1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in of Veterinary Origin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Geovana B. Michael1, Janine T. Bossé2, Stefan Schwarz3
  • Editors: Frank Møller Aarestrup4, Stefan Schwarz5, Jianzhong Shen6, Lina Cavaco7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany; 2: Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom; 3: Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany; 4: Technical University of Denmark, Lyngby, Denmark; 5: Freie Universität Berlin, Berlin, Germany; 6: China Agricultural University, Beijing, China; 7: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
  • Received 30 May 2017 Accepted 18 November 2017 Published 14 June 2018
  • Geovana Brenner Michael, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Pasteurellaceae</span> of Veterinary Origin
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Resistance in of Veterinary Origin, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0022-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0022-2017-2.gif
  • Abstract:

    Members of the highly heterogeneous family cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (, , , , and ). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.

  • Citation: Michael G, Bossé J, Schwarz S. 2018. Antimicrobial Resistance in of Veterinary Origin. Microbiol Spectrum 6(3):ARBA-0022-2017. doi:10.1128/microbiolspec.ARBA-0022-2017.

References

1. Christensen H, Kuhnert P, Busse HJ, Frederiksen WC, Bisgaard M. 2007. Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57:166–178 http://dx.doi.org/10.1099/ijs.0.64838-0. [PubMed]
2. Christensen H, Kuhnert P, Nørskov-Lauritsen N, Planet PJ, Bisgaard M. 2014. The family Pasteurellaceae, p 535–564. In DeLong EF, Lory S, Stackebrandt E, Thompson F (ed), The Prokaryotes. Springer-Verlag, Berlin, Germany.
3. Adhikary S, Nicklas W, Bisgaard M, Boot R, Kuhnert P, Waberschek T, Aalbæk B, Korczak B, Christensen H. 2017. Rodentibacter gen. nov. including Rodentibacter pneumotropicus comb. nov., Rodentibacter heylii sp. nov., Rodentibacter myodis sp. nov., Rodentibacter ratti sp. nov., Rodentibacter heidelbergensis sp. nov., Rodentibacter trehalosifermentans sp. nov., Rodentibacter rarus sp. nov., Rodentibacter mrazii and two genomospecies. Int J Syst Evol Microbiol 67:1793–1806 http://dx.doi.org/10.1099/ijsem.0.001866.
4. Christensen H, Kuhnert P, Bisgaard M, Mutters R, Dziva F, Olsen JE. 2005. Emended description of porcine [ Pasteurella] aerogenes, [ Pasteurella] mairii and [ Actinobacillus] rossii. Int J Syst Evol Microbiol 55:209–223 http://dx.doi.org/10.1099/ijs.0.63119-0. [PubMed]
5. Christensen H, Bisgaard M. 2008. Taxonomy and biodiversity of members of Pasteurellaceae, p 1–25. In Kuhnert P, Christensen H (ed), Pasteurellaceae: Biology, Genomics and Molecular Aspects. Caister Academic Press, Norfolk, United Kingdom.
6. Bonaventura MP, Lee EK, Desalle R, Planet PJ. 2010. A whole-genome phylogeny of the family Pasteurellaceae. Mol Phylogenet Evol 54:950–956 http://dx.doi.org/10.1016/j.ympev.2009.08.010. [PubMed]
7. Moustafa AM, Seemann T, Gladman S, Adler B, Harper M, Boyce JD, Bennett MD. 2015. Comparative genomic analysis of Asian haemorrhagic septicaemia-associated strains of Pasteurella multocida identifies more than 90 haemorrhagic septicaemia-specific genes. PLoS One 10:e0130296 http://dx.doi.org/10.1371/journal.pone.0130296. [PubMed]
8. Clawson ML, Murray RW, Sweeney MT, Apley MD, DeDonder KD, Capik SF, Larson RL, Lubbers BV, White BJ, Kalbfleisch TS, Schuller G, Dickey AM, Harhay GP, Heaton MP, Chitko-McKown CG, Brichta-Harhay DM, Bono JL, Smith TP. 2016. Genomic signatures of Mannheimia haemolytica that associate with the lungs of cattle with respiratory disease, an integrative conjugative element, and antibiotic resistance genes. BMC Genomics 17:982 http://dx.doi.org/10.1186/s12864-016-3316-8. [PubMed]
9. Bossé JT, Li Y, Rogers J, Fernandez Crespo R, Li Y, Chaudhuri RR, Holden MT, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. 2017. Whole genome sequencing for surveillance of antimicrobial resistance in Actinobacillus pleuropneumoniae. Front Microbiol 8:311 http://dx.doi.org/10.3389/fmicb.2017.00311. [PubMed]
10. Kehrenberg C, Walker RD, Wu CC, Schwarz S. 2006. Antimicrobial resistance in members of the family Pasteurellaceae, p 167–186. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
11. Schwarz S. 2008. Mechanisms of antimicrobial resistance in Pasteurellaceae, p 199–228. In Kuhnert P, Christensen H (ed), Pasteurellaceae: Biology, Genomics and Molecular Aspects. Caister Academic Press, Norfolk, United Kingdom.
