No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in spp. and spp.

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Agnese Lupo1, Marisa Haenni2, Jean-Yves Madec3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
    Affiliations: 1: Université de Lyon–ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 2: Université de Lyon–ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 3: Université de Lyon–ANSES, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec May 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0007-2017
  • Received 17 October 2017 Accepted 07 February 2018 Published 03 May 2018
  • Agnese Lupo, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Acinetobacter</span> spp. and <span class="jp-italic">Pseudomonas</span> spp.
    Preview this microbiology spectrum article:
    Zoom in

    Antimicrobial Resistance in spp. and spp., Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0007-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0007-2017-2.gif
  • Abstract:

    The nonfermenting bacteria belonging to spp. and spp. are capable of colonizing both humans and animals and can also be opportunistic pathogens. More specifically, the species and have been recurrently reported as multidrug-resistant and even pandrug-resistant in clinical isolates. Both species were categorized among the ESKAPE pathogens, ESKAPE standing for , , , , , and species. These six pathogens are the major cause of nosocomial infections in the United States and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics. and are both intrinsically resistant to many antibiotics due to complementary mechanisms, the main ones being the low permeability of their outer membrane, the production of the AmpC beta-lactamase, and the production of several efflux systems belonging to the resistance-nodulation-cell division family. In addition, they are both capable of acquiring multiple resistance determinants, such as beta-lactamases or carbapenemases. Even if such enzymes have rarely been identified in bacteria of animal origin, they may sooner or later spread to this reservoir. The goal of this article is to give an overview of the resistance phenotypes described in these pathogens and to provide a comprehensive analysis of all data that have been reported on spp. and spp. from animal hosts.

  • Citation: Lupo A, Haenni M, Madec J. 2018. Antimicrobial Resistance in spp. and spp.. Microbiol Spectrum 6(3):ARBA-0007-2017. doi:10.1128/microbiolspec.ARBA-0007-2017.


1. Fishbain J, Peleg AY. 2010. Treatment of Acinetobacter infections. Clin Infect Dis 51:79–84 http://dx.doi.org/10.1086/653120. [PubMed]
2. Karaiskos I, Giamarellou H. 2014. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 15:1351–1370 http://dx.doi.org/10.1517/14656566.2014.914172. [PubMed]
3. Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H, Rodríguez-Valera F. 2005. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390 http://dx.doi.org/10.1128/JCM.43.9.4382-4390.2005. [PubMed]
4. Sahl JW, Del Franco M, Pournaras S, Colman RE, Karah N, Dijkshoorn L, Zarrilli R. 2015. Phylogenetic and genomic diversity in isolates from the globally distributed Acinetobacter baumannii ST25 lineage. Sci Rep 5:15188 http://dx.doi.org/10.1038/srep15188. [PubMed]
5. Lupo A, Vogt D, Seiffert SN, Endimiani A, Perreten V. 2014. Antibiotic resistance and phylogenetic characterization of Acinetobacter baumannii strains isolated from commercial raw meat in Switzerland. J Food Prot 77:1976–1981 http://dx.doi.org/10.4315/0362-028X.JFP-14-073. [PubMed]
6. Belmonte O, Pailhoriès H, Kempf M, Gaultier MP, Lemarié C, Ramont C, Joly-Guillou ML, Eveillard M. 2014. High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island. Vet Microbiol 170:446–450 http://dx.doi.org/10.1016/j.vetmic.2014.01.042.
7. Cattabiani F, Cabassi E, Allodi C, Gianelli F. 1976. Bacterial flora of the conjunctival sac of the horse. Ann Sclavo 18:91–119. (In Italian.) [PubMed]
8. Johns IC, Baxter K, Booler H, Hicks C, Menzies-Gow N. 2011. Conjunctival bacterial and fungal flora in healthy horses in the UK. Vet Ophthalmol 14:195–199 http://dx.doi.org/10.1111/j.1463-5224.2010.00867.x. [PubMed]
9. Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D. 2012. Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State, Ethiopia. PLoS One 7:e52377 http://dx.doi.org/10.1371/journal.pone.0052377. [PubMed]
10. Moore CP, Heller N, Majors LJ, Whitley RD, Burgess EC, Weber J. 1988. Prevalence of ocular microorganisms in hospitalized and stabled horses. Am J Vet Res 49:773–777. [PubMed]
11. Rudi K, Moen B, Sekelja M, Frisli T, Lee MR. 2012. An eight-year investigation of bovine livestock fecal microbiota. Vet Microbiol 160:369–377 http://dx.doi.org/10.1016/j.vetmic.2012.06.003. [PubMed]
12. Saphir DA, Carter GR. 1976. Gingival flora of the dog with special reference to bacteria associated with bites. J Clin Microbiol 3:344–349. [PubMed]
13. Endimiani A, Hujer KM, Hujer AM, Bertschy I, Rossano A, Koch C, Gerber V, Francey T, Bonomo RA, Perreten V. 2011. Acinetobacter baumannii isolates from pets and horses in Switzerland: molecular characterization and clinical data. J Antimicrob Chemother 66:2248–2254 http://dx.doi.org/10.1093/jac/dkr289. [PubMed]
14. Vaneechoutte M, Devriese LA, Dijkshoorn L, Lamote B, Deprez P, Verschraegen G, Haesebrouck F. 2000. Acinetobacter baumannii-infected vascular catheters collected from horses in an equine clinic. J Clin Microbiol 38:4280–4281. [PubMed]
15. Boerlin P, Eugster S, Gaschen F, Straub R, Schawalder P. 2001. Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet Microbiol 82:347–359 http://dx.doi.org/10.1016/S0378-1135(01)00396-0.
