.doi.org/10.1093/clinids/5.Supplement_4.S702. [PubMed]
47. Sereny B. 1957. Experimental keratoconjunctivitis shigellosa. Acta Microbiol Acad Sci Hung 4:367–376.
48. Silva RM, Toledo MR, Trabulsi LR. 1980. Biochemical and cultural characteristics of invasive Escherichia coli. J Clin Microbiol 11:441–444 http://dx.doi.org/10.1128/JCM.11.5.441-444.1980. [PubMed]
49. Pettengill EA, Pettengill JB, Binet R. 2016. Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation. Front Microbiol 6:1573 http://dx.doi.org/10.3389/fmicb.2015.01573. [PubMed]
50. Pupo GM, Lan R, Reeves PR. 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 97:10567–10572 http://dx.doi.org/10.1073/pnas.180094797. [PubMed]
51. Tran Van Nhieu G, Bourdet-Sicard R, Duménil G, Blocker A, Sansonetti PJ. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell Microbiol 2:187–193 http://dx.doi.org/10.1046/j.1462-5822.2000.00046.x. [PubMed]
52. Buchrieser C, Glaser P, Rusniok C, Nedjari H, D’Hauteville H, Kunst F, Sansonetti P, Parsot C. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38:760–771 http://dx.doi.org/10.1046/j.1365-2958.2000.02179.x. [PubMed]
53. Gal-Mor O, Finlay BB. 2006. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8:1707–1719 http://dx.doi.org/10.1111/j.1462-5822.2006.00794.x. [PubMed]
54. Newitt S, MacGregor V, Robbins V, Bayliss L, Chattaway MA, Dallman T, Ready D, Aird H, Puleston R, Hawker J. 2016. Two Linked Enteroinvasive Escherichia coli Outbreaks, Nottingham, UK, June 2014. Emerg Infect Dis 22:1178–1184 http://dx.doi.org/10.3201/eid2207.152080. [PubMed]
55. Zhou X, Xia W, Tu J, Xue L, Ni X. 2015. Molecular characterisation of enteroinvasive Escherichia coli O136:K78 isolates from patients of a diarrhoea outbreak in China. Indian J Med Microbiol 33:528–532 http://dx.doi.org/10.4103/0255-0857.167328. [PubMed]
56. Fialho OB, de Souza EM, de Borba Dallagassa C, de Oliveira Pedrosa F, Klassen G, Irino K, Paludo KS, de Assis FE, Surek M, de Souza Santos Farah SM, Fadel-Picheth CM. 2013. Detection of diarrheagenic Escherichia coli using a two-system multiplex-PCR protocol. J Clin Lab Anal 27:155–161 http://dx.doi.org/10.1002/jcla.21578. [PubMed]
57. Michelacci V, Prosseda G, Maugliani A, Tozzoli R, Sanchez S, Herrera-Leon S, Dallman T, Jenkins C, Caprioli A, Morabito S. 2016. Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe. Clin Microbiol Infect 22:287 e211-289. [PubMed]
58. Bhavnani D, Bayas RL, Lopez VK, Zhang L, Trueba G, Foxman B, Marrs C, Cevallos W, Eisenberg JN. 2016. Distribution of Enteroinvasive and Enterotoxigenic Escherichia coli Across Space and Time in Northwestern Ecuador. Am J Trop Med Hyg 94:276–284 http://dx.doi.org/10.4269/ajtmh.14-0337. [PubMed]
59. Konowalchuk J, Speirs JI, Stavric S. 1977. Vero response to a cytotoxin of Escherichia coli. Infect Immun 18:775–779 http://dx.doi.org/10.1128/IAI.18.3.775-779.1977. [PubMed]
60. Cleary TG, Mathewson JJ, Faris E, Pickering LK. 1985. Shiga-like cytotoxin production by enteropathogenic Escherichia coli serogroups. Infect Immun 47:335–337 http://dx.doi.org/10.1128/IAI.47.1.335-337.1985. [PubMed]
61. O’Brien AD, LaVeck GD, Thompson MR, Formal SB. 1982. Production of Shigella dysenteriae type 1-like cytotoxin by Escherichia coli. J Infect Dis 146:763–769 http://dx.doi.org/10.1093/infdis/146.6.763. [PubMed]
62. O’Brien AD, LaVeck GD. 1983. Purification and characterization of a Shigella dysenteriae 1-like toxin produced by Escherichia coli. Infect Immun 40:675–683 http://dx.doi.org/10.1128/IAI.40.2.675-683.1983. [PubMed]
63. Wells JG, Davis BR, Wachsmuth IK, Riley LW, Remis RS, Sokolow R, Morris GK. 1983. Laboratory investigation of hemorrhagic colitis outbreaks associated with a rare Escherichia coli serotype. J Clin Microbiol 18:512–520 http://dx.doi.org/10.1128/JCM.18.3.512-520.1983. [PubMed]
64. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. 1985. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 151:775–782 http://dx.doi.org/10.1093/infdis/151.5.775. [PubMed]
65. Scotland SM, Smith HR, Rowe B. 1985. Two distinct toxins active on Vero cells from Escherichia coli O157. Lancet 2:885–886 http://dx.doi.org/10.1016/S0140-6736(85)90146-1.
66. Strockbine NA, Marques LR, Newland JW, Smith HW, Holmes RK, O’Brien AD. 1986. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun 53:135–140 http://dx.doi.org/10.1128/IAI.53.1.135-140.1986. [PubMed]
67. Cravioto A, Tello A, Navarro A, Ruiz J, Villafán H, Uribe F, Eslava C. 1991. Association of Escherichia coli HEp-2 adherence patterns with type and duration of diarrhoea. Lancet 337:262–264 http://dx.doi.org/10.1016/0140-6736(91)90868-P.
68. Scaletsky IC, Silva ML, Trabulsi LR. 1984. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun 45:534–536 http://dx.doi.org/10.1128/IAI.45.2.534-536.1984. [PubMed]
69. Moon HW, Whipp SC, Argenzio RA, Levine MM, Giannella RA. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun 41:1340–1351 http://dx.doi.org/10.1128/IAI.41.3.1340-1351.1983. [PubMed]
70. Rothbaum R, McAdams AJ, Giannella R, Partin JC. 1982. A clinicopathologic study of enterocyte-adherent Escherichia coli: a cause of protracted diarrhea in infants. Gastroenterology 83:441–454 http://dx.doi.org/10.1016/S0016-5085(82)80342-9.
71. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140 http://dx.doi.org/10.1038/nrmicro818. [PubMed]
72. Jarvis KG, Girón JA, Jerse AE, McDaniel TK, Donnenberg MS, Kaper JB. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci USA 92:7996–8000 http://dx.doi.org/10.1073/pnas.92.17.7996. [PubMed]
73. McDaniel TK, Jarvis KG, Donnenberg MS, Kaper JB. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci USA 92:1664–1668 http://dx.doi.org/10.1073/pnas.92.5.1664. [PubMed]
74. Jerse AE, Yu J, Tall BD, Kaper JB. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci USA 87:7839–7843 http://dx.doi.org/10.1073/pnas.87.20.7839. [PubMed]
75. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520 http://dx.doi.org/10.1016/S0092-8674(00)80437-7.
