No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in and spp. and Other Anaerobes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Marie Archambault1, Joseph E. Rubin2
  • Editors: Frank Møller Aarestrup3, Stefan Schwarz4, Jianzhong Shen5, Lina Cavaco6
    Affiliations: 1: Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada; 2: Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada; 3: Technical University of Denmark, Lyngby, Denmark; 4: Freie Universität Berlin, Berlin, Germany; 5: China Agricultural University, Beijing, China; 6: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec January 2020 vol. 8 no. 1 doi:10.1128/microbiolspec.ARBA-0020-2017
  • Received 24 February 2017 Accepted 19 December 2019 Published 23 January 2020
  • Marie Archambault, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Clostridium</span> and <span class="jp-italic">Brachyspira</span> spp. and Other Anaerobes
    Preview this microbiology spectrum article:
    Zoom in

    Antimicrobial Resistance in and spp. and Other Anaerobes, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/8/1/ARBA-0020-2017-1.gif /docserver/preview/fulltext/microbiolspec/8/1/ARBA-0020-2017-2.gif
  • Abstract:

    This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.

  • Citation: Archambault M, Rubin J. 2020. Antimicrobial Resistance in and spp. and Other Anaerobes. Microbiol Spectrum 8(1):ARBA-0020-2017. doi:10.1128/microbiolspec.ARBA-0020-2017.


1. Uzal FA, Songer G, Prescott JF, Popoff MR. 2016. Clostridial Diseases of Animals. John Wiley & Sons, Hoboken, NJ. http://dx.doi.org/10.1002/9781118728291. [PubMed]
2. Salyers AA, Gupta A, Wang Y. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416 http://dx.doi.org/10.1016/j.tim.2004.07.004.
3. Clinical and Laboratory Standards Institute. 2012. Standard on methods for antimicrobial susceptibility testing of anaerobic bacteria (M11-A8). Approved standard, 7th ed. CLSI, Wayne, PA.
4. Clinical and Laboratory Standards Institute. 2015. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 3rd ed. CLSI supplement VET01S. CLSI, Wayne, PA.
5. Clinical and Laboratory Standards Institute. 2008. In vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents, 3rd ed. CLSI VET02-A3. CLSI, Wayne, PA.
6. Clinical and Laboratory Standards Institute. 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 4th ed. CLSI VET01-A4. CLSI, Wayne, PA.
7. Clinical and Laboratory Standards Institute. 2017. Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals, 1st ed. CLSI VET06. CLSI, Wayne, PA.
8. Oka K, Osaki T, Hanawa T, Kurata S, Okazaki M, Manzoku T, Takahashi M, Tanaka M, Taguchi H, Watanabe T, Inamatsu T, Kamiya S. 2012. Molecular and microbiological characterization of Clostridium difficile isolates from single, relapse, and reinfection cases. J Clin Microbiol 50:915–921 http://dx.doi.org/10.1128/JCM.05588-11. [PubMed]
9. Spigaglia P. 2016. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis 3:23–42 http://dx.doi.org/10.1177/2049936115622891. [PubMed]
10. Bryan LE, Kwan S. 1981. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative bacteria grown anaerobically. J Antimicrob Chemother 8(Suppl D) :1–8. [PubMed]
11. Indiveri MC, Hirsh DC. 1992. Tissues and exudates contain sufficient thymidine for growth of anaerobic bacteria in the presence of inhibitory levels of trimethoprim-sulfamethoxazole. Vet Microbiol 31:235–242 http://dx.doi.org/10.1016/0378-1135(92)90081-4.
12. Lorenzo M, García N, Ayala JA, Vadillo S, Píriz S, Quesada A. 2012. Antimicrobial resistance determinants among anaerobic bacteria isolated from footrot. Vet Microbiol 157:112–118 http://dx.doi.org/10.1016/j.vetmic.2011.11.029. [PubMed]
13. dos Santos Almeida F, Avila-Campos MJ. 2006. Plasmid-related resistance to cefoxitin in species of the Bacteroides fragilis group isolated from intestinal tracts of calves. Curr Microbiol 53:440–443 http://dx.doi.org/10.1007/s00284-006-0247-7. [PubMed]
14. Appelbaum PC, Spangler SK, Jacobs MR. 1990. Beta-lactamase production and susceptibilities to amoxicillin, amoxicillin-clavulanate, ticarcillin, ticarcillin-clavulanate, cefoxitin, imipenem, and metronidazole of 320 non- Bacteroides fragilis Bacteroides isolates and 129 fusobacteria from 28 U.S. centers. Antimicrob Agents Chemother 34:1546–1550 http://dx.doi.org/10.1128/AAC.34.8.1546. [PubMed]
15. Then RL, Angehrn P. 1979. Low trimethoprim susceptibility of anaerobic bacteria due to insensitive dihydrofolate reductases. Antimicrob Agents Chemother 15:1–6 http://dx.doi.org/10.1128/AAC.15.1.1. [PubMed]
16. Then RL. 1982. Mechanisms of resistance to trimethoprim, the sulfonamides, and trimethoprim-sulfamethoxazole. Rev Infect Dis 4:261–269 http://dx.doi.org/10.1093/clinids/4.2.261. [PubMed]
17. Roberts MC. 2003. Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe 9:63–69 http://dx.doi.org/10.1016/S1075-9964(03)00058-1.
18. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer GJ, Uzal FA, Van Immerseel F. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe https://doi.org/10.1016/j.anaerobe.2018.04.011. [PubMed]
19. Johansson A, Greko C, Engström BE, Karlsson M. 2004. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of Clostridium perfringens from poultry, and distribution of tetracycline resistance genes. Vet Microbiol 99:251–257 http://dx.doi.org/10.1016/j.vetmic.2004.01.009. [PubMed]
20. Martel A, Devriese LA, Cauwerts K, De Gussem K, Decostere A, Haesebrouck F. 2004. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials. Avian Pathol 33:3–7 http://dx.doi.org/10.1080/0307945031000163291. [PubMed]
21. Watkins KL, Shryock TR, Dearth RN, Saif YM. 1997. In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial turkey and broiler chicken origin. Vet Microbiol 54:195–200 http://dx.doi.org/10.1016/S0378-1135(96)01276-X.
22. Slavić D, Boerlin P, Fabri M, Klotins KC, Zoethout JK, Weir PE, Bateman D. 2011. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario. Can J Vet Res 75:89–97.
23. Charlebois A, Jalbert LA, Harel J, Masson L, Archambault M. 2012. Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens. PLoS One 7:e44449 http://dx.doi.org/10.1371/journal.pone.0044449. [PubMed]
24. Devriese LA, Daube G, Hommez J, Haesebrouck F. 1993. In vitro susceptibility of Clostridium perfringens isolated from farm animals to growth-enhancing antibiotics. J Appl Bacteriol 75:55–57 http://dx.doi.org/10.1111/j.1365-2672.1993.tb03407.x. [PubMed]
25. Rood JI, Maher EA, Somers EB, Campos E, Duncan CL. 1978. Isolation and characterization of multiply antibiotic-resistant Clostridum perfringens strains from porcine feces. Antimicrob Agents Chemother 13:871–880 http://dx.doi.org/10.1128/AAC.13.5.871. [PubMed]
26. Tansuphasiri U, Matra W, Sangsuk L. 2005. Antimicrobial resistance among Clostridium perfringens isolated from various sources in Thailand. Southeast Asian J Trop Med Public Health 36:954–961.