16. Zordan S, Prenger-Berninghoff E, Weiss R, van der Reijden T, van den Broek P, Baljer G, Dijkshoorn L. 2011. Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerg Infect Dis 17:1751–1754 http://dx.doi.org/10.3201/eid1709.101931. [PubMed]
17. Mathewson JJ, Simpson RB. 1982. Glucose-nonfermenting Gram-negative bacilli associated with clinical veterinary specimens. J Clin Microbiol 15:1016–1018. [PubMed]
18. Abbott Y, O’Mahony R, Leonard N, Quinn PJ, van der Reijden T, Dijkshoorn L, Fanning S. 2005. Characterization of a 2.6 kbp variable region within a class 1 integron found in an Acinetobacter baumannii strain isolated from a horse. J Antimicrob Chemother 55:367–370 http://dx.doi.org/10.1093/jac/dkh543. [PubMed]
19. Boguta L, Gradzki Z, Borges E, Maurin F, Kodjo A, Winiarczyk S. 2002. Bacterial flora in foals with upper respiratory tract infections in Poland. J Vet Med B Infect Dis Vet Public Health 49:294–297 http://dx.doi.org/10.1046/j.1439-0450.2002.00570.x. [PubMed]
20. Francey T, Gaschen F, Nicolet J, Burnens AP. 2000. The role of Acinetobacter baumannii as a nosocomial pathogen for dogs and cats in an intensive care unit. J Vet Intern Med 14:177–183 http://dx.doi.org/10.1111/j.1939-1676.2000.tb02233.x. [PubMed]
21. Lupo A, Châtre P, Ponsin C, Saras E, Boulouis HJ, Keck N, Haenni M, Madec JY. 2016. Clonal spread of Acinetobacter baumannii sequence type 25 carrying blaOXA-23 in companion animals in France. Antimicrob Agents Chemother 61:61. [PubMed]
22. Malinowski E, Lassa H, Kłlossowska A, Smulski S, Markiewicz H, Kaczmarowski M. 2006. Etiological agents of dairy cows’ mastitis in western part of Poland. Pol J Vet Sci 9:191–194. [PubMed]
23. Nam HM, Lim SK, Kang HM, Kim JM, Moon JS, Jang KC, Kim JM, Joo YS, Jung SC. 2009. Prevalence and antimicrobial susceptibility of Gram-negative bacteria isolated from bovine mastitis between 2003 and 2008 in Korea. J Dairy Sci 92:2020–2026 http://dx.doi.org/10.3168/jds.2008-1739. [PubMed]
24. Ruppé É, Woerther PL, Barbier F. 2015. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann Intensive Care 5:61 http://dx.doi.org/10.1186/s13613-015-0061-0. [PubMed]
25. Bonomo RA, Szabo D. 2006. Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43(Suppl 2) :S49–S56 http://dx.doi.org/10.1086/504477. [PubMed]
26. Coyne S, Courvalin P, Périchon B. 2011. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953 http://dx.doi.org/10.1128/AAC.01388-10. [PubMed]
27. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Périchon B. 2010. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54:4389–4393 http://dx.doi.org/10.1128/AAC.00155-10. [PubMed]
28. Damier-Piolle L, Magnet S, Brémont S, Lambert T, Courvalin P. 2008. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 52:557–562 http://dx.doi.org/10.1128/AAC.00732-07. [PubMed]
29. Rosenfeld N, Bouchier C, Courvalin P, Périchon B. 2012. Expression of the resistance-nodulation-cell division pump AdeIJK in Acinetobacter baumannii is regulated by AdeN, a TetR-type regulator. Antimicrob Agents Chemother 56:2504–2510 http://dx.doi.org/10.1128/AAC.06422-11. [PubMed]
30. Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A. 2003. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 52:629–635 http://dx.doi.org/10.1093/jac/dkg407. [PubMed]
31. Mugnier PD, Poirel L, Nordmann P. 2009. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol 191:2414–2418 http://dx.doi.org/10.1128/JB.01258-08. [PubMed]
32. Mussi MA, Relling VM, Limansky AS, Viale AM. 2007. CarO, an Acinetobacter baumannii outer membrane protein involved in carbapenem resistance, is essential for l-ornithine uptake. FEBS Lett 581:5573–5578 http://dx.doi.org/10.1016/j.febslet.2007.10.063. [PubMed]
33. Bonnin RA, Potron A, Poirel L, Lecuyer H, Neri R, Nordmann P. 2011. PER-7, an extended-spectrum beta-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob Agents Chemother 55:2424–2427 http://dx.doi.org/10.1128/AAC.01795-10. [PubMed]
34. Naas T, Coignard B, Carbonne A, Blanckaert K, Bajolet O, Bernet C, Verdeil X, Astagneau P, Desenclos JC, Nordmann P, French Nosocomial Infection Early Warning Investigation and Surveillance Network. 2006.VEB-1 Extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 12:1214–1222 http://dx.doi.org/10.3201/eid1708.051547. [PubMed]
35. Evans BA, Amyes SG. 2014. OXA β-lactamases. Clin Microbiol Rev 27:241–263 http://dx.doi.org/10.1128/CMR.00117-13. [PubMed]
36. Mathlouthi N, Al-Bayssari C, Bakour S, Rolain JM, Chouchani C. 2017. Prevalence and emergence of carbapenemases-producing Gram-negative bacteria in Mediterranean basin. Crit Rev Microbiol 43:43–61 http://dx.doi.org/10.3109/1040841X.2016.1160867. [PubMed]