76. Girón JA, Ho AS, Schoolnik GK. 1991. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254:710–713 http://dx.doi.org/10.1126/science.1683004. [PubMed]
77. Nataro JP, Kaper JB, Robins-Browne R, Prado V, Vial P, Levine MM. 1987. Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831 http://dx.doi.org/10.1097/00006454-198709000-00008. [PubMed]
78. Trabulsi LR, Keller R, Tardelli Gomes TA. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8:508–513 http://dx.doi.org/10.3201/eid0805.010385. [PubMed]
79. Paschke C, Apelt N, Fleischmann E, Perona P, Walentiny C, Löscher T, Herbinger KH. 2011. Controlled study on enteropathogens in travellers returning from the tropics with and without diarrhoea. Clin Microbiol Infect 17:1194–1200 http://dx.doi.org/10.1111/j.1469-0691.2010.03414.x. [PubMed]
80. Hebbelstrup Jensen B, Olsen KE, Struve C, Krogfelt KA, Petersen AM. 2014. Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 27:614–630 http://dx.doi.org/10.1128/CMR.00112-13. [PubMed]
81. Girón JA, et al. 1991. Diffuse-adhering Escherichia coli (DAEC) as a putative cause of diarrhea in Mayan children in Mexico. J Infect Dis 163:507–513 http://dx.doi.org/10.1093/infdis/163.3.507. [PubMed]
82. Durrer P, Zbinden R, Fleisch F, Altwegg M, Ledergerber B, Karch H, Weber R. 2000. Intestinal infection due to enteroaggregative Escherichia coli among human immunodeficiency virus-infected persons. J Infect Dis 182:1540–1544 http://dx.doi.org/10.1086/315885. [PubMed]
83. Gassama-Sow A, Sow PS, Guèye M, Guèye-N’diaye A, Perret JL, M’boup S, Aïdara-Kane A. 2004. Characterization of pathogenic Escherichia coli in human immunodeficiency virus-related diarrhea in Senegal. J Infect Dis 189:75–78 http://dx.doi.org/10.1086/380489. [PubMed]
84. Hicks S, Candy DC, Phillips AD. 1996. Adhesion of enteroaggregative Escherichia coli to formalin-fixed intestinal and ureteric epithelia from children. J Med Microbiol 44:362–371 http://dx.doi.org/10.1099/00222615-44-5-362. [PubMed]
85. Steiner TS, Lima AA, Nataro JP, Guerrant RL. 1998. Enteroaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J Infect Dis 177:88–96 http://dx.doi.org/10.1086/513809. [PubMed]
86. Lima AA, Moore SR, Barboza MS Jr, Soares AM, Schleupner MA, Newman RD, Sears CL, Nataro JP, Fedorko DP, Wuhib T, Schorling JB, Guerrant RL. 2000. Persistent diarrhea signals a critical period of increased diarrhea burdens and nutritional shortfalls: a prospective cohort study among children in northeastern Brazil. J Infect Dis 181:1643–1651 http://dx.doi.org/10.1086/315423. [PubMed]
87. Sarantuya J, Nishi J, Wakimoto N, Erdene S, Nataro JP, Sheikh J, Iwashita M, Manago K, Tokuda K, Yoshinaga M, Miyata K, Kawano Y. 2004. Typical enteroaggregative Escherichia coli is the most prevalent pathotype among E. coli strains causing diarrhea in Mongolian children. J Clin Microbiol 42:133–139 http://dx.doi.org/10.1128/JCM.42.1.133-139.2004. [PubMed]
88. Jiang ZD, Greenberg D, Nataro JP, Steffen R, DuPont HL. 2002. Rate of occurrence and pathogenic effect of enteroaggregative Escherichia coli virulence factors in international travelers. J Clin Microbiol 40:4185–4190 http://dx.doi.org/10.1128/JCM.40.11.4185-4190.2002. [PubMed]
89. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zoufaly A, Jordan S, Kemper MJ, Follin P, Müller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, Team HUSI, HUS Investigation Team. 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365:1771–1780 http://dx.doi.org/10.1056/NEJMoa1106483. [PubMed]
90. Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, Deleré Y, an der Heiden M, Adlhoch C, Dreesman J, Ehlers J, Ethelberg S, Faber M, Frank C, Fricke G, Greiner M, Höhle M, Ivarsson S, Jark U, Kirchner M, Koch J, Krause G, Luber P, Rosner B, Stark K, Kühne M. 2011. German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770 http://dx.doi.org/10.1056/NEJMoa1106482. [PubMed]
91. Frank C, Faber MS, Askar M, Bernard H, Fruth A, Gilsdorf A, Hohle M, Karch H, Krause G, Prager R, Spode A, Stark K, Werber D, HUS investigation team. 2011. Large and ongoing outbreak of haemolytic uraemic syndrome, Germany, May 2011. Euro Surveill 16:16.
92. Navarro-Garcia F. 2014. Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2:2 http://dx.doi.org/10.1128/microbiolspec.EHEC-0008-2013. [PubMed]
93. Gunzburg ST, Tornieporth NG, Riley LW. 1995. Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J Clin Microbiol 33:1375–1377 http://dx.doi.org/10.1128/JCM.33.5.1375-1377.1995. [PubMed]
94. Tornieporth NG, John J, Salgado K, de Jesus P, Latham E, Melo MC, Gunzburg ST, Riley LW. 1995. Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J Clin Microbiol 33:1371–1374 http://dx.doi.org/10.1128/JCM.33.5.1371-1374.1995. [PubMed]
95. van Ijperen C, Kuhnert P, Frey J, Clewley JP. 2002. Virulence typing of Escherichia coli using microarrays. Mol Cell Probes 16:371–378 http://dx.doi.org/10.1006/mcpr.2002.0437. [PubMed]
96. Abe A, Obata H, Matsushita S, Yamada S, Kudoh Y, Bangtrakulnonth A, Ratchtrachenchat OA, Danbara H. 1992. A sensitive method for the detection of enterotoxigenic Escherichia coli by the polymerase chain reaction using multiple primer pairs. Zentralbl Bakteriol 277:170–178 http://dx.doi.org/10.1016/S0934-8840(11)80610-9.
97. Candrian U, Furrer B, Höfelein C, Meyer R, Jermini M, Lüthy J. 1991. Detection of Escherichia coli and identification of enterotoxigenic strains by primer-directed enzymatic amplification of specific DNA sequences. Int J Food Microbiol 12:339–351 http://dx.doi.org/10.1016/0168-1605(91)90148-I.
98. Frankel G, Giron JA, Valmassoi J, Schoolnik GK. 1989. Multi-gene amplification: simultaneous detection of three virulence genes in diarrhoeal stool. Mol Microbiol 3:1729–1734 http://dx.doi.org/10.1111/j.1365-2958.1989.tb00158.x. [PubMed]
99. Frankel G, Riley L, Giron JA, Valmassoi J, Friedmann A, Strockbine N, Falkow S, Schoolnik GK. 1990. Detection of Shigella in feces using DNA amplification. J Infect Dis 161:1252–1256 http://dx.doi.org/10.1093/infdis/161.6.1252. [PubMed]
100. Manges AR, Johnson JR. 2015. Reservoirs of Extraintestinal Pathogenic Escherichia coli. Microbiol Spectr 3:3 http://dx.doi.org/10.1128/microbiolspec.UTI-0006-2012. [PubMed]
101. Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390 http://dx.doi.org/10.1111/1469-0691.12646.
102. Dobrindt U, Chowdary MG, Krumbholz G, Hacker J. 2010. Genome dynamics and its impact on evolution of Escherichia coli. Med Microbiol Immunol (Berl) 199:145–154 http://dx.doi.org/10.1007/s00430-010-0161-2.
103. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217 http://dx.doi.org/10.1038/nrmicro2298.
104. Riley LW, Blanton RE. 2018. Advances in Molecular Epidemiology of Infectious Diseases: Definitions, Approaches, and Scope of the Field. Microbiol Spectr 6:6 http://dx.doi.org/10.1128/microbiolspec.AME-0001-2018.
105. Ochman H, Selander RK. 1984. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 157:690–693 http://dx.doi.org/10.1128/JB.157.2.690-693.1984.
106. Selander RK, Caugant DA, Whittam TS. 1987. Genetic structure and variation in natural populations of Escherichia coli. ASM Press, Washington, DC.
107. Herzer PJ, Inouye S, Inouye M, Whittam TS. 1990. Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. J Bacteriol 172:6175–6181 http://dx.doi.org/10.1128/JB.172.11.6175-6181.1990.
108. Johnson JR. 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4:80–128 http://dx.doi.org/10.1128/CMR.4.1.80.
109. Johnson JR, Delavari P, Kuskowski M, Stell AL. 2001. Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. J Infect Dis 183:78–88 http://dx.doi.org/10.1086/317656.
110. Johnson JR, Johnston B, Kuskowski MA, Nougayrede JP, Oswald E. 2008. Molecular epidemiology and phylogenetic distribution of the Escherichia coli pks genomic island. J Clin Microbiol 46:3906–3911 http://dx.doi.org/10.1128/JCM.00949-08.
111. Johnson JR, Kuskowski MA, Owens K, Clabots C, Singer RS. 2009. Virulence genotypes and phylogenetic background of fluoroquinolone-resistant and susceptible Escherichia coli urine isolates from dogs with urinary tract infection. Vet Microbiol 136:108–114 http://dx.doi.org/10.1016/j.vetmic.2008.10.006.
112. Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, Vary JC Jr, Stell AL. 2000. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN(E. coli), among Escherichia coli isolates from patients with urosepsis. Infect Immun 68:3040–3047 http://dx.doi.org/10.1128/IAI.68.5.3040-3047.2000.
113. Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558 http://dx.doi.org/10.1128/AEM.66.10.4555-4558.2000.
114. Picard B, Garcia JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E. 1999. The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67:546–553 http://dx.doi.org/10.1128/IAI.67.2.546-553.1999.