27. Chalmers G, Martin SW, Hunter DB, Prescott JF, Weber LJ, Boerlin P. 2008. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Vet Microbiol 127:116–127 http://dx.doi.org/10.1016/j.vetmic.2007.08.008. [PubMed]
28. Park JY, Kim S, Oh JY, Kim HR, Jang I, Lee HS, Kwon YK. 2015. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poult Sci 94:1158–1164 http://dx.doi.org/10.3382/ps/pev037. [PubMed]
29. Gholamiandehkordi A, Eeckhaut V, Lanckriet A, Timbermont L, Bjerrum L, Ducatelle R, Haesebrouck F, Van Immerseel F. 2009. Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Vet Res Commun 33:1031–1037 http://dx.doi.org/10.1007/s11259-009-9306-4. [PubMed]
30. Osman KM, Elhariri M. 2013. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev Sci Tech 32:841–850 http://dx.doi.org/10.20506/rst.32.2.2212. [PubMed]
31. Fan YC, Wang CL, Wang C, Chen TC, Chou CH, Tsai HJ. 2016. Incidence and antimicrobial susceptibility to Clostridium perfringens in premarket broilers in Taiwan. Avian Dis 60:444–449 http://dx.doi.org/10.1637/11315-110915-Reg. [PubMed]
32. Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, Urairong S, Navasakuljinda W, Janvilisri T. 2016. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe 38:88–93 http://dx.doi.org/10.1016/j.anaerobe.2015.12.012. [PubMed]
33. Rood JI, Buddle JR, Wales AJ, Sidhu R. 1985. The occurrence of antibiotic resistance in Clostridium perfringens from pigs. Aust Vet J 62:276–279 http://dx.doi.org/10.1111/j.1751-0813.1985.tb14251.x. [PubMed]
34. Hölzel CS, Harms KS, Schwaiger K, Bauer J. 2010. Resistance to linezolid in a porcine Clostridium perfringens strain carrying a mutation in the rplD gene encoding the ribosomal protein L4. Antimicrob Agents Chemother 54:1351–1353 http://dx.doi.org/10.1128/AAC.01208-09. [PubMed]
35. Salvarani FM, Silveira Silva RO, Pires PS, da Costa Cruz Júnior EC, Albefaro IS, de Carvalho Guedes RM, Faria Lobato FC. 2012. Antimicrobial susceptibility of Clostridium perfringens isolated from piglets with or without diarrhea in Brazil. Braz J Microbiol 43:1030–1033 http://dx.doi.org/10.1590/S1517-83822012000300027. [PubMed]
36. Kouassi KA, Dadie AT, N’Guessan KF, Dje KM, Loukou YG. 2014. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d’Ivoire and their antimicrobial susceptibility. Anaerobe 28:90–94 http://dx.doi.org/10.1016/j.anaerobe.2014.05.012. [PubMed]
37. Gobeli S, Berset C, Burgener I, Perreten V. 2012. Antimicrobial susceptibility of canine Clostridium perfringens strains from Switzerland. Schweiz Arch Tierheilkd 154:247–250 http://dx.doi.org/10.1024/0036-7281/a000340. [PubMed]
38. Gamboa-Coronado MM, Mau-Inchaustegui S, Rodríguez-Cavallini E. 2011. Molecular characterization and antimicrobial resistance of Clostridium perfringens isolates of different origins from Costa Rica. Rev Biol Trop 59:1479–1485. (In Spanish.)
39. Catalán A, Espoz MC, Cortés W, Sagua H, González J, Araya JE. 2010. Tetracycline and penicillin resistant Clostridium perfringens isolated from the fangs and venom glands of Loxosceles laeta: its implications in loxoscelism treatment. Toxicon 56:890–896 http://dx.doi.org/10.1016/j.toxicon.2010.06.012. [PubMed]
40. Álvarez-Pérez S, Blanco JL, Peláez T, Martínez-Nevado E, García ME. 2016. Water sources in a zoological park harbor genetically diverse strains of Clostridium perfringens type A with decreased susceptibility to metronidazole. Microb Ecol 72:783–790 http://dx.doi.org/10.1007/s00248-016-0772-2. [PubMed]
41. Varga JJ, Therit B, Melville SB. 2008. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the Gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944–4951 http://dx.doi.org/10.1128/IAI.00692-08. [PubMed]
42. Charlebois A, Jacques M, Archambault M. 2014. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 5:183 http://dx.doi.org/10.3389/fmicb.2014.00183. [PubMed]
43. Charlebois A, Jacques M, Archambault M. 2016. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 45:593–601 http://dx.doi.org/10.1080/03079457.2016.1189512. [PubMed]
44. Charlebois A, Jacques M, Boulianne M, Archambault M. 2017. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol 62:32–38 http://dx.doi.org/10.1016/j.fm.2016.09.009. [PubMed]
45. Costerton JW. 1999. Introduction to biofilm. Int J Antimicrob Agents 11:217–221; discussion 237–219.
46. Park S, Park M, Rafii F. 2013. Comparative transcription analysis and toxin production of two fluoroquinolone-resistant mutants of Clostridium perfringens. BMC Microbiol 13:50 http://dx.doi.org/10.1186/1471-2180-13-50. [PubMed]
47. Park M, Sutherland JB, Kim JN, Rafii F. 2013. Effect of fluoroquinolone resistance selection on the fitness of three strains of Clostridium perfringens. Microb Drug Resist 19:421–427 http://dx.doi.org/10.1089/mdr.2013.0056. [PubMed]
48. Rafii F, Park M, Gamboa da Costa G, Camacho L. 2009. Comparison of the metabolic activities of four wild-type Clostridium perfringens strains with their gatifloxacin-selected resistant mutants. Arch Microbiol 191:895–902 http://dx.doi.org/10.1007/s00203-009-0518-3. [PubMed]
49. Rafii F, Park M, Carman RJ. 2009. Characterization of an ATP-binding cassette from Clostridium perfringens with homology to an ABC transporter from Clostridium hathewayi. Anaerobe 15:116–121 http://dx.doi.org/10.1016/j.anaerobe.2009.01.008. [PubMed]
50. Han X, Du XD, Southey L, Bulach DM, Seemann T, Yan XX, Bannam TL, Rood JI. 2015. Functional analysis of a bacitracin resistance determinant located on ICE Cp1, a novel Tn 916-like element from a conjugative plasmid in Clostridium perfringens. Antimicrob Agents Chemother 59:6855–6865 http://dx.doi.org/10.1128/AAC.01643-15. [PubMed]
51. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
52. Sasaki Y, Yamamoto K, Tamura Y, Takahashi T. 2001. Tetracycline-resistance genes of Clostridium perfringens, Clostridium septicum and Clostridium sordellii isolated from cattle affected with malignant edema. Vet Microbiol 83:61–69 http://dx.doi.org/10.1016/S0378-1135(01)00402-3.
53. Lyras D, Rood JI. 1996. Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens. Antimicrob Agents Chemother 40:2500–2504. [PubMed]
54. Sloan J, McMurry LM, Lyras D, Levy SB, Rood JI. 1994. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol Microbiol 11:403–415 http://dx.doi.org/10.1111/j.1365-2958.1994.tb00320.x. [PubMed]
55. Abraham LJ, Wales AJ, Rood JI. 1985. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 14:37–46 http://dx.doi.org/10.1016/0147-619X(85)90030-7.
56. Abraham LJ, Rood JI. 1985. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 13:155–162 http://dx.doi.org/10.1016/0147-619X(85)90038-1.
57. Abraham LJ, Rood JI. 1985. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J Bacteriol 161:636–640.
58. Bannam TL, Yan XX, Harrison PF, Seemann T, Keyburn AL, Stubenrauch C, Weeramantri LH, Cheung JK, McClane BA, Boyce JD, Moore RJ, Rood JI. 2011. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. MBio 2:2 http://dx.doi.org/10.1128/mBio.00190-11. [PubMed]
59. Park M, Rooney AP, Hecht DW, Li J, McClane BA, Nayak R, Paine DD, Rafii F. 2010. Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. Arch Microbiol 192:803–810 http://dx.doi.org/10.1007/s00203-010-0605-5. [PubMed]
60. Brefort G, Magot M, Ionesco H, Sebald M. 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:52–66 http://dx.doi.org/10.1016/0147-619X(77)90008-7.