12. Quinn PJ, Markey BK, Carter ME, Donnelly WJ, Leonard FC. 2002. Veterinary Microbiology and Microbial Disease, 2nd ed. Blackwell Publishing, Ames, IA.
13. Radostits OM, Gay C, Blood DC, Hinchcliff KW. 2000. Diseases caused by bacteria III, p 779-908. In Radostits OM, Gay C, Blood DC, Hinchcliff KW (eds), Veterinary medicine: a textbook of the diseases of cattle, sheep, pigs, goats, and horses. 9th ed. Saunders, Philadelphia, London.
14. Catry B, Chiers K, Schwarz S, Kehrenberg C, Decostere A, de Kruif A. 2005. A case of fatal peritonitis in calves caused by Pasteurella multocida capsular type F. J Clin Microbiol 43:1480–1483 http://dx.doi.org/10.1128/JCM.43.3.1480-1483.2005. [PubMed]
15. Singh K, Ritchey JW, Confer AW. 2011. Mannheimia haemolytica: bacterial-host interactions in bovine pneumonia. Vet Pathol 48:338–348 http://dx.doi.org/10.1177/0300985810377182. [PubMed]
16. Rice JA, Carrasco-Medina L, Hodgins DC, Shewen PE. 2007. Mannheimia haemolytica and bovine respiratory disease. Anim Health Res Rev 8:117–128 http://dx.doi.org/10.1017/S1466252307001375. [PubMed]
17. Maldonado J, Valls L, Martínez E, Riera P. 2009. Isolation rates, serovars, and toxin genotypes of nicotinamide adenine dinucleotide-independent Actinobacillus pleuropneumoniae among pigs suffering from pleuropneumonia in Spain. J Vet Diagn Invest 21:854–857 http://dx.doi.org/10.1177/104063870902100615. [PubMed]
18. Sárközi R, Makrai L, Fodor L. 2015. Identification of a proposed new serovar of Actinobacillus pleuropneumoniae: serovar 16. Acta Vet Hung 63:444–450 http://dx.doi.org/10.1556/004.2015.041. [PubMed]
19. Bossé JT, Li Y, Sárközi R, Gottschalk M, Angen Ø, Nedbalcova K, Rycroft AN, Fodor L, Langford PR. 2017. A unique capsule locus in the newly designated Actinobacillus pleuropneumoniae serovar 16 and development of a diagnostic PCR assay. J Clin Microbiol 55:902–907 http://dx.doi.org/10.1128/JCM.02166-16. [PubMed]
20. Frey J. 1995. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 3:257–261 http://dx.doi.org/10.1016/S0966-842X(00)88939-8.