115. Boyd EF, Hartl DL. 1998. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J Bacteriol 180:1159–1165 http://dx.doi.org/10.1128/JB.180.5.1159-1165.1998.
116. Johnson JR, Stell AL. 2000. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181:261–272 http://dx.doi.org/10.1086/315217.
117. Johnson JR, Russo TA. 2018. Molecular Epidemiology of Extraintestinal Pathogenic Escherichia coli. Ecosal Plus 8:8 http://dx.doi.org/10.1128/ecosalplus.ESP-0004-2017.
118. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I. 2019. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 11:10 http://dx.doi.org/10.1186/s13099-019-0290-0.
119. Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295:383–404 http://dx.doi.org/10.1016/j.ijmm.2005.07.005.
120. Groisman EA, Ochman H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794 http://dx.doi.org/10.1016/S0092-8674(00)81985-6.
121. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097 http://dx.doi.org/10.1046/j.1365-2958.1997.3101672.x.
122. Munkhdelger Y, Gunregjav N, Dorjpurev A, Juniichiro N, Sarantuya J. 2017. Detection of virulence genes, phylogenetic group and antibiotic resistance of uropathogenic Escherichia coli in Mongolia. J Infect Dev Ctries 11:51–57 http://dx.doi.org/10.3855/jidc.7903.
123. Nüesch-Inderbinen MT, Baschera M, Zurfluh K, Hächler H, Nüesch H, Stephan R. 2017. Clonal Diversity, Virulence Potential and Antimicrobial Resistance of Escherichia coli Causing Community Acquired Urinary Tract Infection in Switzerland. Front Microbiol 8:2334 http://dx.doi.org/10.3389/fmicb.2017.02334.
124. Chaudhuri RR, Henderson IR. 2012. The evolution of the Escherichia coli phylogeny. Infect Genet Evol 12:214–226 http://dx.doi.org/10.1016/j.meegid.2012.01.005.
125. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. 2007. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 24:2373–2384 http://dx.doi.org/10.1093/molbev/msm172.
126. Nielsen KL, Stegger M, Kiil K, Godfrey PA, Feldgarden M, Lilje B, Andersen PS, Frimodt-Møller N. 2017. Whole-genome comparison of urinary pathogenic Escherichia coli and faecal isolates of UTI patients and healthy controls. Int J Med Microbiol 307:497–507 http://dx.doi.org/10.1016/j.ijmm.2017.09.007.
127. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. 2010. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192:4885–4893 http://dx.doi.org/10.1128/JB.00804-10.
128. Nowrouzian FL, Adlerberth I, Wold AE. 2006. Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect 8:834–840 http://dx.doi.org/10.1016/j.micinf.2005.10.011.
129. Phillips I, Eykyn S, King A, Gransden WR, Rowe B, Frost JA, Gross RJ. 1988. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1:1038–1041 http://dx.doi.org/10.1016/S0140-6736(88)91853-3.
130. Waghorn DJ, Kelly TW, Gibbins W. 1988. Epidemic multi-resistant Escherichia coli infection in south London. J Hosp Infect 11:192–193 http://dx.doi.org/10.1016/0195-6701(88)90063-1.
131. Wright ED, Perinpanayagam RM. 1987. Multiresistant invasive Escherichia coli infection in south London. Lancet 1:556–557 http://dx.doi.org/10.1016/S0140-6736(87)90190-5.
132. Prats G, Navarro F, Mirelis B, Dalmau D, Margall N, Coll P, Stell A, Johnson JR. 2000. Escherichia coli serotype O15:K52:H1 as a uropathogenic clone. J Clin Microbiol 38:201–209.
133. Platell JL, Cobbold RN, Johnson JR, Heisig A, Heisig P, Clabots C, Kuskowski MA, Trott DJ. 2011. Commonality among fluoroquinolone-resistant sequence type ST131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob Agents Chemother 55:3782–3787 http://dx.doi.org/10.1128/AAC.00306-11.
134. Olesen B, Kolmos HJ, Orskov F, Orskov I. 1995. A comparative study of nosocomial and community-acquired strains of Escherichia coli causing bacteraemia in a Danish University Hospital. J Hosp Infect 31:295–304 http://dx.doi.org/10.1016/0195-6701(95)90208-2.
135. Olesen B, Scheutz F, Menard M, Skov MN, Kolmos HJ, Kuskowski MA, Johnson JR. 2009. Three-decade epidemiological analysis of Escherichia coli O15:K52:H1. J Clin Microbiol 47:1857–1862 http://dx.doi.org/10.1128/JCM.00230-09.
136. Johnson JR, Stell AL, O’Bryan TT, Kuskowski M, Nowicki B, Johnson C, Maslow JN, Kaul A, Kavle J, Prats G. 2002. Global molecular epidemiology of the O15:K52:H1 extraintestinal pathogenic Escherichia coli clonal group: evidence of distribution beyond Europe. J Clin Microbiol 40:1913–1923 http://dx.doi.org/10.1128/JCM.40.6.1913-1923.2002.
137. Lee MY, Choi HJ, Choi JY, Song M, Song Y, Kim SW, Chang HH, Jung SI, Kim YS, Ki HK, Son JS, Kwon KT, Heo ST, Yeom JS, Shin SY, Chung DR, Peck KR, Song JH, Ko KS. 2010. Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J Infect 60:146–153 http://dx.doi.org/10.1016/j.jinf.2009.11.004.
138. Manges AR, Johnson JR, Foxman B, O’Bryan TT, Fullerton KE, Riley LW. 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345:1007–1013 http://dx.doi.org/10.1056/NEJMoa011265.
139. Tartof SY, Solberg OD, Manges AR, Riley LW. 2005. Analysis of a uropathogenic Escherichia coli clonal group by multilocus sequence typing. J Clin Microbiol 43:5860–5864 http://dx.doi.org/10.1128/JCM.43.12.5860-5864.2005.
140. Manges AR, Natarajan P, Solberg OD, Dietrich PS, Riley LW. 2006. The changing prevalence of drug-resistant Escherichia coli clonal groups in a community: evidence for community outbreaks of urinary tract infections. Epidemiol Infect 134:425–431 http://dx.doi.org/10.1017/S0950268805005005.
141. Smith SP, Manges AR, Riley LW. 2008. Temporal changes in the prevalence of community-acquired antimicrobial-resistant urinary tract infection affected by Escherichia coli clonal group composition. Clin Infect Dis 46:689–695 http://dx.doi.org/10.1086/527386.
142. Bergeron CR, Prussing C, Boerlin P, Daignault D, Dutil L, Reid-Smith RJ, Zhanel GG, Manges AR. 2012. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg Infect Dis 18:415–421 http://dx.doi.org/10.3201/eid1803.111099.
143. Manges AR, Johnson JR. 2012. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55:712–719 http://dx.doi.org/10.1093/cid/cis502.
144. Hussain A, Shaik S, Ranjan A, Nandanwar N, Tiwari SK, Majid M, Baddam R, Qureshi IA, Semmler T, Wieler LH, Islam MA, Chakravortty D, Ahmed N. 2017. Risk of Transmission of Antimicrobial Resistant Escherichia coli from Commercial Broiler and Free-Range Retail Chicken in India. Front Microbiol 8:2120 http://dx.doi.org/10.3389/fmicb.2017.02120.
145. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin Microbiol Rev 32:32 http://dx.doi.org/10.1128/CMR.00135-18.
146. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, Park YJ, Lavigne JP, Pitout J, Johnson JR. 2008. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61:273–281 http://dx.doi.org/10.1093/jac/dkm464.
147. Coque TM, Novais A, Carattoli A, Poirel L, Pitout J, Peixe L, Baquero F, Cantón R, Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 14:195–200 http://dx.doi.org/10.3201/eid1402.070350.
148. Mathers AJ, Peirano G, Pitout JD. 2015. Escherichia coli ST131: the quintessential example of an international multiresistant high-risk clone. Adv Appl Microbiol 90:109–154 http://dx.doi.org/10.1016/bs.aambs.2014.09.002.
149. Johnson JR, Porter S, Thuras P, Castanheira M. 2017. The Pandemic H30 Subclone of Sequence Type 131 (ST131) as the Leading Cause of Multidrug-Resistant Escherichia coli Infections in the United States (2011-2012). Open Forum Infect Dis 4:ofx089 http://dx.doi.org/10.1093/ofid/ofx089.
150. Nicolas-Chanoine MH, Bertrand X, Madec JY. 2014. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:543–574 http://dx.doi.org/10.1128/CMR.00125-13.