61. Farrow KA, Lyras D, Polekhina G, Koutsis K, Parker MW, Rood JI. 2002. Identification of essential residues in the Erm(B) rRNA methyltransferase of Clostridium perfringens. Antimicrob Agents Chemother 46:1253–1261 http://dx.doi.org/10.1128/AAC.46.5.1253-1261.2002. [PubMed]
62. Lyras D, Adams V, Ballard SA, Teng WL, Howarth PM, Crellin PK, Bannam TL, Songer JG, Rood JI. 2009. tIS Cpe8, an IS 1595-family lincomycin resistance element located on a conjugative plasmid in Clostridium perfringens. J Bacteriol 191:6345–6351 http://dx.doi.org/10.1128/JB.00668-09. [PubMed]
63. Kather EJ, Marks SL, Foley JE. 2006. Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Vet Microbiol 113:97–101 http://dx.doi.org/10.1016/j.vetmic.2005.10.021. [PubMed]
64. Marshall VP, Liggett WF, Cialdella JI. 1989. Enzymic inactivation of lincosaminide and macrolide antibiotics: divalent metal cation and coenzyme specificities. J Antibiot (Tokyo) 42:826–830 http://dx.doi.org/10.7164/antibiotics.42.826. [PubMed]
65. Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R. 1999. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 43:925–929. [PubMed]
66. Brisson-Noël A, Delrieu P, Samain D, Courvalin P. 1988. Inactivation of lincosaminide antibiotics in Staphylococcus. Identification of lincosaminide O-nucleotidyltransferases and comparison of the corresponding resistance genes. J Biol Chem 263:15880–15887.
67. Bannam TL, Rood JI. 1991. Relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria. Antimicrob Agents Chemother 35:471–476 http://dx.doi.org/10.1128/AAC.35.3.471. [PubMed]
68. Abraham LJ, Rood JI. 1987. Identification of Tn 4451 and Tn 4452, chloramphenicol resistance transposons from Clostridium perfringens. J Bacteriol 169:1579–1584 http://dx.doi.org/10.1128/jb.169.4.1579-1584.1987. [PubMed]
69. Adams V, Lyras D, Farrow KA, Rood JI. 2002. The clostridial mobilisable transposons. Cell Mol Life Sci 59:2033–2043 http://dx.doi.org/10.1007/s000180200003. [PubMed]
70. Shortridge VD, Flamm RK, Ramer N, Beyer J, Tanaka SK. 1996. Novel mechanism of macrolide resistance in Streptococcus pneumoniae. Diagn Microbiol Infect Dis 26:73–78 http://dx.doi.org/10.1016/S0732-8893(96)00183-6.
71. Sutcliffe J, Tait-Kamradt A, Wondrack L. 1996. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob Agents Chemother 40:1817–1824. [PubMed]
72. Soge OO, Tivoli LD, Meschke JS, Roberts MC. 2009. A conjugative macrolide resistance gene, mef(A), in environmental Clostridium perfringens carrying multiple macrolide and/or tetracycline resistance genes. J Appl Microbiol 106:34–40 http://dx.doi.org/10.1111/j.1365-2672.2008.03960.x. [PubMed]
73. Thomas C, Stevenson M, Riley TV. 2003. Antibiotics and hospital-acquired Clostridium difficile-associated diarrhoea: a systematic review. J Antimicrob Chemother 51:1339–1350 http://dx.doi.org/10.1093/jac/dkg254. [PubMed]
74. Båverud V, Gustafsson A, Franklin A, Lindholm A, Gunnarsson A. 1997. Clostridium difficile associated with acute colitis in mature horses treated with antibiotics. Equine Vet J 29:279–284 http://dx.doi.org/10.1111/j.2042-3306.1997.tb03124.x. [PubMed]
75. Post KW, Songer JG. 2004. Antimicrobial susceptibility of Clostridium difficile isolated from neonatal pigs with enteritis. Anaerobe 10:47–50 http://dx.doi.org/10.1016/j.anaerobe.2004.01.003. [PubMed]
76. Diab SS, Songer G, Uzal FA. 2013. Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49 http://dx.doi.org/10.1016/j.vetmic.2013.03.032. [PubMed]
77. Squire MM, Riley TV. 2013. Clostridium difficile infection in humans and piglets: a ‘One Health’ opportunity. Curr Top Microbiol Immunol 365:299–314 http://dx.doi.org/10.1007/82_2012_237. [PubMed]
78. Schoster A, Arroyo LG, Staempfli HR, Shewen PE, Weese JS. 2012. Presence and molecular characterization of Clostridium difficile and Clostridium perfringens in intestinal compartments of healthy horses. BMC Vet Res 8:94 http://dx.doi.org/10.1186/1746-6148-8-94. [PubMed]
79. Gustafsson A, Båverud V, Gunnarsson A, Rantzien MH, Lindholm A, Franklin A. 1997. The association of erythromycin ethylsuccinate with acute colitis in horses in Sweden. Equine Vet J 29:314–318 http://dx.doi.org/10.1111/j.2042-3306.1997.tb03129.x. [PubMed]
80. Båverud V, Gunnarsson A, Karlsson M, Franklin A. 2004. Antimicrobial susceptibility of equine and environmental isolates of Clostridium difficile. Microb Drug Resist 10:57–63 http://dx.doi.org/10.1089/107662904323047817. [PubMed]
81. Rodriguez C, Taminiau B, Brévers B, Avesani V, Van Broeck J, Leroux AA, Amory H, Delmée M, Daube G. 2014. Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317 http://dx.doi.org/10.1016/j.vetmic.2014.05.013. [PubMed]
82. Valiente E, Dawson LF, Cairns MD, Stabler RA, Wren BW. 2012. Emergence of new PCR ribotypes from the hypervirulent Clostridium difficile 027 lineage. J Med Microbiol 61:49–56 http://dx.doi.org/10.1099/jmm.0.036194-0. [PubMed]
83. Bauer MP, Notermans DW, van Benthem BH, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ, ECDIS Study Group. 2011. Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73 http://dx.doi.org/10.1016/S0140-6736(10)61266-4.