37. Seward RJ, Lambert T, Towner KJ. 1998. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J Med Microbiol 47:455–462 http://dx.doi.org/10.1099/00222615-47-5-455. [PubMed]
38. Liou GF, Yoshizawa S, Courvalin P, Galimand M. 2006. Aminoglycoside resistance by ArmA-mediated ribosomal 16S methylation in human bacterial pathogens. J Mol Biol 359:358–364 http://dx.doi.org/10.1016/j.jmb.2006.03.038. [PubMed]
39. Périchon B, Courvalin P, Galimand M. 2007. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469 http://dx.doi.org/10.1128/AAC.00143-07. [PubMed]
40. Doi Y, Adams JM, Yamane K, Paterson DL. 2007. Identification of 16S rRNA methylase-producing Acinetobacter baumannii clinical strains in North America. Antimicrob Agents Chemother 51:4209–4210 http://dx.doi.org/10.1128/AAC.00560-07. [PubMed]
41. Yu YS, Zhou H, Yang Q, Chen YG, Li LJ. 2007. Widespread occurrence of aminoglycoside resistance due to ArmA methylase in imipenem-resistant Acinetobacter baumannii isolates in China. J Antimicrob Chemother 60:454–455 http://dx.doi.org/10.1093/jac/dkm208. [PubMed]
42. Vila J, Ruiz J, Goñi P, Jimenez de Anta T. 1997. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother 39:757–762 http://dx.doi.org/10.1093/jac/39.6.757. [PubMed]
43. Vila J, Ruiz J, Goñi P, Marcos A, Jimenez de Anta T. 1995. Mutation in the gyrA gene of quinolone-resistant clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 39:1201–1203 http://dx.doi.org/10.1128/AAC.39.5.1201. [PubMed]
44. Houang ET, Chu YW, Lo WS, Chu KY, Cheng AF. 2003. Epidemiology of rifampin ADP-ribosyltransferase ( arr-2) and metallo-beta-lactamase ( bla IMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob Agents Chemother 47:1382–1390 http://dx.doi.org/10.1128/AAC.47.4.1382-1390.2003. [PubMed]
45. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA. 2009. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53:3628–3634 http://dx.doi.org/10.1128/AAC.00284-09. [PubMed]
46. Peleg AY, Adams J, Paterson DL. 2007. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 51:2065–2069 http://dx.doi.org/10.1128/AAC.01198-06. [PubMed]
47. Freitas AR, Novais C, Correia R, Monteiro M, Coque TM, Peixe L. 2011. Non-susceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources. Int J Antimicrob Agents 38:174–176 http://dx.doi.org/10.1016/j.ijantimicag.2011.04.014. [PubMed]
48. Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E, Göttig S, Semmler T, Scheufen S. 2017. OXA-23 and ISAba1-OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents 49:37–44 http://dx.doi.org/10.1016/j.ijantimicag.2016.09.033. [PubMed]
49. Nigro SJ, Hall RM. 2016. Structure and context of Acinetobacter transposons carrying the oxa23 carbapenemase gene. J Antimicrob Chemother 71:1135–1147 http://dx.doi.org/10.1093/jac/dkv440. [PubMed]
50. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, Bonnal RJ, Sicheritz-Ponten T, De Bellis G, Visca P, Cassone A, Carattoli A. 2008. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother 52:2616–2625 http://dx.doi.org/10.1128/AAC.01643-07. [PubMed]
51. Shaikh F, Spence RP, Levi K, Ou HY, Deng Z, Towner KJ, Rajakumar K. 2009. ATPase genes of diverse multidrug-resistant Acinetobacter baumannii isolates frequently harbour integrated DNA. J Antimicrob Chemother 63:260–264 http://dx.doi.org/10.1093/jac/dkn481. [PubMed]
52. Poirel L, Berçot B, Millemann Y, Bonnin RA, Pannaux G, Nordmann P. 2012. Carbapenemase-producing Acinetobacter spp. in cattle, France. Emerg Infect Dis 18:523–525 http://dx.doi.org/10.3201/eid1803.111330. [PubMed]
53. Wang Y, Wu C, Zhang Q, Qi J, Liu H, Wang Y, He T, Ma L, Lai J, Shen Z, Liu Y, Shen J. 2012. Identification of New Delhi metallo-β-lactamase 1 in Acinetobacter lwoffii of food animal origin. PLoS One 7:e37152 http://dx.doi.org/10.1371/journal.pone.0037152. [PubMed]
54. Zhang WJ, Lu Z, Schwarz S, Zhang RM, Wang XM, Si W, Yu S, Chen L, Liu S. 2013. Complete sequence of the bla(NDM-1)-carrying plasmid pNDM-AB from Acinetobacter baumannii of food animal origin. J Antimicrob Chemother 68:1681–1682 http://dx.doi.org/10.1093/jac/dkt066. [PubMed]
55. Brahmi S, Touati A, Cadière A, Djahmi N, Pantel A, Sotto A, Lavigne JP, Dunyach-Remy C. 2016. First description of two sequence type 2 Acinetobacter baumannii isolates carrying OXA-23 carbapenemase in Pagellus acarne fished from the Mediterranean Sea near Bejaia, Algeria. Antimicrob Agents Chemother 60:2513–2515 http://dx.doi.org/10.1128/AAC.02384-15.