151. Leflon-Guibout V, Blanco J, Amaqdouf K, Mora A, Guize L, Nicolas-Chanoine MH. 2008. Absence of CTX-M enzymes but high prevalence of clones, including clone ST131, among fecal Escherichia coli isolates from healthy subjects living in the area of Paris, France. J Clin Microbiol 46:3900–3905 http://dx.doi.org/10.1128/JCM.00734-08. [PubMed]
152. Adams-Sapper S, Diep BA, Perdreau-Remington F, Riley LW. 2013. Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob Agents Chemother 57:490–497 http://dx.doi.org/10.1128/AAC.01025-12. [PubMed]
153. Gibreel TM, Dodgson AR, Cheesbrough J, Fox AJ, Bolton FJ, Upton M. 2012. Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J Antimicrob Chemother 67:346–356 http://dx.doi.org/10.1093/jac/dkr451. [PubMed]
154. Lau SH, Reddy S, Cheesbrough J, Bolton FJ, Willshaw G, Cheasty T, Fox AJ, Upton M. 2008. Major uropathogenic Escherichia coli strain isolated in the northwest of England identified by multilocus sequence typing. J Clin Microbiol 46:1076–1080 http://dx.doi.org/10.1128/JCM.02065-07. [PubMed]
155. Manges AR, Tabor H, Tellis P, Vincent C, Tellier PP. 2008. Endemic and epidemic lineages of Escherichia coli that cause urinary tract infections. Emerg Infect Dis 14:1575–1583 http://dx.doi.org/10.3201/eid1410.080102. [PubMed]
156. Croxall G, Hale J, Weston V, Manning G, Cheetham P, Achtman M, McNally A. 2011. Molecular epidemiology of extraintestinal pathogenic Escherichia coli isolates from a regional cohort of elderly patients highlights the prevalence of ST131 strains with increased antimicrobial resistance in both community and hospital care settings. J Antimicrob Chemother 66:2501–2508 http://dx.doi.org/10.1093/jac/dkr349. [PubMed]
157. Horner C, Fawley W, Morris K, Parnell P, Denton M, Wilcox M. 2014. Escherichia coli bacteraemia: 2 years of prospective regional surveillance (2010-12). J Antimicrob Chemother 69:91–100 http://dx.doi.org/10.1093/jac/dkt333. [PubMed]
158. Brisse S, Diancourt L, Laouénan C, Vigan M, Caro V, Arlet G, Drieux L, Leflon-Guibout V, Mentré F, Jarlier V, Nicolas-Chanoine MH, Coli β Study Group. 2012. Phylogenetic distribution of CTX-M- and non-extended-spectrum-β-lactamase-producing Escherichia coli isolates: group B2 isolates, except clone ST131, rarely produce CTX-M enzymes. J Clin Microbiol 50:2974–2981 http://dx.doi.org/10.1128/JCM.00919-12. [PubMed]
159. Salipante SJ, Roach DJ, Kitzman JO, Snyder MW, Stackhouse B, Butler-Wu SM, Lee C, Cookson BT, Shendure J. 2015. Large-scale genomic sequencing of extraintestinal pathogenic Escherichia coli strains. Genome Res 25:119–128 http://dx.doi.org/10.1101/gr.180190.114. [PubMed]
160. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW. 2018. Persistent pandemic lineages of uropathogenic Escherichia coli in a college community-1999-2017. J Clin Microbiol 56:e01834-17 http://dx.doi.org/10.1128/JCM.01834-17. [PubMed]
161. Umene YD, Wong LK, Satoh T, Yamane K, Matsui M, Riley LW, Arakawa Y, Suzuki S. 2015. Molecular epidemiological characterization of uropathogenic escherichia coli from an outpatient urology clinic in rural Japan. J Clin Microbiol 53:681–683 http://dx.doi.org/10.1128/JCM.03068-14. [PubMed]
162. Manges AR, Harel J, Masson L, Edens TJ, Portt A, Reid-Smith RJ, Zhanel GG, Kropinski AM, Boerlin P. 2015. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 12:302–310 http://dx.doi.org/10.1089/fpd.2014.1860. [PubMed]
163. Wu J, Lan F, Lu Y, He Q, Li B. 2017. Molecular Characteristics of ST1193 Clone among Phylogenetic Group B2 Non-ST131 Fluoroquinolone-Resistant Escherichia coli. Front Microbiol 8:2294 http://dx.doi.org/10.3389/fmicb.2017.02294. [PubMed]
164. Platell JL, Trott DJ, Johnson JR, Heisig P, Heisig A, Clabots CR, Johnston B, Cobbold RN. 2012. Prominence of an O75 clonal group (clonal complex 14) among non-ST131 fluoroquinolone-resistant Escherichia coli causing extraintestinal infections in humans and dogs in Australia. Antimicrob Agents Chemother 56:3898–3904 http://dx.doi.org/10.1128/AAC.06120-11. [PubMed]
165. Johnson JR, Johnston BD, Porter SB, Clabots C, Bender TL, Thuras P, Trott DJ, Cobbold R, Mollinger J, Ferrieri P, Drawz S, Banerjee R. 2019. Rapid Emergence, Subsidence, and Molecular Detection of Escherichia coli Sequence Type 1193- fimH64, a New Disseminated Multidrug-Resistant Commensal and Extraintestinal Pathogen. J Clin Microbiol 57:e01664-18 http://dx.doi.org/10.1128/JCM.01664-18. [PubMed]
166. Johnson JR, Delavari P, O’Bryan TT, Smith KE, Tatini S. 2005. Contamination of retail foods, particularly turkey, from community markets (Minnesota, 1999-2000) with antimicrobial-resistant and extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 2:38–49 http://dx.doi.org/10.1089/fpd.2005.2.38. [PubMed]
167. Johnson JR, Kuskowski MA, Smith K, O’Bryan TT, Tatini S. 2005. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 191:1040–1049 http://dx.doi.org/10.1086/428451. [PubMed]
168. Johnson JR, Murray AC, Gajewski A, Sullivan M, Snippes P, Kuskowski MA, Smith KE. 2003. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother 47:2161–2168 http://dx.doi.org/10.1128/AAC.47.7.2161-2168.2003. [PubMed]
169. Dezfulian H, Batisson I, Fairbrother JM, Lau PC, Nassar A, Szatmari G, Harel J. 2003. Presence and characterization of extraintestinal pathogenic Escherichia coli virulence genes in F165-positive E. coli strains isolated from diseased calves and pigs. J Clin Microbiol 41:1375–1385 http://dx.doi.org/10.1128/JCM.41.4.1375-1385.2003. [PubMed]
170. Maynard C, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Larivière S, Harel J. 2004. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal Escherichia coli isolates of animal and human origin. J Clin Microbiol 42:5444–5452 http://dx.doi.org/10.1128/JCM.42.12.5444-5452.2004. [PubMed]
171. Liu CM, Stegger M, Aziz M, Johnson TJ, Waits K, Nordstrom L, Gauld L, Weaver B, Rolland D, Statham S, Horwinski J, Sariya S, Davis GS, Sokurenko E, Keim P, Johnson JR, Price LB. 2018. Escherichia coli ST131- H22 as a Foodborne Uropathogen. MBio 9:9 http://dx.doi.org/10.1128/mBio.00470-18. [PubMed]
172. Jakobsen L, Spangholm DJ, Pedersen K, Jensen LB, Emborg HD, Agersø Y, Aarestrup FM, Hammerum AM, Frimodt-Møller N. 2010. Broiler chickens, broiler chicken meat, pigs and pork as sources of ExPEC related virulence genes and resistance in Escherichia coli isolates from community-dwelling humans and UTI patients. Int J Food Microbiol 142:264–272 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.025. [PubMed]