84. Limbago BM, Long CM, Thompson AD, Killgore GE, Hannett GE, Havill NL, Mickelson S, Lathrop S, Jones TF, Park MM, Harriman KH, Gould LH, McDonald LC, Angulo FJ. 2009. Clostridium difficile strains from community-associated infections. J Clin Microbiol 47:3004–3007 http://dx.doi.org/10.1128/JCM.00964-09. [PubMed]
85. Keel K, Brazier JS, Post KW, Weese S, Songer JG. 2007. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45:1963–1964 http://dx.doi.org/10.1128/JCM.00224-07. [PubMed]
86. Hammitt MC, Bueschel DM, Keel MK, Glock RD, Cuneo P, DeYoung DW, Reggiardo C, Trinh HT, Songer JG. 2008. A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352 http://dx.doi.org/10.1016/j.vetmic.2007.09.002. [PubMed]
87. Goorhuis A, Debast SB, van Leengoed LA, Harmanus C, Notermans DW, Bergwerff AA, Kuijper EJ, Songer JG. 2008. Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 46:1157–1158, author reply 1158 http://dx.doi.org/10.1128/JCM.01536-07. [PubMed]
88. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ. 2008. Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170 http://dx.doi.org/10.1086/592257. [PubMed]
89. Rupnik M, Widmer A, Zimmermann O, Eckert C, Barbut F. 2008. Clostridium difficile toxinotype V, ribotype 078, in animals and humans. J Clin Microbiol 46:2146 http://dx.doi.org/10.1128/JCM.00598-08. [PubMed]
90. Båverud V, Gustafsson A, Franklin A, Aspán A, Gunnarsson A. 2003. Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471 http://dx.doi.org/10.2746/042516403775600505. [PubMed]
91. Jang SS, Hansen LM, Breher JE, Riley DA, Magdesian KG, Madigan JE, Tang YJ, Silva J Jr, Hirsh DC. 1997. Antimicrobial susceptibilities of equine isolates of Clostridium difficile and molecular characterization of metronidazole-resistant strains. Clin Infect Dis 25(Suppl 2) :S266–S267 http://dx.doi.org/10.1086/516235. [PubMed]
92. Weese JS, Staempfli HR, Prescott JF. 2001. A prospective study of the roles of Clostridium difficile and enterotoxigenic Clostridium perfringens in equine diarrhoea. Equine Vet J 33:403–409 http://dx.doi.org/10.2746/042516401776249534. [PubMed]
93. Thean S, Elliott B, Riley TV. 2011. Clostridium difficile in horses in Australia: a preliminary study. J Med Microbiol 60:1188–1192 http://dx.doi.org/10.1099/jmm.0.030908-0. [PubMed]
94. Silva RO, Ribeiro MG, Palhares MS, Borges AS, Maranhão RP, Silva MX, Lucas TM, Olivo G, Lobato FC. 2013. Detection of A/B toxin and isolation of Clostridium difficile and Clostridium perfringens from foals. Equine Vet J 45:671–675 http://dx.doi.org/10.1111/evj.12046. [PubMed]
95. Magdesian KG, Dujowich M, Madigan JE, Hansen LM, Hirsh DC, Jang SS. 2006. Molecular characterization of Clostridium difficile isolates from horses in an intensive care unit and association of disease severity with strain type. J Am Vet Med Assoc 228:751–755 http://dx.doi.org/10.2460/javma.228.5.751. [PubMed]
96. Magdesian KG, Hirsh DC, Jang SS, Hansen LM, Madigan JE. 2002. Characterization of Clostridium difficile isolates from foals with diarrhea: 28 cases (1993-1997). J Am Vet Med Assoc 220:67–73 http://dx.doi.org/10.2460/javma.2002.220.67. [PubMed]
97. Fry PR, Thakur S, Abley M, Gebreyes WA. 2012. Antimicrobial resistance, toxinotype, and genotypic profiling of Clostridium difficile isolates of swine origin. J Clin Microbiol 50:2366–2372 http://dx.doi.org/10.1128/JCM.06581-11. [PubMed]
98. Huang H, Weintraub A, Fang H, Nord CE. 2009. Antimicrobial resistance in Clostridium difficile. Int J Antimicrob Agents 34:516–522 http://dx.doi.org/10.1016/j.ijantimicag.2009.09.012. [PubMed]
99. Norman KN, Harvey RB, Scott HM, Hume ME, Andrews K, Brawley AD. 2009. Varied prevalence of Clostridium difficile in an integrated swine operation. Anaerobe 15:256–260 http://dx.doi.org/10.1016/j.anaerobe.2009.09.006. [PubMed]
100. Norman KN, Scott HM, Harvey RB, Norby B, Hume ME. 2014. Comparison of antimicrobial susceptibility among Clostridium difficile isolated from an integrated human and swine population in Texas. Foodborne Pathog Dis 11:257–264 http://dx.doi.org/10.1089/fpd.2013.1648. [PubMed]
101. Peláez T, Alcalá L, Blanco JL, Álvarez-Pérez S, Marín M, Martín-López A, Catalán P, Reigadas E, García ME, Bouza E. 2013. Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–49 http://dx.doi.org/10.1016/j.anaerobe.2013.05.009. [PubMed]
102. Thakur S, Putnam M, Fry PR, Abley M, Gebreyes WA. 2010. Prevalence of antimicrobial resistance and association with toxin genes in Clostridium difficile in commercial swine. Am J Vet Res 71:1189–1194 http://dx.doi.org/10.2460/ajvr.71.10.1189. [PubMed]
103. Usui M, Nanbu Y, Oka K, Takahashi M, Inamatsu T, Asai T, Kamiya S, Tamura Y. 2014. Genetic relatedness between Japanese and European isolates of Clostridium difficile originating from piglets and their risk associated with human health. Front Microbiol 5:513 http://dx.doi.org/10.3389/fmicb.2014.00513. [PubMed]
104. Thakur S, Sandfoss M, Kennedy-Stoskopf S, DePerno CS. 2011. Detection of Clostridium difficile and Salmonella in feral swine population in North Carolina. J Wildl Dis 47:774–776 http://dx.doi.org/10.7589/0090-3558-47.3.774. [PubMed]
105. Spigaglia P, Drigo I, Barbanti F, Mastrantonio P, Bano L, Bacchin C, Puiatti C, Tonon E, Berto G, Agnoletti F. 2015. Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46 http://dx.doi.org/10.1016/j.anaerobe.2014.10.003. [PubMed]
106. Dong D, Chen X, Jiang C, Zhang L, Cai G, Han L, Wang X, Mao E, Peng Y. 2014. Genetic analysis of Tn 916-like elements conferring tetracycline resistance in clinical isolates of Clostridium difficile. Int J Antimicrob Agents 43:73–77 http://dx.doi.org/10.1016/j.ijantimicag.2013.09.004. [PubMed]
107. Spigaglia P, Barbanti F, Mastrantonio P. 2007. Detection of a genetic linkage between genes coding for resistance to tetracycline and erythromycin in Clostridium difficile. Microb Drug Resist 13:90–95 http://dx.doi.org/10.1089/mdr.2007.723. [PubMed]
108. Roberts MC, McFarland LV, Mullany P, Mulligan ME. 1994. Characterization of the genetic basis of antibiotic resistance in Clostridium difficile. J Antimicrob Chemother 33:419–429 http://dx.doi.org/10.1093/jac/33.3.419. [PubMed]
109. Spigaglia P, Barbanti F, Mastrantonio P. 2008. Tetracycline resistance gene tet(W) in the pathogenic bacterium Clostridium difficile. Antimicrob Agents Chemother 52:770–773 http://dx.doi.org/10.1128/AAC.00957-07.