21. Oliveira S, Blackall PJ, Pijoan C. 2003. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am J Vet Res 64:435–442 http://dx.doi.org/10.2460/ajvr.2003.64.435. [PubMed]
22. Hodgins DC, Conlon JA, Shewen PE. 2002. Respiratory viruses and bacteria in cattle, p 213–229. In Brogden KA, Guthmiller JM (ed), Polymicrobial Diseases. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817947.ch12
23. Brockmeier SL, Halbur PG, Thacker EL. 2002. Porcine respiratory disease complex, p 231–258. In Brogden KA, Guthmiller JM (ed), Polymicrobial Diseases. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817947.ch13
24. Magyar T, Lax AJ. 2002. Atrophic rhinitis, p 169–197. In Brogden KA, Guthmiller JM (ed), Polymicrobial Diseases. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555817947.ch10
25. Watts J, Sweeney MT, Lubbers B. 2017. Antimicrobial susceptibility testing of bacteria of veterinary origin. In Aarestrup F, Schwarz S, Shen J, Cavaco L (ed), Antimicrobial Resistance in Bacteria from Livestock and Companion Animals, ASM Press, Washington, DC.
26. Zankari E, Hasman H, Kaas RS, Seyfarth AM, Agersø Y, Lund O, Larsen MV, Aarestrup FM. 2013. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing. J Antimicrob Chemother 68:771–777 http://dx.doi.org/10.1093/jac/dks496. [PubMed]
27. Köser CU, Ellington MJ, Peacock SJ. 2014. Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30:401–407 http://dx.doi.org/10.1016/j.tig.2014.07.003. [PubMed]
28. Clinical and Laboratory Standards Institute (CLSI). 2013. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; Approved standard, 4th edition. CLSI document VET01-A4. Clinical and Laboratory Standards Institute; Wayne, PA.
29. Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 3rd ed. CLSI suplement VET01S. Clinical and Laboratory Standards Institute, Wayne, PA.
30. Clinical and Laboratory Standards Institute (CLSI). 2017. Methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals, 1st ed. CLSI document VET06-Ed1. Clinical and Laboratory Standards Institute; Wayne, PA.
31. Dayao DA, Kienzle M, Gibson JS, Blackall PJ, Turni C. 2014. Use of a proposed antimicrobial susceptibility testing method for Haemophilus parasuis. Vet Microbiol 172:586–589 http://dx.doi.org/10.1016/j.vetmic.2014.06.010. [PubMed]
32. Prüller S, Turni C, Blackall PJ, Beyerbach M, Klein G, Kreienbrock L, Strutzberg-Minder K, Kaspar H, Meemken D, Kehrenberg C. 2016. Towards a standardized method for broth microdilution susceptibility testing of Haemophilus parasuis. J Clin Microbiol 55:264–273 http://dx.doi.org/10.1128/JCM.01403-16. [PubMed]
33. Bywater R, Silley P, Simjee S. 2006. Antimicrobial breakpoints: definitions and conflicting requirements. Vet Microbiol 118:158–159 http://dx.doi.org/10.1016/j.vetmic.2006.09.005. [PubMed]
34. Schwarz S, Böttner A, Goossens L, Hafez HM, Hartmann K, Kaske M, Kehrenberg C, Kietzmann M, Klarmann D, Klein G, Krabisch P, Luhofer G, Richter A, Schulz B, Sigge C, Waldmann KH, Wallmann J, Werckenthin C. 2008. A proposal of clinical breakpoints for amoxicillin applicable to porcine respiratory tract pathogens. Vet Microbiol 126:178–188 http://dx.doi.org/10.1016/j.vetmic.2007.06.023. [PubMed]
35. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL). 2016. Berichte zur Resistenzmonitoringstudie 2012/2013 - Resistenzsituation bei klinisch wichtigen tierpathogenen Bakterien. Springer Nature, Cham, Switzerland. doi:10.1007/978-3-319-31697-0. http://www.bvl.bund.de/SharedDocs/Downloads/09_Untersuchungen/Archiv_berichte_Resistenzmonitoring/Bericht_Resistenzmonitoring_2012_2013.pdf;jsessionid=05577AB30DA96869657351B75EAE9267.2_cid350?__blob=publicationFile&v=5.