173. Jakobsen L, Kurbasic A, Skjøt-Rasmussen L, Ejrnaes K, Porsbo LJ, Pedersen K, Jensen LB, Emborg HD, Agersø Y, Olsen KE, Aarestrup FM, Frimodt-Møller N, Hammerum AM. 2010. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog Dis 7:537–547 http://dx.doi.org/10.1089/fpd.2009.0409. [PubMed]
174. Campos J, Mourão J, Pestana N, Peixe L, Novais C, Antunes P. 2013. Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes. Int J Food Microbiol 166:464–470 http://dx.doi.org/10.1016/j.ijfoodmicro.2013.08.005. [PubMed]
175. Ramchandani M, Manges AR, DebRoy C, Smith SP, Johnson JR, Riley LW. 2005. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis 40:251–257 http://dx.doi.org/10.1086/426819. [PubMed]
176. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, Galanakis C, Reid-Smith RJ, Tellier PP, Tellis PA, Ziebell K, Manges AR. 2010. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16:88–95 http://dx.doi.org/10.3201/eid1601.091118. [PubMed]
177. Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW. 2018. A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. MSphere 3:3 http://dx.doi.org/10.1128/mSphere.00179-18. [PubMed]
178. Leverstein-van Hall MA, Dierikx CM, Cohen Stuart J, Voets GM, van den Munckhof MP, van Essen-Zandbergen A, Platteel T, Fluit AC, van de Sande-Bruinsma N, Scharinga J, Bonten MJ, Mevius DJ, National ESBL surveillance group. 2011. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect 17:873–880 http://dx.doi.org/10.1111/j.1469-0691.2011.03497.x. [PubMed]
179. Smith JL, Fratamico PM, Gunther NW. 2007. Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis 4:134–163 http://dx.doi.org/10.1089/fpd.2007.0087. [PubMed]
180. Manges AR. 2016. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 22:122–129 http://dx.doi.org/10.1016/j.cmi.2015.11.010. [PubMed]
181. López-Cerero L, Egea P, Serrano L, Navarro D, Mora A, Blanco J, Doi Y, Paterson DL, Rodríguez-Baño J, Pascual A. 2011. Characterisation of clinical and food animal Escherichia coli isolates producing CTX-M-15 extended-spectrum β-lactamase belonging to ST410 phylogroup A. Int J Antimicrob Agents 37:365–367 http://dx.doi.org/10.1016/j.ijantimicag.2011.01.001. [PubMed]
182. Jakobsen L, Garneau P, Bruant G, Harel J, Olsen SS, Porsbo LJ, Hammerum AM, Frimodt-Møller N. 2012. Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. Eur J Clin Microbiol Infect Dis 31:1121–1129 http://dx.doi.org/10.1007/s10096-011-1417-5. [PubMed]
183. Schink AK, Kadlec K, Kaspar H, Mankertz J, Schwarz S. 2013. Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. J Antimicrob Chemother 68:1741–1749 http://dx.doi.org/10.1093/jac/dkt123. [PubMed]
184. Nordstrom L, Liu CM, Price LB. 2013. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 4:29 http://dx.doi.org/10.3389/fmicb.2013.00029. [PubMed]
185. Cunha MPV, Saidenberg AB, Moreno AM, Ferreira AJP, Vieira MAM, Gomes TAT, Knöbl T. 2017. Pandemic extra-intestinal pathogenic Escherichia coli (ExPEC) clonal group O6-B2-ST73 as a cause of avian colibacillosis in Brazil. PLoS One 12:e0178970 http://dx.doi.org/10.1371/journal.pone.0178970. [PubMed]
186. Schaeffer EM. 2013. Re: chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. J Urol 189:153 http://dx.doi.org/10.1016/j.juro.2012.09.154. [PubMed]
187. Giufrè M, Graziani C, Accogli M, Luzzi I, Busani L, Cerquetti M, Escherichia coli Study Group. 2012. Escherichia coli of human and avian origin: detection of clonal groups associated with fluoroquinolone and multidrug resistance in Italy. J Antimicrob Chemother 67:860–867 http://dx.doi.org/10.1093/jac/dkr565. [PubMed]
188. Zhu Y, Dong W, Ma J, Yuan L, Hejair HM, Pan Z, Liu G, Yao H. 2017. Characterization and virulence clustering analysis of extraintestinal pathogenic Escherichia coli isolated from swine in China. BMC Vet Res 13:94 http://dx.doi.org/10.1186/s12917-017-0975-x. [PubMed]
189. Liao N, Borges CA, Rubin J, Hu Y, Ramirez HA, Chen J, Zhou B, Zhang Y, Zhang R, Jiang J, Riley LW. 2020. Prevalence of β-Lactam Drug-Resistance Genes in Escherichia coli Contaminating Ready-to-Eat Lettuce. Foodborne Pathog Dis 17:739–742 http://dx.doi.org/10.1089/fpd.2020.2792. [PubMed]
190. Ghodousi A, Bonura C, Di Carlo P, van Leeuwen WB, Mammina C. 2016. Extraintestinal pathogenic Escherichia coli sequence type 131 H30-R and H30-Rx subclones in retail chicken meat, Italy. Int J Food Microbiol 228:10–13 http://dx.doi.org/10.1016/j.ijfoodmicro.2016.04.004. [PubMed]
191. Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls C, van der Zwaluw K, Huijsdens X, Kluytmans J. 2011. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17:1216–1222 http://dx.doi.org/10.3201/eid1707.110209. [PubMed]
192. Zurfluh K, Nüesch-Inderbinen M, Morach M, Zihler Berner A, Hächler H, Stephan R. 2015. Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl Environ Microbiol 81:3115–3120 http://dx.doi.org/10.1128/AEM.00258-15. [PubMed]
193. Papouskova A, Masarikova M, Valcek A, Senk D, Cejkova D, Jahodarova E, Cizek A. 2020. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Vet Res 16:189 http://dx.doi.org/10.1186/s12917-020-02407-2. [PubMed]
194. Solà-Ginés M, Cameron-Veas K, Badiola I, Dolz R, Majó N, Dahbi G, Viso S, Mora A, Blanco J, Piedra-Carrasco N, González-López JJ, Migura-Garcia L. 2015. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain. PLoS One 10:e0143191 http://dx.doi.org/10.1371/journal.pone.0143191. [PubMed]
195. Borges CA, Tarlton NJ, Riley LW. 2019. Escherichia coli from Commercial Broiler and Backyard Chickens Share Sequence Types, Antimicrobial Resistance Profiles, and Resistance Genes with Human Extraintestinal Pathogenic Escherichia coli. Foodborne Pathog Dis 16:813–822 http://dx.doi.org/10.1089/fpd.2019.2680. [PubMed]
196. Jakobsen L, Hammerum AM, Frimodt-Møller N. 2010. Detection of clonal group A Escherichia coli isolates from broiler chickens, broiler chicken meat, community-dwelling humans, and urinary tract infection (UTI) patients and their virulence in a mouse UTI model. Appl Environ Microbiol 76:8281–8284 http://dx.doi.org/10.1128/AEM.01874-10. [PubMed]
197. Johnson JR, Menard ME, Lauderdale TL, Kosmidis C, Gordon D, Collignon P, Maslow JN, Andrasević AT, Kuskowski MA, Trans-Global Initiative for Antimicrobial Resistance Analysis Investigators. 2011. Global distribution and epidemiologic associations of Escherichia coli clonal group A, 1998-2007. Emerg Infect Dis 17:2001–2009 http://dx.doi.org/10.3201/eid1711.110488.