110. Corver J, Bakker D, Brouwer MS, Harmanus C, Hensgens MP, Roberts AP, Lipman LJ, Kuijper EJ, van Leeuwen HC. 2012. Analysis of a Clostridium difficile PCR ribotype 078 100 kilobase island reveals the presence of a novel transposon, Tn 6164. BMC Microbiol 12:130 http://dx.doi.org/10.1186/1471-2180-12-130. [PubMed]
111. Farrow KA, Lyras D, Rood JI. 2001. Genomic analysis of the erythromycin resistance element Tn 5398 from Clostridium difficile. Microbiology 147:2717–2728 http://dx.doi.org/10.1099/00221287-147-10-2717. [PubMed]
112. Spigaglia P, Carucci V, Barbanti F, Mastrantonio P. 2005. ErmB determinants and Tn916-like elements in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother 49:2550–2553 http://dx.doi.org/10.1128/AAC.49.6.2550-2553.2005. [PubMed]
113. Wasels F, Spigaglia P, Barbanti F, Mastrantonio P. 2013. Clostridium difficile erm(B)-containing elements and the burden on the in vitro fitness. J Med Microbiol 62:1461–1467 http://dx.doi.org/10.1099/jmm.0.057117-0. [PubMed]
114. Goh S, Hussain H, Chang BJ, Emmett W, Riley TV, Mullany P. 2013. Phage ɸC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. MBio 4:e00840-13 http://dx.doi.org/10.1128/mBio.00840-13. [PubMed]
115. Ackermann G, Tang YJ, Kueper R, Heisig P, Rodloff AC, Silva J Jr, Cohen SH. 2001. Resistance to moxifloxacin in toxigenic Clostridium difficile isolates is associated with mutations in gyrA. Antimicrob Agents Chemother 45:2348–2353 http://dx.doi.org/10.1128/AAC.45.8.2348-2353.2001. [PubMed]
116. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC. 2002. gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46:3418–3421 http://dx.doi.org/10.1128/AAC.46.11.3418-3421.2002. [PubMed]
117. Kuwata Y, Tanimoto S, Sawabe E, Shima M, Takahashi Y, Ushizawa H, Fujie T, Koike R, Tojo N, Kubota T, Saito R. 2015. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect Dis 34:763–772 http://dx.doi.org/10.1007/s10096-014-2290-9. [PubMed]
118. Pecavar V, Blaschitz M, Hufnagl P, Zeinzinger J, Fiedler A, Allerberger F, Maass M, Indra A. 2012. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile. J Med Microbiol 61:780–785 http://dx.doi.org/10.1099/jmm.0.041087-0. [PubMed]
119. Norén T, Akerlund T, Wullt M, Burman LG, Unemo M. 2007. Mutations in fusA associated with posttherapy fusidic acid resistance in Clostridium difficile. Antimicrob Agents Chemother 51:1840–1843 http://dx.doi.org/10.1128/AAC.01283-06. [PubMed]
120. Wren BW, Mullany P, Clayton C, Tabaqchali S. 1988. Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile. Antimicrob Agents Chemother 32:1213–1217 http://dx.doi.org/10.1128/AAC.32.8.1213. [PubMed]
121. Lyras D, Storie C, Huggins AS, Crellin PK, Bannam TL, Rood JI. 1998. Chloramphenicol resistance in Clostridium difficile is encoded on Tn 4453 transposons that are closely related to Tn 4451 from Clostridium perfringens. Antimicrob Agents Chemother 42:1563–1567. [PubMed]
122. Hansen LH, Vester B. 2015. A cfr-like gene from Clostridium difficile confers multiple antibiotic resistance by the same mechanism as the cfr gene. Antimicrob Agents Chemother 59:5841–5843 http://dx.doi.org/10.1128/AAC.01274-15. [PubMed]
123. Marín M, Martín A, Alcalá L, Cercenado E, Iglesias C, Reigadas E, Bouza E. 2015. Clostridium difficile isolates with high linezolid MICs harbor the multiresistance gene cfr. Antimicrob Agents Chemother 59:586–589 http://dx.doi.org/10.1128/AAC.04082-14. [PubMed]
124. Chong PM, Lynch T, McCorrister S, Kibsey P, Miller M, Gravel D, Westmacott GR, Mulvey MR, Canadian Nosocomial Infection Surveillance Program (CNISP). 2014. Proteomic analysis of a NAP1 Clostridium difficile clinical isolate resistant to metronidazole. PLoS One 9:e82622 http://dx.doi.org/10.1371/journal.pone.0082622. [PubMed]
125. Moura I, Monot M, Tani C, Spigaglia P, Barbanti F, Norais N, Dupuy B, Bouza E, Mastrantonio P. 2014. Multidisciplinary analysis of a nontoxigenic Clostridium difficile strain with stable resistance to metronidazole. Antimicrob Agents Chemother 58:4957–4960 http://dx.doi.org/10.1128/AAC.02350-14. [PubMed]
126. Vuotto C, Moura I, Barbanti F, Donelli G, Spigaglia P. 2016. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog Dis 74:74 http://dx.doi.org/10.1093/femspd/ftv114. [PubMed]
127. Frey J, Falquet L. 2015. Patho-genetics of Clostridium chauvoei. Res Microbiol 166:384–392 http://dx.doi.org/10.1016/j.resmic.2014.10.013. [PubMed]
128. Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, Hirschmann JV, Kaplan SL, Montoya JG, Wade JC. 2014. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis 59:147–159 http://dx.doi.org/10.1093/cid/ciu444.
129. Butra ND, Vichivanives P. 1991. Clostridium sordellii in diarrhoeal stools, its medical significance. J Med Assoc Thai 74:264–270.
130. Nakamura S, Yamakawa K, Nishida S. 1986. Antibacterial susceptibility of Clostridium sordellii strains. Zentralbl Bakteriol Mikrobiol Hyg A 261:345–349 http://dx.doi.org/10.1016/S0176-6724(86)80052-9.
131. Gabay EL, Rolfe RD, Finegold SM. 1981. Susceptibility of Clostridium septicum to 23 antimicrobial agents. Antimicrob Agents Chemother 20:852–853 http://dx.doi.org/10.1128/AAC.20.6.852. [PubMed]
132. Leal J, Gregson DB, Ross T, Church DL, Laupland KB. 2008. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000-2006. J Infect 57:198–203 http://dx.doi.org/10.1016/j.jinf.2008.06.018. [PubMed]
133. Aleman M, Watson JL, Jang SS. 2003. Clostridium novyi type A intra-abdominal abscess in a horse. J Vet Intern Med 17:934–936 http://dx.doi.org/10.1111/j.1939-1676.2003.tb02537.x. [PubMed]
134. McGuigan CC, Penrice GM, Gruer L, Ahmed S, Goldberg D, Black M, Salmon JE, Hood J. 2002. Lethal outbreak of infection with Clostridium novyi type A and other spore-forming organisms in Scottish injecting drug users. J Med Microbiol 51:971–977 http://dx.doi.org/10.1099/0022-1317-51-11-971. [PubMed]
135. Hovind-Hougen K, Birch-Andersen A, Henrik-Nielsen R, Orholm M, Pedersen JO, Teglbjaerg PS, Thaysen EH. 1982. Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J Clin Microbiol 16:1127–1136. [PubMed]
136. Euzéby JP. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47:590–592 http://dx.doi.org/10.1099/00207713-47-2-590. [PubMed]
137. Chander Y, Primus A, Oliveira S, Gebhart CJ. 2012. Phenotypic and molecular characterization of a novel strongly hemolytic Brachyspira species, provisionally designated “ Brachyspira hampsonii”. J Vet Diagn Invest 24:903–910 http://dx.doi.org/10.1177/1040638712456975. [PubMed]
138. Råsbäck T, Jansson DS, Johansson KE, Fellström C. 2007. A novel enteropathogenic, strongly haemolytic spirochaete isolated from pig and mallard, provisionally designated ‘ Brachyspira suanatina’ sp. nov. Environ Microbiol 9:983–991 http://dx.doi.org/10.1111/j.1462-2920.2006.01220.x. [PubMed]
139. Rubin JE, Costa MO, Hill JE, Kittrell HE, Fernando C, Huang Y, O’Connor B, Harding JC. 2013. Reproduction of mucohaemorrhagic diarrhea and colitis indistinguishable from swine dysentery following experimental inoculation with “ Brachyspira hampsonii” strain 30446. PLoS One 8:e57146 http://dx.doi.org/10.1371/journal.pone.0057146. [PubMed]
140. Whiting RA, Doyle LP, Spray RS. 1921. Swine dysentery. Purdue Univ Agr Exp Sta Bull 257:1–15.
141. Trott DJ, Stanton TB, Jensen NS, Duhamel GE, Johnson JL, Hampson DJ. 1996. Serpulina pilosicoli sp. nov., the agent of porcine intestinal spirochetosis. Int J Syst Bacteriol 46:206–215 http://dx.doi.org/10.1099/00207713-46-1-206. [PubMed]
142. Hampson DJ, Duhamel GE. 2006. Porcine colonic spirochetosis/intestinal spirochetosis, p 755–767. In Straw BE, Zimmerman JJ, D’Allaire S, Taylor DJ (ed), Diseases of Swine, 9th ed. Blackwell Publishing, Ames, IA.