36. Schwarz S, Alesík E, Grobbel M, Lübke-Becker A, Werckenthin C, Wieler LH, Wallmann J. 2007. Antimicrobial susceptibility of Pasteurella multocida and Bordetella bronchiseptica from dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl Munch Tierarztl Wochenschr 120:423–430. [PubMed]
37. Portis E, Lindeman C, Johansen L, Stoltman G. 2012. A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex— Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni—in the United States and Canada. J Vet Diagn Invest 24:932–944 http://dx.doi.org/10.1177/1040638712457559. [PubMed]
38. de Jong A, Thomas V, Simjee S, Moyaert H, El Garch F, Maher K, Morrissey I, Butty P, Klein U, Marion H, Rigaut D, Vallé M. 2014. Antimicrobial susceptibility monitoring of respiratory tract pathogens isolated from diseased cattle and pigs across Europe: the VetPath study. Vet Microbiol 172:202–215 http://dx.doi.org/10.1016/j.vetmic.2014.04.008. [PubMed]
39. El Garch F, de Jong A, Simjee S, Moyaert H, Klein U, Ludwig C, Marion H, Haag-Diergarten S, Richard-Mazet A, Thomas V, Siegwart E. 2016. Monitoring of antimicrobial susceptibility of respiratory tract pathogens isolated from diseased cattle and pigs across Europe, 2009–2012: VetPath results. Vet Microbiol 194:11–22 http://dx.doi.org/10.1016/j.vetmic.2016.04.009. [PubMed]
40. Dayao DA, Gibson JS, Blackall PJ, Turni C. 2014. Antimicrobial resistance in bacteria associated with porcine respiratory disease in Australia. Vet Microbiol 171:232–235 http://dx.doi.org/10.1016/j.vetmic.2014.03.014. [PubMed]
41. Archambault M, Harel J, Gouré J, Tremblay YDN, Jacques M. 2012. Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb Drug Resist 18:198–206 http://dx.doi.org/10.1089/mdr.2011.0150. [PubMed]
42. Noyes NR, Benedict KM, Gow SP, Booker CW, Hannon SJ, McAllister TA, Morley PS. 2015. Mannheimia haemolytica in feedlot cattle: prevalence of recovery and associations with antimicrobial use, resistance, and health outcomes. J Vet Intern Med 29:705–713 http://dx.doi.org/10.1111/jvim.12547. [PubMed]
43. DeDonder KD, Apley MD. 2015. A literature review of antimicrobial resistance in pathogens associated with bovine respiratory disease. Anim Health Res Rev 16:125–134 http://dx.doi.org/10.1017/S146625231500016X. [PubMed]
44. Berman SM, Hirsh DC. 1978. Partial characterization of R-plasmids from Pasteurella multocida isolated from turkeys. Antimicrob Agents Chemother 14:348–352 http://dx.doi.org/10.1128/AAC.14.3.348. [PubMed]
45. Hirsh DC, Martin LD, Rhoades KR. 1981. Conjugal transfer of an R-plasmid in Pasteurella multocida. Antimicrob Agents Chemother 20:415–417 http://dx.doi.org/10.1128/AAC.20.3.415. [PubMed]
46. Hirsh DC, Martin LD, Rhoades KR. 1985. Resistance plasmids of Pasteurella multocida isolated from turkeys. Am J Vet Res 46:1490–1493. [PubMed]
47. Hirsh DC, Hansen LM, Dorfman LC, Snipes KP, Carpenter TE, Hird DW, McCapes RH. 1989. Resistance to antimicrobial agents and prevalence of R plasmids in Pasteurella multocida from turkeys. Antimicrob Agents Chemother 33:670–673 http://dx.doi.org/10.1128/AAC.33.5.670. [PubMed]
48. Hansen LM, McMurry LM, Levy SB, Hirsh DC. 1993. A new tetracycline resistance determinant, Tet H, from Pasteurella multocida specifying active efflux of tetracycline. Antimicrob Agents Chemother 37:2699–2705 http://dx.doi.org/10.1128/AAC.37.12.2699. [PubMed]
49. Hansen LM, Blanchard PC, Hirsh DC. 1996. Distribution of tet(H) among Pasteurella isolates from the United States and Canada. Antimicrob Agents Chemother 40:1558–1560. [PubMed]
50. Kehrenberg C, Werckenthin C, Schwarz S. 1998. Tn 5706, a transposon-like element from Pasteurella multocida mediating tetracycline resistance. Antimicrob Agents Chemother 42:2116–2118. [PubMed]
51. Hunt ML, Adler B, Townsend KM. 2000. The molecular biology of pasteurella multocida. Vet Microbiol 72:3–25 http://dx.doi.org/10.1016/S0378-1135(99)00183-2.