198. Dias RC, Marangoni DV, Smith SP, Alves EM, Pellegrino FL, Riley LW, Moreira BM. 2009. Clonal composition of Escherichia coli causing community-acquired urinary tract infections in the State of Rio de Janeiro, Brazil. Microb Drug Resist 15:303–308 http://dx.doi.org/10.1089/mdr.2009.0067. [PubMed]
199. Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, Tang J, Guo XK, Ni YX, Han LZ. 2016. Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in Three Hospitals in Shanghai, China. PLoS One 11:e0147740 http://dx.doi.org/10.1371/journal.pone.0147740. [PubMed]
200. Zhao SY, Wang YC, Xiao SZ, Jiang XF, Guo XK, Ni YX, Han LZ. 2015. Drug susceptibility and molecular epidemiology of Escherichia coli in bloodstream infections in Shanghai, China, 2011-2013. Infect Dis (Lond) 47:310–318 http://dx.doi.org/10.3109/00365548.2014.990509. [PubMed]
201. Matsumura Y, Yamamoto M, Nagao M, Hotta G, Matsushima A, Ito Y, Takakura S, Ichiyama S, Kyoto-Shiga Clinical Microbiology Study Group. 2012. Emergence and spread of B2-ST131-O25b, B2-ST131-O16 and D-ST405 clonal groups among extended-spectrum-β-lactamase-producing Escherichia coli in Japan. J Antimicrob Chemother 67:2612–2620 http://dx.doi.org/10.1093/jac/dks278. [PubMed]
202. Blanco J, Mora A, Mamani R, López C, Blanco M, Dahbi G, Herrera A, Blanco JE, Alonso MP, García-Garrote F, Chaves F, Orellana MA, Martínez-Martínez L, Calvo J, Prats G, Larrosa MN, González-López JJ, López-Cerero L, Rodríguez-Baño J, Pascual A. 2011. National survey of Escherichia coli causing extraintestinal infections reveals the spread of drug-resistant clonal groups O25b:H4-B2-ST131, O15:H1-D-ST393 and CGA-D-ST69 with high virulence gene content in Spain. J Antimicrob Chemother 66:2011–2021 http://dx.doi.org/10.1093/jac/dkr235. [PubMed]
203. Ewers C, Antão EM, Diehl I, Philipp HC, Wieler LH. 2009. Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Appl Environ Microbiol 75:184–192 http://dx.doi.org/10.1128/AEM.01324-08. [PubMed]
204. Mitchell NM, Johnson JR, Johnston B, Curtiss R III, Mellata M. 2015. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl Environ Microbiol 81:1177–1187 http://dx.doi.org/10.1128/AEM.03524-14. [PubMed]
205. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiol Read 151:2097–2110 http://dx.doi.org/10.1099/mic.0.27499-0. [PubMed]
206. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK. 2005. Characterizing the APEC pathotype. Vet Res 36:241–256 http://dx.doi.org/10.1051/vetres:2004057. [PubMed]
207. Johnson TJ, Johnson SJ, Nolan LK. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J Bacteriol 188:5975–5983 http://dx.doi.org/10.1128/JB.00204-06. [PubMed]
208. Mora A, López C, Herrera A, Viso S, Mamani R, Dhabi G, Alonso MP, Blanco M, Blanco JE, Blanco J. 2012. Emerging avian pathogenic Escherichia coli strains belonging to clonal groups O111:H4-D-ST2085 and O111:H4-D-ST117 with high virulence-gene content and zoonotic potential. Vet Microbiol 156:347–352 http://dx.doi.org/10.1016/j.vetmic.2011.10.033. [PubMed]
209. Mora A, López C, Dabhi G, Blanco M, Blanco JE, Alonso MP, Herrera A, Mamani R, Bonacorsi S, Moulin-Schouleur M, Blanco J. 2009. Extraintestinal pathogenic Escherichia coli O1:K1:H7/NM from human and avian origin: detection of clonal groups B2 ST95 and D ST59 with different host distribution. BMC Microbiol 9:132 http://dx.doi.org/10.1186/1471-2180-9-132. [PubMed]
210. Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J. 2006. Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 44:3484–3492 http://dx.doi.org/10.1128/JCM.00548-06. [PubMed]
211. Dhanji H, Murphy NM, Akhigbe C, Doumith M, Hope R, Livermore DM, Woodford N. 2011. Isolation of fluoroquinolone-resistant O25b:H4-ST131 Escherichia coli with CTX-M-14 extended-spectrum β-lactamase from UK river water. J Antimicrob Chemother 66:512–516 http://dx.doi.org/10.1093/jac/dkq472. [PubMed]
212. Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, Cizek A, Guenther S, Literak I. 2011. CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother 66:2784–2790 http://dx.doi.org/10.1093/jac/dkr363. [PubMed]
213. Boczek LA, Rice EW, Johnston B, Johnson JR. 2007. Occurrence of antibiotic-resistant uropathogenic Escherichia coli clonal group A in wastewater effluents. Appl Environ Microbiol 73:4180–4184 http://dx.doi.org/10.1128/AEM.02225-06. [PubMed]
214. Liu H, Zhou H, Li Q, Peng Q, Zhao Q, Wang J, Liu X. 2018. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli isolated from the rivers and lakes in Northwest China. BMC Microbiol 18:125 http://dx.doi.org/10.1186/s12866-018-1270-0. [PubMed]
215. Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S, Yoneda M. 2017. Occurrence of Clinically Important Lineages, Including the Sequence Type 131 C1-M27 Subclone, among Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Wastewater. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00564-17. [PubMed]
216. Gomi R, Matsuda T, Matsumura Y, Yamamoto M, Tanaka M, Ichiyama S, Yoneda M. 2017. Whole-Genome Analysis of Antimicrobial-Resistant and Extraintestinal Pathogenic Escherichia coli in River Water. Appl Environ Microbiol 83:83 http://dx.doi.org/10.1128/AEM.02703-16. [PubMed]
217. Harada K, Nakai Y, Kataoka Y. 2012. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol Immunol 56:480–485 http://dx.doi.org/10.1111/j.1348-0421.2012.00463.x. [PubMed]
218. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, Byun JW, Park YH, Lim SK. 2012. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother 56:2705–2712 http://dx.doi.org/10.1128/AAC.05598-11. [PubMed]
219. Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S. 2010. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 65:651–660 http://dx.doi.org/10.1093/jac/dkq004. [PubMed]
220. Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martínez-Martínez L. 2009. Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6&prime;)-Ib-cr genes in a dog. Antimicrob Agents Chemother 53:327–328 http://dx.doi.org/10.1128/AAC.00896-08. [PubMed]
221. Johnson JR, Miller S, Johnston B, Clabots C, Debroy C. 2009. Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and Urovirulent E. coli strains among dogs and cats within a household. J Clin Microbiol 47:3721–3725 http://dx.doi.org/10.1128/JCM.01581-09. [PubMed]
222. Dierikx CM, van Duijkeren E, Schoormans AH, van Essen-Zandbergen A, Veldman K, Kant A, Huijsdens XW, van der Zwaluw K, Wagenaar JA, Mevius DJ. 2012. Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother 67:1368–1374 http://dx.doi.org/10.1093/jac/dks049. [PubMed]
223. Liu X, Thungrat K, Boothe DM. 2015. Multilocus Sequence Typing and Virulence Profiles in Uropathogenic Escherichia coli Isolated from Cats in the United States. PLoS One 10:e0143335 http://dx.doi.org/10.1371/journal.pone.0143335. [PubMed]
224. Zogg AL, Zurfluh K, Schmitt S, Nüesch-Inderbinen M, Stephan R. 2018. Antimicrobial resistance, multilocus sequence types and virulence profiles of ESBL producing and non-ESBL producing uropathogenic Escherichia coli isolated from cats and dogs in Switzerland. Vet Microbiol 216:79–84 http://dx.doi.org/10.1016/j.vetmic.2018.02.011. [PubMed]
225. Ewers C, Bethe A, Stamm I, Grobbel M, Kopp PA, Guerra B, Stubbe M, Doi Y, Zong Z, Kola A, Schaufler K, Semmler T, Fruth A, Wieler LH, Guenther S. 2014. CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another pandemic clone combining multiresistance and extraintestinal virulence? J Antimicrob Chemother 69:1224–1230 http://dx.doi.org/10.1093/jac/dkt516. [PubMed]
226. Guo S, Wakeham D, Brouwers HJ, Cobbold RN, Abraham S, Mollinger JL, Johnson JR, Chapman TA, Gordon DM, Barrs VR, Trott DJ. 2015. Human-associated fluoroquinolone-resistant Escherichia coli clonal lineages, including ST354, isolated from canine feces and extraintestinal infections in Australia. Microbes Infect 17:266–274 http://dx.doi.org/10.1016/j.micinf.2014.12.016. [PubMed]
227. LeCuyer TE, Byrne BA, Daniels JB, Diaz-Campos DV, Hammac GK, Miller CB, Besser TE, Davis MA. 2018. Population Structure and Antimicrobial Resistance of Canine Uropathogenic Escherichia coli. J Clin Microbiol 56:56 http://dx.doi.org/10.1128/JCM.00788-18. [PubMed]
228. Liu X, Liu H, Li Y, Hao C. 2016. High Prevalence of β-lactamase and Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Dogs in Shaanxi, China. Front Microbiol 7:1843 http://dx.doi.org/10.3389/fmicb.2016.01843.