143. Mappley LJ, La Ragione RM, Woodward MJ. 2014. Brachyspira and its role in avian intestinal spirochaetosis. Vet Microbiol 168:245–260 http://dx.doi.org/10.1016/j.vetmic.2013.11.019. [PubMed]
144. Rubin JE, Harms NJ, Fernando C, Soos C, Detmer SE, Harding JC, Hill JE. 2013. Isolation and characterization of Brachyspira spp. including “ Brachyspira hampsonii” from lesser snow geese ( Chen caerulescens caerulescens) in the Canadian Arctic. Microb Ecol 66:813–822 http://dx.doi.org/10.1007/s00248-013-0273-5. [PubMed]
145. Tateishi Y, Takahashi M, Horiguchi S, Funata N, Koizumi K, Okudela K, Hishima T, Ohashi K. 2015. Clinicopathologic study of intestinal spirochetosis in Japan with special reference to human immunodeficiency virus infection status and species types: analysis of 5265 consecutive colorectal biopsies. BMC Infect Dis 15:13 http://dx.doi.org/10.1186/s12879-014-0736-4. [PubMed]
146. Hampson DJ. 2012. Brachyspiral colitis, p 680–696. In Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW (ed), Diseases of Swine, 10th ed. John Wiley & Sons, Hoboken, NJ.
147. EUCAST. 2017. The European Committee on Antimicrobial Susceptibility Testing - EUCAST. http://www.eucast.org/. Accessed 12 January 2017.
148. Kajiwara K, Kozawa M, Kanazawa T, Uetsuka K, Nakajima H, Adachi Y. 2015. Drug-susceptibility of isolates of Brachyspira hyodysenteriae isolated from colonic mucosal specimens of pigs collected from slaughter houses in Japan in 2009. J Vet Med Sci 78:517–519. [PubMed]
149. Prasek J, Sperling D, Lobova D, Smola J, Cizek A. 2014. Antibiotic susceptibility of Brachyspira hyodysenteriae isolates from Czech swine farms: a 10-year study. Acta Vet Brno 83:3–7 http://dx.doi.org/10.2754/avb201483010003.
150. Clothier KA, Kinyon JM, Frana TS, Naberhaus N, Bower L, Strait EL, Schwartz K. 2011. Species characterization and minimum inhibitory concentration patterns of Brachyspira species isolates from swine with clinical disease. J Vet Diagn Invest 23:1140–1145 http://dx.doi.org/10.1177/1040638711425580. [PubMed]
151. Lim S, Lee H, Nam H, Cho YS, Jung S, Joo Y. 2012. Prevalence and antimicrobial susceptibility of Brachyspira species in pigs in Korea. Korean J Vet Res 52:253–257.
152. Råsbäck T, Fellström C, Bergsjø B, Cizek A, Collin K, Gunnarsson A, Jensen SM, Mars A, Thomson J, Vyt P, Pringle M. 2005. Assessment of diagnostics and antimicrobial susceptibility testing of Brachyspira species using a ring test. Vet Microbiol 109:229–243 http://dx.doi.org/10.1016/j.vetmic.2005.05.009. [PubMed]
153. SVA. 2011. VetMIC Brachy for antimicrobial susceptibility testing of Brachyspira spp. http://www.sva.se/globalassets/redesign2011/pdf/analyser_produkter/vetmic/vetmic_brachy.pdf. Accessed 5 May 2016.
154. Rugna G, Bonilauri P, Carra E, Bergamini F, Luppi A, Gherpelli Y, Magistrali CF, Nigrelli A, Alborali GL, Martelli P, La T, Hampson DJ, Merialdi G. 2015. Sequence types and pleuromutilin susceptibility of Brachyspira hyodysenteriae isolates from Italian pigs with swine dysentery: 2003-2012. Vet J 203:115–119 http://dx.doi.org/10.1016/j.tvjl.2014.10.033. [PubMed]
155. Herbst W, Schlez K, Heuser J, Baljer G. 2014. Antimicrobial susceptibility of Brachyspira hyodysenteriae determined by a broth microdilution method. Vet Rec 174:382 http://dx.doi.org/10.1136/vr.102169. [PubMed]
156. Pringle M, Landén A, Unnerstad HE, Molander B, Bengtsson B. 2012. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010. Acta Vet Scand 54:54 http://dx.doi.org/10.1186/1751-0147-54-54. [PubMed]
157. Ohya T, Sueyoshi M. 2010. In vitro antimicrobial susceptibility of Brachyspira hyodysenteriae strains isolated in Japan from 1985 to 2009. J Vet Med Sci 72:1651–1653 http://dx.doi.org/10.1292/jvms.10-0271. [PubMed]
158. Karlsson M, Fellström C, Heldtander MU, Johansson KE, Franklin A. 1999. Genetic basis of macrolide and lincosamide resistance in Brachyspira ( Serpulina) hyodysenteriae. FEMS Microbiol Lett 172:255–260 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13476.x. [PubMed]
159. Hillen S, Willems H, Herbst W, Rohde J, Reiner G. 2014. Mutations in the 50S ribosomal subunit of Brachyspira hyodysenteriae associated with altered minimum inhibitory concentrations of pleuromutilins. Vet Microbiol 172:223–229 http://dx.doi.org/10.1016/j.vetmic.2014.04.021. [PubMed]
160. Hidalgo Á, Carvajal A, Vester B, Pringle M, Naharro G, Rubio P. 2011. Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain. Antimicrob Agents Chemother 55:3330–3337 http://dx.doi.org/10.1128/AAC.01749-10. [PubMed]
161. Pringle M, Poehlsgaard J, Vester B, Long KS. 2004. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol Microbiol 54:1295–1306 http://dx.doi.org/10.1111/j.1365-2958.2004.04373.x. [PubMed]
162. Pringle M, Fellström C, Johansson KE. 2007. Decreased susceptibility to doxycycline associated with a 16S rRNA gene mutation in Brachyspira hyodysenteriae. Vet Microbiol 123:245–248 http://dx.doi.org/10.1016/j.vetmic.2007.02.019. [PubMed]
163. Meziane-Cherif D, Lambert T, Dupêchez M, Courvalin P, Galimand M. 2008. Genetic and biochemical characterization of OXA-63, a new class D beta-lactamase from Brachyspira pilosicoli BM4442. Antimicrob Agents Chemother 52:1264–1268 http://dx.doi.org/10.1128/AAC.00684-07. [PubMed]
164. La T, Neo E, Phillips ND, Hampson DJ. 2015. Genes encoding ten newly designated OXA-63 group class D β-lactamases identified in strains of the pathogenic intestinal spirochaete Brachyspira pilosicoli. J Med Microbiol 64:1425–1435 http://dx.doi.org/10.1099/jmm.0.000162. [PubMed]
165. Stanton TB, Humphrey SB, Sharma VK, Zuerner RL. 2008. Collateral effects of antibiotics: carbadox and metronidazole induce VSH-1 and facilitate gene transfer among Brachyspira hyodysenteriae strains. Appl Environ Microbiol 74:2950–2956 http://dx.doi.org/10.1128/AEM.00189-08. [PubMed]
166. Buller NB, Hampson DJ. 1994. Antimicrobial susceptibility testing of Serpulina hyodysenteriae. Aust Vet J 71:211–214 http://dx.doi.org/10.1111/j.1751-0813.1994.tb03404.x. [PubMed]
167. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690 http://dx.doi.org/10.1128/AEM.68.2.673-690.2002. [PubMed]
168. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807. [PubMed]
169. Hirsh DC, Indiveri MC, Jang SS, Biberstein EL. 1985. Changes in prevalence and susceptibility of obligate anaerobes in clinical veterinary practice. J Am Vet Med Assoc 186:1086–1089.
170. Even H, Rohde J, Verspohl J, Ryll M, Amtsberg G. 1998. Investigations into the occurrence and the antibiotic susceptibility of Gram negative anaerobes of the genera Bacteroides, Prevotella, Porphyromonas and Fusobacterium in specimens obtained from diseased animals. Berl Munch Tierarztl Wochenschr 111:379–386. (In German.)