56. Al Bayssari C, Dabboussi F, Hamze M, Rolain JM. 2015. Emergence of carbapenemase-producing Pseudomonas aeruginosa and Acinetobacter baumannii in livestock animals in Lebanon. J Antimicrob Chemother 70:950–951 http://dx.doi.org/10.1093/jac/dku469. [PubMed]
57. Pailhoriès H, Kempf M, Belmonte O, Joly-Guillou ML, Eveillard M. 2016. First case of OXA-24-producing Acinetobacter baumannii in cattle from Reunion Island, France. Int J Antimicrob Agents 48:763–764 http://dx.doi.org/10.1016/j.ijantimicag.2016.09.005. [PubMed]
58. Klotz P, Göttig S, Leidner U, Semmler T, Scheufen S, Ewers C. 2017. Carbapenem-resistance and pathogenicity of bovine Acinetobacter indicus-like isolates. PLoS One 12:e0171986 http://dx.doi.org/10.1371/journal.pone.0171986. [PubMed]
59. Smet A, Boyen F, Pasmans F, Butaye P, Martens A, Nemec A, Deschaght P, Vaneechoutte M, Haesebrouck F. 2012. OXA-23-producing Acinetobacter species from horses: a public health hazard? J Antimicrob Chemother 67:3009–3010 http://dx.doi.org/10.1093/jac/dks311. [PubMed]
60. Pomba C, Endimiani A, Rossano A, Saial D, Couto N, Perreten V. 2014. First report of OXA-23-mediated carbapenem resistance in sequence type 2 multidrug-resistant Acinetobacter baumannii associated with urinary tract infection in a cat. Antimicrob Agents Chemother 58:1267–1268 http://dx.doi.org/10.1128/AAC.02527-13. [PubMed]
61. Hérivaux A, Pailhoriès H, Quinqueneau C, Lemarié C, Joly-Guillou ML, Ruvoen N, Eveillard M, Kempf M. 2016. First report of carbapenemase-producing Acinetobacter baumannii carriage in pets from the community in France. Int J Antimicrob Agents 48:220–221 http://dx.doi.org/10.1016/j.ijantimicag.2016.03.012. [PubMed]
62. Kimura Y, Miyamoto T, Aoki K, Ishii Y, Harada K, Watarai M, Hatoya S. 2017. Analysis of IMP-1 type metallo-β-lactamase-producing Acinetobacter radioresistens isolated from companion animals. J Infect Chemother 23:655–657 http://dx.doi.org/10.1016/j.jiac.2017.03.011. [PubMed]
63. Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680 http://dx.doi.org/10.1111/j.1574-6976.2011.00269.x. [PubMed]
64. Argudín MA, Deplano A, Meghraoui A, Dodémont M, Heinrichs A, Denis O, Nonhoff C, Roisin S. 2017. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics (Basel) 6:6 http://dx.doi.org/10.3390/antibiotics6020012. [PubMed]
65. O’Brien HE, Desveaux D, Guttman DS. 2011. Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol 14:24–30 http://dx.doi.org/10.1016/j.mib.2010.12.007. [PubMed]
66. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. 2011. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323 http://dx.doi.org/10.1111/j.1574-6976.2010.00249.x. [PubMed]
67. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. 2006. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547 http://dx.doi.org/10.1128/MMBR.00047-05. [PubMed]
68. Walker TS, Bais HP, Déziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM. 2004. Pseudomonas aeruginosa-plant root interactions: pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331 http://dx.doi.org/10.1104/pp.103.027888. [PubMed]
69. Davies JC. 2002. Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev 3:128–134 http://dx.doi.org/10.1016/S1526-0550(02)00003-3.
70. Lyczak JB, Cannon CL, Pier GB. 2000. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060 http://dx.doi.org/10.1016/S1286-4579(00)01259-4.
71. Hariharan H, Coles M, Poole D, Lund L, Page R. 2006. Update on antimicrobial susceptibilities of bacterial isolates from canine and feline otitis externa. Can Vet J 47:253–255. [PubMed]
72. Petersen AD, Walker RD, Bowman MM, Schott HC II, Rosser EJ Jr. 2002. Frequency of isolation and antimicrobial susceptibility patterns of Staphylococcus intermedius and Pseudomonas aeruginosa isolates from canine skin and ear samples over a 6-year period (1992–1997). J Am Anim Hosp Assoc 38:407–413 http://dx.doi.org/10.5326/0380407. [PubMed]
73. Rubin J, Walker RD, Blickenstaff K, Bodeis-Jones S, Zhao S. 2008. Antimicrobial resistance and genetic characterization of fluoroquinolone resistance of Pseudomonas aeruginosa isolated from canine infections. Vet Microbiol 131:164–172 http://dx.doi.org/10.1016/j.vetmic.2008.02.018. [PubMed]
74. Mekić S, Matanović K, Šeol B. 2011. Antimicrobial susceptibility of Pseudomonas aeruginosa isolates from dogs with otitis externa. Vet Rec 169:125 http://dx.doi.org/10.1136/vr.d2393. [PubMed]
75. ANSES. 2016. Résapath - Réseau d’épidémiosurveillance de l’antibiorésistance des bactéries pathogènes animales, bilan 2015, Lyon et Ploufragan-Plouzané, France, November 2016.