229. Liu X, Liu H, Li Y, Hao C. 2017. Association between virulence profile and fluoroquinolone resistance in Escherichia coli isolated from dogs and cats in China. J Infect Dev Ctries 11:306–313 http://dx.doi.org/10.3855/jidc.8583. [PubMed]
230. Maeyama Y, Taniguchi Y, Hayashi W, Ohsaki Y, Osaka S, Koide S, Tamai K, Nagano Y, Arakawa Y, Nagano N. 2018. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet Microbiol 216:183–189 http://dx.doi.org/10.1016/j.vetmic.2018.02.020. [PubMed]
231. Zogg AL, Simmen S, Zurfluh K, Stephan R, Schmitt SN, Nüesch-Inderbinen M. 2018. High Prevalence of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Among Clinical Isolates From Cats and Dogs Admitted to a Veterinary Hospital in Switzerland. Front Vet Sci 5:62 http://dx.doi.org/10.3389/fvets.2018.00062. [PubMed]
232. Simões RR, Poirel L, Da Costa PM, Nordmann P. 2010. Seagulls and beaches as reservoirs for multidrug-resistant Escherichia coli. Emerg Infect Dis 16:110–112 http://dx.doi.org/10.3201/eid1601.090896. [PubMed]
233. Tivendale KA, Logue CM, Kariyawasam S, Jordan D, Hussein A, Li G, Wannemuehler Y, Nolan LK. 2010. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect Immun 78:3412–3419 http://dx.doi.org/10.1128/IAI.00347-10. [PubMed]
234. Borzi MM, Cardozo MV, Oliveira ES, Pollo AS, Guastalli EAL, Santos LFD, Ávila FA. 2018. Characterization of avian pathogenic Escherichia coli isolated from free-range helmeted guineafowl. Braz J Microbiol 49(Suppl 1) :107–112 http://dx.doi.org/10.1016/j.bjm.2018.04.011. [PubMed]
235. Batalha de Jesus AA, Freitas AAR, de Souza JC, Martins N, Botelho LAB, Girão VBC, Teixeira LM, Riley LW, Moreira BM. 2019. High-Level Multidrug-Resistant Escherichia coli Isolates from Wild Birds in a Large Urban Environment. Microb Drug Resist 25:167–172 http://dx.doi.org/10.1089/mdr.2018.0180. [PubMed]
236. Jørgensen SL, Stegger M, Kudirkiene E, Lilje B, Poulsen LL, Ronco T, Pires Dos Santos T, Kiil K, Bisgaard M, Pedersen K, Nolan LK, Price LB, Olsen RH, Andersen PS, Christensen H. 2019. Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. MSphere 4:4 http://dx.doi.org/10.1128/mSphere.00333-18. [PubMed]
237. Mora A, García-Peña FJ, Alonso MP, Pedraza-Diaz S, Ortega-Mora LM, Garcia-Parraga D, López C, Viso S, Dahbi G, Marzoa J, Sergeant MJ, García V, Blanco J. 2018. Impact of human-associated Escherichia coli clonal groups in Antarctic pinnipeds: presence of ST73, ST95, ST141 and ST131. Sci Rep 8:4678 http://dx.doi.org/10.1038/s41598-018-22943-0. [PubMed]
238. Ender PT, Gajanana D, Johnston B, Clabots C, Tamarkin FJ, Johnson JR. 2009. Transmission of an extended-spectrum-beta-lactamase-producing Escherichia coli (sequence type ST131) strain between a father and daughter resulting in septic shock and Emphysematous pyelonephritis. J Clin Microbiol 47:3780–3782 http://dx.doi.org/10.1128/JCM.01361-09. [PubMed]
239. Johnson JR, Anderson JT, Clabots C, Johnston B, Cooperstock M. 2010. Within-household sharing of a fluoroquinolone-resistant Escherichia coli sequence type ST131 strain causing pediatric osteoarticular infection. Pediatr Infect Dis J 29:473–475 http://dx.doi.org/10.1097/INF.0b013e3181c89bd7. [PubMed]
240. Foxman B, Zhang L, Tallman P, Andree BC, Geiger AM, Koopman JS, Gillespie BW, Palin KA, Sobel JD, Rode CK, Bloch CA, Marrs CF. 1997. Transmission of uropathogens between sex partners. J Infect Dis 175:989–992 http://dx.doi.org/10.1086/514007. [PubMed]
241. Johnson JR, Clabots C. 2006. Sharing of virulent Escherichia coli clones among household members of a woman with acute cystitis. Clin Infect Dis 43:e101–e108 http://dx.doi.org/10.1086/508541. [PubMed]
242. Manges AR, Johnson JR, Riley LW. 2004. Intestinal population dynamics of UTI-causing Escherichia coli within heterosexual couples. Curr Issues Intest Microbiol 5:49–57.
243. Brown PD, Foxman B. 2000. Pathogenesis of Urinary Tract Infection: the Role of Sexual Behavior and Sexual Transmission. Curr Infect Dis Rep 2:513–517 http://dx.doi.org/10.1007/s11908-000-0054-4. [PubMed]
244. Mughini-Gras L, Dorado-García A, van Duijkeren E, van den Bunt G, Dierikx CM, Bonten MJM, Bootsma MCJ, Schmitt H, Hald T, Evers EG, de Koeijer A, van Pelt W, Franz E, Mevius DJ, Heederik DJJ, Consortium EA, ESBL Attribution Consortium. 2019. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a population-based modelling study. Lancet Planet Health 3:e357–e369 http://dx.doi.org/10.1016/S2542-5196(19)30130-5.
245. Ludden C, Raven KE, Jamrozy D, Gouliouris T, Blane B, Coll F, de Goffau M, Naydenova P, Horner C, Hernandez-Garcia J, Wood P, Hadjirin N, Radakovic M, Brown NM, Holmes M, Parkhill J, Peacock SJ. 2019. One Health Genomic Surveillance of Escherichia coli Demonstrates Distinct Lineages and Mobile Genetic Elements in Isolates from Humans versus Livestock. MBio 10:10 http://dx.doi.org/10.1128/mBio.02693-18. [PubMed]
246. Singer RS. 2015. Urinary tract infections attributed to diverse ExPEC strains in food animals: evidence and data gaps. Front Microbiol 6:28 http://dx.doi.org/10.3389/fmicb.2015.00028.
247. Day MJ, Hopkins KL, Wareham DW, Toleman MA, Elviss N, Randall L, Teale C, Cleary P, Wiuff C, Doumith M, Ellington MJ, Woodford N, Livermore DM. 2019. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 19:1325–1335 http://dx.doi.org/10.1016/S1473-3099(19)30273-7.
248. Kremer K, Glynn JR, Lillebaek T, Niemann S, Kurepina NE, Kreiswirth BN, Bifani PJ, van Soolingen D. 2004. Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers. J Clin Microbiol 42:4040–4049 http://dx.doi.org/10.1128/JCM.42.9.4040-4049.2004. [PubMed]
249. Bifani PJ, Mathema B, Kurepina NE, Kreiswirth BN. 2002. Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:45–52 http://dx.doi.org/10.1016/S0966-842X(01)02277-6.
250. Temkin E, Adler A, Lerner A, Carmeli Y. 2014. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 1323:22–42 http://dx.doi.org/10.1111/nyas.12537. [PubMed]
251. Centers for Disease Control and Prevention (CDC). 2013. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 62:165–170.
252. Woodford N, Tierno PM Jr, Young K, Tysall L, Palepou MF, Ward E, Painter RE, Suber DF, Shungu D, Silver LL, Inglima K, Kornblum J, Livermore DM. 2004. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A beta-lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 48:4793–4799 http://dx.doi.org/10.1128/AAC.48.12.4793-4799.2004. [PubMed]
253. Endimiani A, Depasquale JM, Forero S, Perez F, Hujer AM, Roberts-Pollack D, Fiorella PD, Pickens N, Kitchel B, Casiano-Colón AE, Tenover FC, Bonomo RA. 2009. Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrob Chemother 64:1102–1110 http://dx.doi.org/10.1093/jac/dkp327. [PubMed]
254. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. 2014. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–696 http://dx.doi.org/10.1016/j.tim.2014.09.003. [PubMed]
255. Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, Shalit I, Carmeli Y, Israel Carbapenem-Resistant Enterobacteriaceae Working G, Israel Carbapenem-Resistant Enterobacteriaceae Working Group. 2011. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 52:848–855 http://dx.doi.org/10.1093/cid/cir025. [PubMed]
256. Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, Giske CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53:3365–3370 http://dx.doi.org/10.1128/AAC.00126-09. [PubMed]
257. Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S. 2010. The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One 5:e10034 http://dx.doi.org/10.1371/journal.pone.0010034. [PubMed]
258. Nigro SJ, Post V, Hall RM. 2011. Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J Antimicrob Chemother 66:1504–1509 http://dx.doi.org/10.1093/jac/dkr163. [PubMed]
259. Holt K, Kenyon JJ, Hamidian M, Schultz MB, Pickard DJ, Dougan G, Hall R. 2016. Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1. Microb Genom 2:e000052 http://dx.doi.org/10.1099/mgen.0.000052.