171. Benno Y, Mitsuoka T. 1984. Susceptibility of Bacteroides from swine abscesses to 13 antibiotics. Am J Vet Res 45:2631–2633.
172. Cohen RO, Colodner R, Ziv G, Keness J. 1996. Isolation and antimicrobial susceptibility of obligate anaerobic bacteria recovered from the uteri of dairy cows with retained fetal membranes and postparturient endometritis. Zentralbl Veterinarmed B 43:193–199. [PubMed]
173. Jang SS, Breher JE, Dabaco LA, Hirsh DC. 1997. Organisms isolated from dogs and cats with anaerobic infections and susceptibility to selected antimicrobial agents. J Am Vet Med Assoc 210:1610–1614.
174. Almeida FS, Nakano V, Avila-Campos MJ. 2007. Occurrence of enterotoxigenic and nonenterotoxigenic Bacteroides fragilis in calves and evaluation of their antimicrobial susceptibility. FEMS Microbiol Lett 272:15–21 http://dx.doi.org/10.1111/j.1574-6968.2007.00732.x. [PubMed]
175. Sarkar A, Pazhani GP, Dharanidharan R, Ghosh A, Ramamurthy T. 2015. Detection of integron-associated gene cassettes and other antimicrobial resistance genes in enterotoxigenic Bacteroides fragilis. Anaerobe 33:18–24 http://dx.doi.org/10.1016/j.anaerobe.2015.01.008. [PubMed]
176. Karlowsky JA, Walkty AJ, Adam HJ, Baxter MR, Hoban DJ, Zhanel GG. 2012. Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother 56:1247–1252 http://dx.doi.org/10.1128/AAC.05823-11. [PubMed]
177. Toprak NU, Yağci A, Celik C, Cakici O, Söyletir G. 2005. Comparison of antimicrobial resistance patterns of enterotoxin gene positive and negative Bacteroides fragilis isolates. Mikrobiyol Bul 39:145–152. (In Turkish.)
178. Paula GR, Falcão LS, Antunes EN, Avelar KE, Reis FN, Maluhy MA, Ferreira MC, Domingues RM. 2004. Determinants of resistance in Bacteroides fragilis strains according to recent Brazilian profiles of antimicrobial susceptibility. Int J Antimicrob Agents 24:53–58 http://dx.doi.org/10.1016/j.ijantimicag.2003.11.011. [PubMed]
179. Vedantam G. 2009. Antimicrobial resistance in Bacteroides spp.: occurrence and dissemination. Future Microbiol 4:413–423 http://dx.doi.org/10.2217/fmb.09.12. [PubMed]
180. Liu CY, Huang YT, Liao CH, Yen LC, Lin HY, Hsueh PR. 2008. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother 52:3161–3168 http://dx.doi.org/10.1128/AAC.00355-08. [PubMed]
181. Rasmussen BA, Bush K, Tally FP. 1993. Antimicrobial resistance in Bacteroides. Clin Infect Dis 16(Suppl 4) :S390–S400 http://dx.doi.org/10.1093/clinids/16.Supplement_4.S390. [PubMed]
182. das Graças Silva E Souza W, Avelar KE, Antunes LC, Lobo LA, Domingues RM, de Souza Ferreira MC. 2000. Resistance profile of Bacteroides fragilis isolated in Brazil. Do they shelter the cfiA gene? J Antimicrob Chemother 45:475–481 http://dx.doi.org/10.1093/jac/45.4.475. [PubMed]
183. Sydenham TV, Sóki J, Hasman H, Wang M, Justesen US, ESGAI (ESCMID Study Group on Anaerobic Infections). 2015. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing. Anaerobe 31:59–64 http://dx.doi.org/10.1016/j.anaerobe.2014.10.009. [PubMed]
184. Eitel Z, Sóki J, Urbán E, Nagy E, ESCMID Study Group on Anaerobic Infection. 2013. The prevalence of antibiotic resistance genes in Bacteroides fragilis group strains isolated in different European countries. Anaerobe 21:43–49 http://dx.doi.org/10.1016/j.anaerobe.2013.03.001. [PubMed]
185. Gal M, Brazier JS. 2004. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54:109–116 http://dx.doi.org/10.1093/jac/dkh296. [PubMed]
186. Snydman DR, Jacobus NV, McDermott LA, Goldstein EJ, Harrell L, Jenkins SG, Newton D, Patel R, Hecht DW. 2017. Trends in antimicrobial resistance among Bacteroides species and Parabacteroides species in the United States from 2010-2012 with comparison to 2008-2009. Anaerobe 43:21–26 http://dx.doi.org/10.1016/j.anaerobe.2016.11.003. [PubMed]
187. Pumbwe L, Ueda O, Yoshimura F, Chang A, Smith RL, Wexler HM. 2006. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 58:37–46 http://dx.doi.org/10.1093/jac/dkl202. [PubMed]
188. Oh H, El Amin N, Davies T, Appelbaum PC, Edlund C. 2001. gyrA mutations associated with quinolone resistance in Bacteroides fragilis group strains. Antimicrob Agents Chemother 45:1977–1981 http://dx.doi.org/10.1128/AAC.45.7.1977-1981.2001. [PubMed]
189. Tan ZL, Nagaraja TG, Chengappa MM. 1996. Fusobacterium necrophorum infections: virulence factors, pathogenic mechanism and control measures. Vet Res Commun 20:113–140 http://dx.doi.org/10.1007/BF00385634. [PubMed]
190. Jang SS, Hirsh DC. 1994. Characterization, distribution, and microbiological associations of Fusobacterium spp. in clinical specimens of animal origin. J Clin Microbiol 32:384–387. [PubMed]
191. Senhorinho GN, Nakano V, Liu C, Song Y, Finegold SM, Avila-Campos MJ. 2012. Occurrence and antimicrobial susceptibility of Porphyromonas spp. and Fusobacterium spp. in dogs with and without periodontitis. Anaerobe 18:381–385 http://dx.doi.org/10.1016/j.anaerobe.2012.04.008. [PubMed]
192. Nagaraja TG, Chengappa MM. 1998. Liver abscesses in feedlot cattle: a review. J Anim Sci 76:287–298 http://dx.doi.org/10.2527/1998.761287x. [PubMed]
193. Riordan T. 2007. Human infection with Fusobacterium necrophorum (necrobacillosis), with a focus on Lemierre’s syndrome. Clin Microbiol Rev 20:622–659 http://dx.doi.org/10.1128/CMR.00011-07. [PubMed]
194. Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell K, Fernandez H. 2001. Comparative in vitro activity of ertapenem and 11 other antimicrobial agents against aerobic and anaerobic pathogens isolated from skin and soft tissue animal and human bite wound infections. J Antimicrob Chemother 48:641–651 http://dx.doi.org/10.1093/jac/48.5.641. [PubMed]
195. Aldridge KE, Ashcraft D, Cambre K, Pierson CL, Jenkins SG, Rosenblatt JE. 2001. Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob Agents Chemother 45:1238–1243 http://dx.doi.org/10.1128/AAC.45.4.1238-1243.2001. [PubMed]
196. Teng LJ, Hsueh PR, Tsai JC, Liaw SJ, Ho SW, Luh KT. 2002. High incidence of cefoxitin and clindamycin resistance among anaerobes in Taiwan. Antimicrob Agents Chemother 46:2908–2913 http://dx.doi.org/10.1128/AAC.46.9.2908-2913.2002. [PubMed]
197. Nyfors S, Könönen E, Syrjänen R, Komulainen E, Jousimies-Somer H. 2003. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J Antimicrob Chemother 51:107–112 http://dx.doi.org/10.1093/jac/dkg022. [PubMed]
198. Mateos E, Piriz S, Valle J, Hurtado M, Vadillo S. 1997. Minimum inhibitory concentrations for selected antimicrobial agents against Fusobacterium necrophorum isolated from hepatic abscesses in cattle and sheep. J Vet Pharmacol Ther 20:21–23 http://dx.doi.org/10.1046/j.1365-2885.1997.00043.x. [PubMed]
199. Lechtenberg KF, Nagaraja TG, Chengappa MM. 1998. Antimicrobial susceptibility of Fusobacterium necrophorum isolated from bovine hepatic abscesses. Am J Vet Res 59:44–47.