76. Colombini S, Merchant SR, Hosgood G. 2000. Microbial flora and antimicrobial susceptibility patterns from dogs with otitis media. Vet Dermatol 11:235–239 http://dx.doi.org/10.1046/j.1365-3164.2000.00191.x.
77. Done SH. 1974. Pseudomonas aeruginosa infection in the skin of a dog: a case report. Br Vet J 130:lxviii–lxix http://dx.doi.org/10.1016/S0007-1935(17)35852-9. [PubMed]
78. Hillier A, Alcorn JR, Cole LK, Kowalski JJ. 2006. Pyoderma caused by Pseudomonas aeruginosa infection in dogs: 20 cases. Vet Dermatol 17:432–439 http://dx.doi.org/10.1111/j.1365-3164.2006.00550.x. [PubMed]
79. Wilson DJ, Baldwin TJ, Whitehouse CH, Hullinger G. 2015. Causes of mortality in farmed mink in the Intermountain West, North America. J Vet Diagn Invest 27:470–475 http://dx.doi.org/10.1177/1040638715586438. [PubMed]
80. Shimizu T, Homma JY, Aoyama T, Onodera T, Noda H. 1974. Virulence of Pseudomonas aeruginosa and spontaneous spread of pseudomonas pneumonia in a mink ranch. Infect Immun 10:16–20. [PubMed]
81. Farrell RK, Leader RW, Gorham JR. 1958. An outbreak of hemorrhagic pneumonia in mink; a case report. Cornell Vet 48:378–384. [PubMed]
82. Daniel RC, O’Boyle D, Marek MS, Frost AJ. 1982. A survey of clinical mastitis in South-East Queensland dairy herds. Aust Vet J 58:143–147 http://dx.doi.org/10.1111/j.1751-0813.1982.tb00625.x. [PubMed]
83. Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ. 2007. Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160:253–257 http://dx.doi.org/10.1136/vr.160.8.253. [PubMed]
84. Persson Y, Nyman AK, Grönlund-Andersson U. 2011. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand 53:36 http://dx.doi.org/10.1186/1751-0147-53-36. [PubMed]
85. Botrel MA, Haenni M, Morignat E, Sulpice P, Madec JY, Calavas D. 2010. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog Dis 7:479–487 http://dx.doi.org/10.1089/fpd.2009.0425.
86. Nam HM, Kim JM, Lim SK, Jang KC, Jung SC. 2010. Infectious aetiologies of mastitis on Korean dairy farms during 2008. Res Vet Sci 88:372–374 http://dx.doi.org/10.1016/j.rvsc.2009.12.008. [PubMed]
87. Sela S, Hammer-Muntz O, Krifucks O, Pinto R, Weisblit L, Leitner G. 2007. Phenotypic and genotypic characterization of Pseudomonas aeruginosa strains isolated from mastitis outbreaks in dairy herds. J Dairy Res 74:425–429 http://dx.doi.org/10.1017/S0022029907002610. [PubMed]
88. Daly M, Power E, Björkroth J, Sheehan P, O’Connell A, Colgan M, Korkeala H, Fanning S. 1999. Molecular analysis of Pseudomonas aeruginosa: epidemiological investigation of mastitis outbreaks in Irish dairy herds. Appl Environ Microbiol 65:2723–2729. [PubMed]
89. McLennan MW, Kelly WR, O’Boyle D. 1997. Pseudomonas mastitis in a dairy herd. Aust Vet J 75:790–792 http://dx.doi.org/10.1111/j.1751-0813.1997.tb15652.x. [PubMed]
90. Osborne AD, Armstrong K, Catrysse NH, Butler G, Versavel L. 1981. An outbreak of Pseudomonas mastitis in dairy cows. Can Vet J 22:215–216. [PubMed]
91. Anderson B, Barton M, Corbould A, Dunford PJ, Elliott J, Leis T, Nicholls TJ, Sharman M, Stephenson GM. 1979. Pseudomonas aeruginosa mastitis due to contamination of an antibiotic preparation used in dry-cow therapy. Aust Vet J 55:90–91 http://dx.doi.org/10.1111/j.1751-0813.1979.tb15179.x. [PubMed]
92. Kirk J, Mellenberger R. 2016. Mastitis control program for Pseudomonas mastitis in dairy cows. Purdue Dairy Page. https://www.extension.purdue.edu/dairy/health/hlthpub_mastitis.htm.
93. Yeruham I, Elad D, Avidar Y, Goshen T, Asis E. 2004. Four-year survey of urinary tract infections in calves in Israel. Vet Rec 154:204–206 http://dx.doi.org/10.1136/vr.154.7.204. [PubMed]
94. Rice LB. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197:1079–1081 http://dx.doi.org/10.1086/533452. [PubMed]
95. CA-SFM/EUCAST. 2016. Comité de l’antibiogramme de la Société Française de Microbiologie. http://www.sfm-microbiologie.org/page/page/showpage/page_id/90.html.