52. Kehrenberg C, Schwarz S. 2000. Identification of a truncated, but functionally active tet(H) tetracycline resistance gene in Pasteurella aerogenes and Pasteurella multocida. FEMS Microbiol Lett 188:191–195 http://dx.doi.org/10.1111/j.1574-6968.2000.tb09192.x. [PubMed]
53. Kehrenberg C, Schwarz S. 2001. Molecular analysis of tetracycline resistance in Pasteurella aerogenes. Antimicrob Agents Chemother 45:2885–2890 http://dx.doi.org/10.1128/AAC.45.10.2885-2890.2001. [PubMed]
54. Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S. 2012. ICE Pmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer. J Antimicrob Chemother 67:91–100 http://dx.doi.org/10.1093/jac/dkr411. [PubMed]
55. Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S. 2012. ICE Pmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother 67:84–90 http://dx.doi.org/10.1093/jac/dkr406. [PubMed]
56. Eidam C, Poehlein A, Leimbach A, Michael GB, Kadlec K, Liesegang H, Daniel R, Sweeney MT, Murray RW, Watts JL, Schwarz S. 2015. Analysis and comparative genomics of ICE Mh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother 70:93–97 http://dx.doi.org/10.1093/jac/dku361. [PubMed]
57. Klima CL, Zaheer R, Cook SR, Booker CW, Hendrick S, Alexander TW, McAllister TA, Onderdonk AB. 2014. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol 52:438–448 http://dx.doi.org/10.1128/JCM.02485-13. [PubMed]
58. Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC. 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47:883–888 http://dx.doi.org/10.1128/AAC.47.3.883-888.2003. [PubMed]
59. Kehrenberg C, Tham NTT, Schwarz S. 2003. New plasmid-borne antibiotic resistance gene cluster in Pasteurella multocida. Antimicrob Agents Chemother 47:2978–2980 http://dx.doi.org/10.1128/AAC.47.9.2978-2980.2003. [PubMed]
60. Blanco M, Gutiérrez-Martin CB, Rodríguez-Ferri EF, Roberts MC, Navas J. 2006. Distribution of tetracycline resistance genes in Actinobacillus pleuropneumoniae isolates from Spain. Antimicrob Agents Chemother 50:702–708 http://dx.doi.org/10.1128/AAC.50.2.702-708.2006. [PubMed]
61. Blanco M, Kadlec K, Gutiérrez Martín CB, de la Fuente AJ, Schwarz S, Navas J. 2007. Nucleotide sequence and transfer properties of two novel types of Actinobacillus pleuropneumoniae plasmids carrying the tetracycline resistance gene tet(H). J Antimicrob Chemother 60:864–867 http://dx.doi.org/10.1093/jac/dkm293. [PubMed]
62. Matter D, Rossano A, Limat S, Vorlet-Fawer L, Brodard I, Perreten V. 2007. Antimicrobial resistance profile of Actinobacillus pleuropneumoniae and Actinobacillus porcitonsillarum. Vet Microbiol 122:146–156 http://dx.doi.org/10.1016/j.vetmic.2007.01.009. [PubMed]
63. Dayao D, Gibson JS, Blackall PJ, Turni C. 2016. Antimicrobial resistance genes in Actinobacillus pleuropneumoniae, Haemophilus parasuis and Pasteurella multocida isolated from Australian pigs. Aust Vet J 94:227–231 http://dx.doi.org/10.1111/avj.12458. [PubMed]
64. Kehrenberg C, Salmon SA, Watts JL, Schwarz S. 2001. Tetracycline resistance genes in isolates of Pasteurella multocida, Mannheimia haemolytica, Mannheimia glucosida and Mannheimia varigena from bovine and swine respiratory disease: intergeneric spread of the tet(H) plasmid pMHT1. J Antimicrob Chemother 48:631–640 http://dx.doi.org/10.1093/jac/48.5.631. [PubMed]
65. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N, Llagostera M, Dominguez L, Gonzalez-Zorn B. 2009. Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 53:3399–3404 http://dx.doi.org/10.1128/AAC.01522-08. [PubMed]
66. Chaslus-Dancla E, Lesage-Descauses M-C, Leroy-Sétrin S, Martel J-L, Lafont J-P. 1995. Tetracycline resistance determinants, Tet B and Tet M, detected in Pasteurella haemolytica and Pasteurella multocida from bovine herds. J Antimicrob Chemother 36:815–819 http://dx.doi.org/10.1093/jac/36.5.815. [PubMed]
67. Chalmers R, Sewitz S, Lipkow K, Crellin P. 2000. Complete nucleotide sequence of Tn 10.J Bacteriol 182:2970–2972 http://dx.doi.org/10.1128/JB.182.10.2970-2972.2000. [PubMed]
68. Lawley TD, Burland V, Taylor DE. 2000. Analysis of the complete nucleotide sequence of the tetracycline-resistance transposon Tn 10. Plasmid 43:235–239 http://dx.doi.org/10.1006/plas.1999.1458. [PubMed]
69. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260 http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001. [PubMed]
70. Wasteson Y, Roe DE, Falk K, Roberts MC. 1996. Characterization of tetracycline and erythromycin resistance in Actinobacillus pleuropneumoniae. Vet Microbiol 48:41–50 http://dx.doi.org/10.1016/0378-1135(95)00130-1.
71. Ouellet V, Forest A, Nadeau M, Sirois M. 2004. Characterization of tetracycline resistance determinants in Actinobacillus pleuropneumoniae. Abstr A-113, 104th ASM General Meeting, p 22.
72. Morioka A, Asai T, Nitta H, Yamamoto K, Ogikubo Y, Takahashi T, Suzuki S. 2008. Recent trends in antimicrobial susceptibility and the presence of the tetracycline resistance gene in Actinobacillus pleuropneumoniae isolates in Japan. J Vet Med Sci 70:1261–1264 http://dx.doi.org/10.1292/jvms.70.1261. [PubMed]
73. Yoo AN, Cha SB, Shin MK, Won HK, Kim EH, Choi HW, Yoo HS. 2014. Serotypes and antimicrobial resistance patterns of the recent Korean Actinobacillus pleuropneumoniae isolates. Vet Rec 174:223 http://dx.doi.org/10.1136/vr.101863. [PubMed]
74. Bossé JT, Li Y, Fernandez Crespo R, Chaudhuri RR, Rogers J, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, the BRaDP1T Consortium. 2016. ICE Apl1, an integrative conjugative element related to ICE Hin1056, identified in the pig pathogen Actinobacillus pleuropneumoniae. Front Microbiol 7:810 http://dx.doi.org/10.3389/fmicb.2016.00810. [PubMed]
75. Lancashire JF, Terry TD, Blackall PJ, Jennings MP. 2005. Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. Antimicrob Agents Chemother 49:1927–1931 http://dx.doi.org/10.1128/AAC.49.5.1927-1931.2005. [PubMed]
76. Wu J-R, Shieh HK, Shien J-H, Gong S-R, Chang P-C. 2003. Molecular characterization of plasmids with antimicrobial resistant genes in avian isolates of Pasteurella multocida. Avian Dis 47:1384–1392 http://dx.doi.org/10.1637/z7035. [PubMed]
77. Briggs CE, Fratamico PM. 1999. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 43:846–849. [PubMed]
78. Doublet B, Boyd D, Mulvey MR, Cloeckaert A. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol Microbiol 55:1911–1924 http://dx.doi.org/10.1111/j.1365-2958.2005.04520.x. [PubMed]
79. Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S. 2005. tet(L)-mediated tetracycline resistance in bovine Mannheimia and Pasteurella isolates. J Antimicrob Chemother 56:403–406 http://dx.doi.org/10.1093/jac/dki210. [PubMed]