200. Jiménez R, Píriz S, Mateos E, Vadillo S. 2004. Minimum inhibitory concentrations for 25 selected antimicrobial agents against Dichelobacter nodosus and Fusobacterium strains isolated from footrot in sheep of Portugal and Spain. J Vet Med B Infect Dis Vet Public Health 51:245–248 http://dx.doi.org/10.1111/j.1439-0450.2004.00764.x. [PubMed]
201. Conrads G, Citron DM, Goldstein EJ. 2005. Genetic determinant of intrinsic quinolone resistance in Fusobacterium canifelinum. Antimicrob Agents Chemother 49:434–437 http://dx.doi.org/10.1128/AAC.49.1.434-437.2005. [PubMed]
202. Brooks JW, Kumar A, Narayanan S, Myers S, Brown K, Nagaraja TG, Jayarao BM. 2014. Characterization of Fusobacterium isolates from the respiratory tract of white-tailed deer (Odocoileus virginianus). J Vet Diagn Invest 26:213–220 http://dx.doi.org/10.1177/1040638714523613. [PubMed]
203. Green LE, George TR. 2008. Assessment of current knowledge of footrot in sheep with particular reference to Dichelobacter nodosus and implications for elimination or control strategies for sheep in Great Britain. Vet J 175:173–180 http://dx.doi.org/10.1016/j.tvjl.2007.01.014. [PubMed]
204. Escayg AP, Hickford JG, Bullock DW. 1997. Association between alleles of the ovine major histocompatibility complex and resistance to footrot. Res Vet Sci 63:283–287 http://dx.doi.org/10.1016/S0034-5288(97)90035-7.
205. Depiazzi LJ, Roberts WD, Hawkins CD, Palmer MA, Pitman DR, Mcquade NC, Jelinek PD, Devereaux DJ, Rippon RJ. 1998. Severity and persistence of footrot in merino sheep experimentally infected with a protease thermostable strain of Dichelobacter nodosus at five sites. Aust Vet J 76:32–38 http://dx.doi.org/10.1111/j.1751-0813.1998.tb15683.x. [PubMed]
206. Kennan RM, Gilhuus M, Frosth S, Seemann T, Dhungyel OP, Whittington RJ, Boyce JD, Powell DR, Aspán A, Jørgensen HJ, Bulach DM, Rood JI. 2014. Genomic evidence for a globally distributed, bimodal population in the ovine footrot pathogen Dichelobacter nodosus. MBio 5:e01821-14 http://dx.doi.org/10.1128/mBio.01821-14. [PubMed]
207. McPherson AS, Dhungyel OP, Whittington RJ. 2017. Evaluation of genotypic and phenotypic protease virulence tests for Dichelobacter nodosus infection in sheep. J Clin Microbiol 55:1313–1326 http://dx.doi.org/10.1128/JCM.02403-16. [PubMed]
208. Frosth S, König U, Nyman AK, Aspán A. 2017. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus. Vet Res Commun 41:189–193 http://dx.doi.org/10.1007/s11259-017-9686-9. [PubMed]
209. Malecki JC, Coffey L. 1987. Treatment of ovine virulent footrot with zinc sulphate/sodium lauryl sulphate footbathing. Aust Vet J 64:301–304 http://dx.doi.org/10.1111/j.1751-0813.1987.tb07331.x. [PubMed]
210. Egerton JR, Parsonson IM, Graham NP. 1968. Parenteral chemotherapy of ovine foot-rot. Aust Vet J 44:275–283 http://dx.doi.org/10.1111/j.1751-0813.1968.tb04982.x. [PubMed]
211. Rendell DK, Callinan AP. 1997. Comparison of erythromycin and oxytetracycline for the treatment of virulent footrot in grazing sheep. Aust Vet J 75:354 http://dx.doi.org/10.1111/j.1751-0813.1997.tb15712.x. [PubMed]
212. Jordan D, Plant JW, Nicol HI, Jessep TM, Scrivener CJ. 1996. Factors associated with the effectiveness of antibiotic treatment for ovine virulent footrot. Aust Vet J 73:211–215 http://dx.doi.org/10.1111/j.1751-0813.1996.tb10037.x. [PubMed]
213. Venning CM, Curtis MA, Egerton JR. 1990. Treatment of virulent footrot with lincomycin and spectinomycin. Aust Vet J 67:258–260 http://dx.doi.org/10.1111/j.1751-0813.1990.tb07781.x. [PubMed]
214. Gradin JL, Schmitz JA. 1983. Susceptibility of Bacteroides nodosus to various antimicrobial agents. J Am Vet Med Assoc 183:434–437.
215. Píriz Durán S, Cuenca Valera R, Valle Manzano J, Vadillo Machota S. 1991. Comparative in vitro susceptibility of Bacteroides and Fusobacterium isolated from footrot in sheep to 28 antimicrobial agents. J Vet Pharmacol Ther 14:185–192 http://dx.doi.org/10.1111/j.1365-2885.1991.tb00821.x. [PubMed]
216. Piriz Duran S, Valle Manzano J, Cuenca Valera R, Vadillo Machota S. 1990. In-vitro antimicrobial susceptibility of Bacteroides and Fusobacterium isolated from footrot in goats. Br Vet J 146:437–442 http://dx.doi.org/10.1016/0007-1935(90)90032-X.
217. Píriz S, Pobel T, Jiménez R, Mateos EM, Martín-Palomino P, Vila P, Vadillo S. 2001. Comparison of erythromycin and oxytetracycline for the treatment of ovine footrot. Acta Vet Hung 49:131–139 http://dx.doi.org/10.1556/004.49.2001.2.2. [PubMed]
218. Lacombe-Antoneli A, Píriz S, Vadillo S. 2007. In vitro antimicrobial susceptibility of anaerobic bacteria isolated from caprine footrot. Acta Vet Hung 55:11–20 http://dx.doi.org/10.1556/AVet.55.2007.1.2. [PubMed]
219. Burch DGS. 2005. Pharmacokinetic, pharmacodynamic and clinical correlations relating to the therapy of colonic infections in the pig and breakpoint determinations. Pig J 56:8–24.
220. Hellman J, Aspevall O, Bengtsson B, Pringle M. 2014. Consumption of antibiotics and occurrence of antibiotic resistance in Sweden. Public Health Agency of Sweden and National Veterinary Institute, Uppsala, Sweden.
221. Duhamel GE, Kinyon JM, Mathiesen MR, Murphy DP, Walter D. 1998. In vitro activity of four antimicrobial agents against North American isolates of porcine Serpulina pilosicoli. J Vet Diagn Invest 10:350–356 http://dx.doi.org/10.1177/104063879801000407. [PubMed]

Article metrics loading...



This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Generic image for table

Overview of the genes or the mutations in genes associated with acquired antimicrobial resistance so far identified in the different anaerobes of animal origin

Source: microbiolspec January 2020 vol. 8 no. 1 doi:10.1128/microbiolspec.ARBA-0020-2017
Generic image for table

Proposed breakpoints for the interpretation of MICs

Source: microbiolspec January 2020 vol. 8 no. 1 doi:10.1128/microbiolspec.ARBA-0020-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error