96. Breidenstein EB, de la Fuente-Núñez C, Hancock RE. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426 http://dx.doi.org/10.1016/j.tim.2011.04.005. [PubMed]
97. Hancock RE. 1998. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria. Clin Infect Dis 27(Suppl 1) :S93–S99 http://dx.doi.org/10.1086/514909. [PubMed]
98. Li XZ, Plésiat P, Nikaido H. 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418 http://dx.doi.org/10.1128/CMR.00117-14. [PubMed]
99. Girlich D, Naas T, Nordmann P. 2004. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:2043–2048 http://dx.doi.org/10.1128/AAC.48.6.2043-2048.2004. [PubMed]
100. Masuda N, Gotoh N, Ishii C, Sakagawa E, Ohya S, Nishino T. 1999. Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:400–402. [PubMed]
101. Lodge JM, Minchin SD, Piddock LJ, Busby SJ. 1990. Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem J 272:627–631 http://dx.doi.org/10.1042/bj2720627. [PubMed]
102. Davey ME, O’toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000. [PubMed]
103. de Kievit TR. 2009. Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 11:279–288 http://dx.doi.org/10.1111/j.1462-2920.2008.01792.x. [PubMed]
104. Lequette Y, Greenberg EP. 2005. Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. J Bacteriol 187:37–44 http://dx.doi.org/10.1128/JB.187.1.37-44.2005. [PubMed]
105. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T. 2010. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunol Med Microbiol 59:253–268 http://dx.doi.org/10.1111/j.1574-695X.2010.00690.x. [PubMed]
106. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. 2008. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB- oprM genes. Mol Microbiol 68:223–240 http://dx.doi.org/10.1111/j.1365-2958.2008.06152.x. [PubMed]
107. Jeannot K, Elsen S, Köhler T, Attree I, van Delden C, Plésiat P. 2008. Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother 52:2455–2462 http://dx.doi.org/10.1128/AAC.01107-07. [PubMed]
108. Potron A, Poirel L, Nordmann P. 2015. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. Int J Antimicrob Agents 45:568–585 http://dx.doi.org/10.1016/j.ijantimicag.2015.03.001. [PubMed]
109. Oliphant CM, Green GM. 2002. Quinolones: a comprehensive review. Am Fam Physician 65:455–464. [PubMed]
110. Lin D, Foley SL, Qi Y, Han J, Ji C, Li R, Wu C, Shen J, Wang Y. 2012. Characterization of antimicrobial resistance of Pseudomonas aeruginosa isolated from canine infections. J Appl Microbiol 113:16–23 http://dx.doi.org/10.1111/j.1365-2672.2012.05304.x. [PubMed]
111. Leigue L, Montiani-Ferreira F, Moore BA. 2016. Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species. Open Vet J 6:215–222 http://dx.doi.org/10.4314/ovj.v6i3.9. [PubMed]
112. Aires JR, Köhler T, Nikaido H, Plésiat P. 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43:2624–2628. [PubMed]
113. Arais LR, Barbosa AV, Carvalho CA, Cerqueira AM. 2016. Antimicrobial resistance, integron carriage, and gyrA and gyrB mutations in Pseudomonas aeruginosa isolated from dogs with otitis externa and pyoderma in Brazil. Vet Dermatol 27:113-7e31. doi:10.1111/vde.12290. [PubMed]
114. Ludwig C, de Jong A, Moyaert H, El Garch F, Janes R, Klein U, Morrissey I, Thiry J, Youala M. 2016. Antimicrobial susceptibility monitoring of dermatological bacterial pathogens isolated from diseased dogs and cats across Europe (ComPath results). J Appl Microbiol 121:1254–1267 http://dx.doi.org/10.1111/jam.13287. [PubMed]
115. Werckenthin C, Alesík E, Grobbel M, Lübke-Becker A, Schwarz S, Wieler LH, Wallmann J. 2007. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr 120:412–422. [PubMed]
116. Seol B, Naglić T, Madić J, Bedeković M. 2002. In vitro antimicrobial susceptibility of 183 Pseudomonas aeruginosa strains isolated from dogs to selected antipseudomonal agents. J Vet Med B Infect Dis Vet Public Health 49:188–192 http://dx.doi.org/10.1046/j.1439-0450.2002.00548.x. [PubMed]
117. Jacoby GA. 2005. Mechanisms of resistance to quinolones. Clin Infect Dis 41(Suppl 2) :S120–S126 http://dx.doi.org/10.1086/428052. [PubMed]
118. Mouneimné H, Robert J, Jarlier V, Cambau E. 1999. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:62–66. [PubMed]
119. Matsumoto M, Shigemura K, Shirakawa T, Nakano Y, Miyake H, Tanaka K, Kinoshita S, Arakawa S, Kawabata M, Fujisawa M. 2012. Mutations in the gyrA and parC genes and in vitro activities of fluoroquinolones in 114 clinical isolates of Pseudomonas aeruginosa derived from urinary tract infections and their rapid detection by denaturing high-performance liquid chromatography. Int J Antimicrob Agents 40:440–444 http://dx.doi.org/10.1016/j.ijantimicag.2012.06.021. [PubMed]