260. Carrel M, Perencevich EN, David MZ. 2015. USA300 Methicillin-Resistant Staphylococcus aureus, United States, 2000-2013. Emerg Infect Dis 21:1973–1980 http://dx.doi.org/10.3201/eid2111.150452. [PubMed]
261. Dufour P, Gillet Y, Bes M, Lina G, Vandenesch F, Floret D, Etienne J, Richet H. 2002. Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 35:819–824 http://dx.doi.org/10.1086/342576. [PubMed]
262. Tristan A, Bes M, Meugnier H, Lina G, Bozdogan B, Courvalin P, Reverdy ME, Enright MC, Vandenesch F, Etienne J. 2007. Global distribution of Panton-Valentine leukocidin--positive methicillin-resistant Staphylococcus aureus, 2006. Emerg Infect Dis 13:594–600 http://dx.doi.org/10.3201/eid1304.061316. [PubMed]
263. Wannet WJB, Heck ME, Pluister GN, Spalburg E, Van Santen MG, Huijsdans XW, Tiemersma E, de Neeling AJ. 2004. Panton-Valentine leukocidin positive MRSA in 2003: the Dutch situation. Euro Surveill 9:3–4 http://dx.doi.org/10.2807/esm.09.11.00484-en.
264. Wannet WJ, Spalburg E, Heck ME, Pluister GN, Willems RJ, De Neeling AJ. 2004. Widespread dissemination in The Netherlands of the epidemic berlin methicillin-resistant Staphylococcus aureus clone with low-level resistance to oxacillin. J Clin Microbiol 42:3077–3082 http://dx.doi.org/10.1128/JCM.42.7.3077-3082.2004. [PubMed]
265. Ho PL, Cheung C, Mak GC, Tse CW, Ng TK, Cheung CH, Que TL, Lam R, Lai RW, Yung RW, Yuen KY. 2007. Molecular epidemiology and household transmission of community-associated methicillin-resistant Staphylococcus aureus in Hong Kong. Diagn Microbiol Infect Dis 57:145–151 http://dx.doi.org/10.1016/j.diagmicrobio.2006.08.003. [PubMed]
266. Wu D, Wang Q, Yang Y, Geng W, Wang Q, Yu S, Yao K, Yuan L, Shen X. 2010. Epidemiology and molecular characteristics of community-associated methicillin-resistant and methicillin-susceptible Staphylococcus aureus from skin/soft tissue infections in a children’s hospital in Beijing, China. Diagn Microbiol Infect Dis 67:1–8 http://dx.doi.org/10.1016/j.diagmicrobio.2009.12.006. [PubMed]
267. Chen CJ, Huang YC. 2014. New epidemiology of Staphylococcus aureus infection in Asia. Clin Microbiol Infect 20:605–623 http://dx.doi.org/10.1111/1469-0691.12705. [PubMed]
268. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC, George R, Hakenbeck R, Hryniewicz W, Lefévre JC, Tomasz A, Klugman KP. 2001. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol 39:2565–2571 http://dx.doi.org/10.1128/JCM.39.7.2565-2571.2001. [PubMed]
269. Brueggemann AB, Spratt BG. 2003. Geographic distribution and clonal diversity of Streptococcus pneumoniae serotype 1 isolates. J Clin Microbiol 41:4966–4970 http://dx.doi.org/10.1128/JCM.41.11.4966-4970.2003. [PubMed]
270. Shi ZY, Enright MC, Wilkinson P, Griffiths D, Spratt BG. 1998. Identification of three major clones of multiply antibiotic-resistant Streptococcus pneumoniae in Taiwanese hospitals by multilocus sequence typing. J Clin Microbiol 36:3514–3519 http://dx.doi.org/10.1128/JCM.36.12.3514-3519.1998. [PubMed]
271. Jakobsen L, Hammerum AM, Frimodt-Møller N. 2010. Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a zoonosis. J Clin Microbiol 48:2978–2980 http://dx.doi.org/10.1128/JCM.00281-10. [PubMed]
272. Mellata M, Johnson JR, Curtiss R III. 2018. Escherichia coli isolates from commercial chicken meat and eggs cause sepsis, meningitis and urinary tract infection in rodent models of human infections. Zoonoses Public Health 65:103–113 http://dx.doi.org/10.1111/zph.12376. [PubMed]
273. Johnson JR, Porter SB, Zhanel G, Kuskowski MA, Denamur E. 2012. Virulence of Escherichia coli clinical isolates in a murine sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence genotype. Infect Immun 80:1554–1562 http://dx.doi.org/10.1128/IAI.06388-11. [PubMed]
274. Manges AR, Dietrich PS, Riley LW. 2004. Multidrug-resistant Escherichia coli clonal groups causing community-acquired pyelonephritis. Clin Infect Dis 38:329–334 http://dx.doi.org/10.1086/380640. [PubMed]
275. Johnson JR, Johnston B, Clabots C, Kuskowski MA, Castanheira M. 2010. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin Infect Dis 51:286–294 http://dx.doi.org/10.1086/653932. [PubMed]
276. Johnson JR, Porter S, Thuras P, Castanheira M. 2017. Epidemic Emergence in the United States of Escherichia coli Sequence Type 131- H30 (ST131- H30), 2000 to 2009. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00732-17. [PubMed]
277. Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P, Gilbert GL. 2013. Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr Infect Dis J 32:543–548 http://dx.doi.org/10.1097/INF.0b013e31828ba3f1. [PubMed]
278. Adams-Sapper S, Diep BA, Perdreau-Remington F, Riley LW. 2013. Clonal composition and community clustering of drug-susceptible and resistant Escherichia coli isolates from blood stream infections. Antimicrob Agents Chemother doi:AAC.01025-12 [pii] 10.1128/AAC.01025-12.
279. Yamaji R, Rubin J, Thys E, Friedman CR, Riley LW. 2018. Persistent Pandemic Lineages of Uropathogenic Escherichia coli in a College Community from 1999 to 2017. J Clin Microbiol 56:56 http://dx.doi.org/10.1128/JCM.01834-17. [PubMed]
280. Adams-Sapper S, Sergeevna-Selezneva J, Tartof S, Raphael E, Diep BA, Perdreau-Remington F, Riley LW. 2012. Globally dispersed mobile drug-resistance genes in gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital. J Med Microbiol 61:968–974 http://dx.doi.org/10.1099/jmm.0.041970-0. [PubMed]
281. Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. 2017. Genomic Analysis of Factors Associated with Low Prevalence of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli Sequence Type 95 Strains. MSphere 2:2 http://dx.doi.org/10.1128/mSphere.00390-16. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.AME-0014-2020
2020-12-31
2021-01-17

Abstract:

is one of the most well-adapted and pathogenically versatile bacterial organisms. It causes a variety of human infections, including gastrointestinal illnesses and extraintestinal infections. It is also part of the intestinal commensal flora of humans and other mammals. Groups of that cause diarrhea are often described as intestinal pathogenic (IPEC), while those that cause infections outside of the gut are called extraintestinal pathogenic (ExPEC). IPEC can cause a variety of diarrheal illnesses as well as extraintestinal syndromes such as hemolytic-uremic syndrome. ExPEC cause urinary tract infections, bloodstream infection, sepsis, and neonatal meningitis. IPEC and ExPEC have thus come to be referred to as pathogenic variants of or pathovars. While IPEC can be distinguished from commensal based on their characteristic virulence factors responsible for their associated clinical manifestations, ExPEC cannot be so easily distinguished. IPEC most likely have reservoirs outside of the human intestine but it is unclear if ExPEC represent nothing more than commensal that breach a sterile barrier to cause extraintestinal infections. This question has become more complicated by the advent of whole genome sequencing (WGS) that has raised a new question about the taxonomic characterization of based on traditional clinical microbiologic and phylogenetic methods. This review discusses how molecular epidemiologic approaches have been used to address these questions, and how answers to these questions may contribute to our better understanding of the epidemiology of infections caused by .

*This article is part of a curated collection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Pangenome analysis of , 1997-2018. Core genes are all genes shared among all strains belonging to the species as defined by the 16S rDNA sequence.

Source: microbiolspec December 2020 vol. 8 no. 4 doi:10.1128/microbiolspec.AME-0014-2020
Generic image for table
TABLE 2

Intestinal pathogenic (IPEC)-associated virulence genes targeted for PCR-based detection.

Source: microbiolspec December 2020 vol. 8 no. 4 doi:10.1128/microbiolspec.AME-0014-2020
Generic image for table
TABLE 3

Non-human sources of intercontinental extraintestinal pathogenic (ExPEC) sequence types (ST) based on multilocus sequence typing (MLST) archived in the Enterobase database (http://enterobase.warwick.ac.uk/species/index/ecoli) as of November 2020. The total number of each ST in the database as of November 8, 2020 is shown in the right column.

Source: microbiolspec December 2020 vol. 8 no. 4 doi:10.1128/microbiolspec.AME-0014-2020

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error