120. Li XZ, Nikaido H, Poole K. 1995. Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953 http://dx.doi.org/10.1128/AAC.39.9.1948. [PubMed]
121. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. 2000. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44:2242–2246 http://dx.doi.org/10.1128/AAC.44.9.2242-2246.2000. [PubMed]
122. Le Thomas I, Couetdic G, Clermont O, Brahimi N, Plésiat P, Bingen E. 2001. In vivo selection of a target/efflux double mutant of Pseudomonas aeruginosa by ciprofloxacin therapy. J Antimicrob Chemother 48:553–555 http://dx.doi.org/10.1093/jac/48.4.553. [PubMed]
123. Beinlich KL, Chuanchuen R, Schweizer HP. 2001. Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol Lett 198:129–134 http://dx.doi.org/10.1111/j.1574-6968.2001.tb10631.x. [PubMed]
124. Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec JY, Bertrand X. 2015. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res 11:9 http://dx.doi.org/10.1186/s12917-015-0324-x. [PubMed]
125. Morita Y, Tomida J, Kawamura Y. 2012. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 3:408 http://dx.doi.org/10.3389/fmicb.2012.00408. [PubMed]
126. Chuanchuen R, Wannaprasat W, Ajariyakhajorn K, Schweizer HP. 2008. Role of the MexXY multidrug efflux pump in moderate aminoglycoside resistance in Pseudomonas aeruginosa isolates from Pseudomonas mastitis. Microbiol Immunol 52:392–398 http://dx.doi.org/10.1111/j.1348-0421.2008.00051.x. [PubMed]
127. Poonsuk K, Chuanchuen R. 2012. Contribution of the MexXY multidrug efflux pump and other chromosomal mechanisms on aminoglycoside resistance in Pseudomonas aeruginosa isolates from canine and feline infections. J Vet Med Sci 74:1575–1582 http://dx.doi.org/10.1292/jvms.12-0239. [PubMed]
128. Poole K. 2005. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487 http://dx.doi.org/10.1128/AAC.49.2.479-487.2005. [PubMed]
129. Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y. 2003. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362:1888–1893 http://dx.doi.org/10.1016/S0140-6736(03)14959-8.
130. Doi Y, de Oliveira Garcia D, Adams J, Paterson DL. 2007. Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother 51:852–856 http://dx.doi.org/10.1128/AAC.01345-06. [PubMed]
131. Li J, Zou M, Dou Q, Hu Y, Wang H, Yan Q, Liu WE. 2016. Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob 15:35 http://dx.doi.org/10.1186/s12941-016-0148-y. [PubMed]
132. Jeannot K, Bolard A, Plésiat P. 2017. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 49:526–535 http://dx.doi.org/10.1016/j.ijantimicag.2016.11.029. [PubMed]
133. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168 http://dx.doi.org/10.1016/S1473-3099(15)00424-7.
134. Lee JY, Park YK, Chung ES, Na IY, Ko KS. 2016. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci Rep 6:25543 http://dx.doi.org/10.1038/srep25543. [PubMed]
135. Martis N, Leroy S, Blanc V. 2014. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect 69:1–12 http://dx.doi.org/10.1016/j.jinf.2014.03.001. [PubMed]
136. Muller C, Plésiat P, Jeannot K. 2011. A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:1211–1221 http://dx.doi.org/10.1128/AAC.01252-10. [PubMed]
137. Moskowitz SM, Brannon MK, Dasgupta N, Pier M, Sgambati N, Miller AK, Selgrade SE, Miller SI, Denton M, Conway SP, Johansen HK, Høiby N. 2012. PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 56:1019–1030 http://dx.doi.org/10.1128/AAC.05829-11. [PubMed]
138. Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, Kaul RK, Johansen HK, Høiby N, Moskowitz SM. 2013. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother 57:2204–2215 http://dx.doi.org/10.1128/AAC.02353-12. [PubMed]
139. Wang Y, Wang X, Schwarz S, Zhang R, Lei L, Liu X, Lin D, Shen J. 2014. IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin. J Antimicrob Chemother 69:2579–2581 http://dx.doi.org/10.1093/jac/dku133. [PubMed]
140. Haenni M, Bour M, Châtre P, Madec JY, Plésiat P, Jeannot K. 2017. Resistance of animal strains of Pseudomonas aeruginosa to carbapenems. Front Microbiol 8:1847 http://dx.doi.org/10.3389/fmicb.2017.01847. [PubMed]
141. Salomonsen CM, Themudo GE, Jelsbak L, Molin S, Høiby N, Hammer AS. 2013. Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink ( Neovison vison). Vet Microbiol 163:103–109 http://dx.doi.org/10.1016/j.vetmic.2012.12.003. [PubMed]
142. Hammer AS, Pedersen K, Andersen TH, Jørgensen JC, Dietz HH. 2003. Comparison of Pseudomonas aeruginosa isolates from mink by serotyping and pulsed-field gel electrophoresis. Vet Microbiol 94:237–243 http://dx.doi.org/10.1016/S0378-1135(03)00103-2.
143. Gu J, Li X, Yang M, Du C, Cui Z, Gong P, Xia F, Song J, Zhang L, Li J, Yu C, Sun C, Feng X, Lei L, Han W. 2016. Therapeutic effect of Pseudomonas aeruginosa phage YH30 on mink hemorrhagic pneumonia. Vet Microbiol 190:5–11 http://dx.doi.org/10.1016/j.vetmic.2016.03.016. [PubMed]
144. Pedersen K, Hammer AS, Sørensen CM, Heuer OE. 2009. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink. Vet Microbiol 133:115–122 http://dx.doi.org/10.1016/j.vetmic.2008.06.005. [PubMed]
145. Jensen VF, Sommer HM, Struve T, Clausen J, Chriél M. 2016. Factors associated with usage of antimicrobials in commercial mink ( Neovison vison) production in Denmark. Prev Vet Med 126:170–182 http://dx.doi.org/10.1016/j.prevetmed.2016.01.023. [PubMed]
146. Qi J, Li L, Du Y, Wang S, Wang J, Luo Y, Che J, Lu J, Liu H, Hu G, Li J, Gong Y, Wang G, Hu M, Shiganyan, Liu Y. 2014. The identification, typing, and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from mink with hemorrhagic pneumonia. Vet Microbiol 170:456–461 http://dx.doi.org/10.1016/j.vetmic.2014.02.025. [PubMed]
147. Nikolaisen NK, Lassen DCK, Chriél M, Larsen G, Jensen VF, Pedersen K. 2017. Antimicrobial resistance among pathogenic bacteria from mink ( Neovison vison) in Denmark. Acta Vet Scand 59:60 http://dx.doi.org/10.1186/s13028-017-0328-6. [PubMed]
148. Giebink GS. 1999. Otitis media: the chinchilla model. Microb Drug Resist 5:57–72 http://dx.doi.org/10.1089/mdr.1999.5.57. [PubMed]
149. Wideman WL. 2006. Pseudomonas aeruginosa otitis media and interna in a chinchilla ranch. Can Vet J 47:799–800. [PubMed]
150. Hirakawa Y, Sasaki H, Kawamoto E, Ishikawa H, Matsumoto T, Aoyama N, Kawasumi K, Amao H. 2010. Prevalence and analysis of Pseudomonas aeruginosa in chinchillas. BMC Vet Res 6:52 http://dx.doi.org/10.1186/1746-6148-6-52. [PubMed]
151. Agersø Y, Sandvang D. 2005. Class 1 integrons and tetracycline resistance genes in alcaligenes, arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl Environ Microbiol 71:7941–7947 http://dx.doi.org/10.1128/AEM.71.12.7941-7947.2005. [PubMed]
152. de Oliveira KM, dos S Júlio PD, Grisolia AB. 2013. Antimicrobial susceptibility profile of Pseudomonas spp. isolated from a swine slaughterhouse in Dourados, Mato Grosso do Sul State, Brazil. Rev Argent Microbiol 45:57–60. [PubMed]
153. Zhang R, Liu Z, Li J, Lei L, Yin W, Li M, Wu C, Walsh TR, Wang Y, Wang S, Wu Y. 2017. Presence of VIM-positive Pseudomonas species in chickens and their surrounding environment. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00167-17. [PubMed]
154. Ohnishi M, Sawada T, Hirose K, Sato R, Hayashimoto M, Hata E, Yonezawa C, Kato H. 2011. Antimicrobial susceptibilities and bacteriological characteristics of bovine Pseudomonas aeruginosa and Serratia marcescens isolates from mastitis. Vet Microbiol 154:202–207 http://dx.doi.org/10.1016/j.vetmic.2011.06.023. [PubMed]
155. Metcalf ES. 2001. The role of international transport of equine semen on disease transmission. Anim Reprod Sci 68:229–237 http://dx.doi.org/10.1016/S0378-4320(01)00159-2.
156. Atherton JG, Pitt TL. 1982. Types of Pseudomonas aeruginosa isolated from horses. Equine Vet J 14:329–332 http://dx.doi.org/10.1111/j.2042-3306.1982.tb02446.x. [PubMed]
157. Tazumi A, Maeda Y, Buckley T, Millar B, Goldsmith C, Dooley J, Elborn J, Matsuda M, Moore J. 2009. Molecular epidemiology of clinical isolates of Pseudomonas aeruginosa isolated from horses in Ireland. Ir Vet J 62:456–459 http://dx.doi.org/10.1186/2046-0481-62-7-456. [PubMed]
158. Kidd TJ, Gibson JS, Moss S, Greer RM, Cobbold RN, Wright JD, Ramsay KA, Grimwood K, Bell SC. 2011. Clonal complex Pseudomonas aeruginosa in horses. Vet Microbiol 149:508–512 http://dx.doi.org/10.1016/j.vetmic.2010.11.030. [PubMed]

Article metrics loading...



The nonfermenting bacteria belonging to spp. and spp. are capable of colonizing both humans and animals and can also be opportunistic pathogens. More specifically, the species and have been recurrently reported as multidrug-resistant and even pandrug-resistant in clinical isolates. Both species were categorized among the ESKAPE pathogens, ESKAPE standing for , , , , , and species. These six pathogens are the major cause of nosocomial infections in the United States and are a threat all over the world because of their capacity to become increasingly resistant to all available antibiotics. and are both intrinsically resistant to many antibiotics due to complementary mechanisms, the main ones being the low permeability of their outer membrane, the production of the AmpC beta-lactamase, and the production of several efflux systems belonging to the resistance-nodulation-cell division family. In addition, they are both capable of acquiring multiple resistance determinants, such as beta-lactamases or carbapenemases. Even if such enzymes have rarely been identified in bacteria of animal origin, they may sooner or later spread to this reservoir. The goal of this article is to give an overview of the resistance phenotypes described in these pathogens and to provide a comprehensive analysis of all data that have been reported on spp. and spp. from animal hosts.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Overview of spp., sequence types, and acquired carbapenem resistance mechanisms.

Source: microbiolspec May 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0007-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Antimicrobial susceptibility to fluoroquinolones and aminoglycosides in isolates of animal origin

Source: microbiolspec May 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0007-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error