80. Schwarz S, Cardoso M, Wegener HC. 1992. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother 36:580–588 http://dx.doi.org/10.1128/AAC.36.3.580. [PubMed]
81. Kim B, Hur J, Lee JY, Choi Y, Lee JH. 2016. Molecular serotyping and antimicrobial resistance profiles of Actinobacillus pleuropneumoniae isolated from pigs in South Korea. Vet Q 36:137–144 http://dx.doi.org/10.1080/01652176.2016.1155241. [PubMed]
82. Flannagan SE, Zitzow LA, Su YA, Clewell DB. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn 916 from Enterococcus faecalis. Plasmid 32:350–354 http://dx.doi.org/10.1006/plas.1994.1077. [PubMed]
83. Tristram S, Jacobs MR, Appelbaum PC. 2007. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 20:368–389 http://dx.doi.org/10.1128/CMR.00040-06. [PubMed]
84. Livrelli VO, Darfeuille-Richaud A, Rich CD, Joly BH, Martel J-L. 1988. Genetic determinant of the ROB-1 β-lactamase in bovine and porcine Pasteurella strains. Antimicrob Agents Chemother 32:1282–1284 http://dx.doi.org/10.1128/AAC.32.8.1282. [PubMed]
85. Livrelli V, Peduzzi J, Joly B. 1991. Sequence and molecular characterization of the ROB-1 β-lactamase gene from Pasteurella haemolytica. Antimicrob Agents Chemother 35:242–251 http://dx.doi.org/10.1128/AAC.35.2.242. [PubMed]
86. Juteau J-M, Levesque RC. 1990. Sequence analysis and evolutionary perspectives of ROB-1 β-lactamase. Antimicrob Agents Chemother 34:1354–1359 http://dx.doi.org/10.1128/AAC.34.7.1354. [PubMed]
87. Azad AK, Coote JG, Parton R. 1992. Distinct plasmid profiles of Pasteurella haemolytica serotypes and the characterization and amplification in Escherichia coli of ampicillin-resistance plasmids encoding ROB-1 β-lactamase. J Gen Microbiol 138:1185–1196 http://dx.doi.org/10.1099/00221287-138-6-1185. [PubMed]
88. San Millan A, Escudero JA, Catalan A, Nieto S, Farelo F, Gibert M, Moreno MA, Dominguez L, Gonzalez-Zorn B. 2007. β-lactam resistance in Haemophilus parasuis is mediated by plasmid pB1000 bearing bla ROB-1. Antimicrob Agents Chemother 51:2260–2264 http://dx.doi.org/10.1128/AAC.00242-07. [PubMed]
89. Naas T, Benaoudia F, Lebrun L, Nordmann P. 2001. Molecular identification of TEM-1 β-lactamase in a Pasteurella multocida isolate of human origin. Eur J Clin Microbiol Infect Dis 20:210–213 http://dx.doi.org/10.1007/PL00011254. [PubMed]
90. Chander Y, Oliveira S, Goyal SM. 2011. Characterisation of ceftiofur resistance in swine bacterial pathogens. Vet J 187:139–141 http://dx.doi.org/10.1016/j.tvjl.2009.10.013. [PubMed]
91. Bush K, Jacoby GA, Medeiros AA. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233 http://dx.doi.org/10.1128/AAC.39.6.1211. [PubMed]
92. Medeiros AA, Levesque R, Jacoby GA. 1986. An animal source for the ROB-1 β-lactamase of Haemophilus influenzae type b. Antimicrob Agents Chemother 29:212–215 http://dx.doi.org/10.1128/AAC.29.2.212. [PubMed]
93. Juteau J-M, Sirois M, Medeiros AA, Levesque RC. 1991. Molecular distribution of ROB-1 β-lactamase in Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother 35:1397–1402 http://dx.doi.org/10.1128/AAC.35.7.1397. [PubMed]
94. Chang C-F, Yeh T-M, Chou C-C, Chang Y-F, Chiang T-S. 2002. Antimicrobial susceptibility and plasmid analysis of Actinobacillus pleuropneumoniae isolated in Taiwan. Vet Microbiol 84:169–177 http://dx.doi.org/10.1016/S0378-1135(01)00459-X.
95. Kang M, Zhou R, Liu L, Langford PR, Chen H. 2009. Analysis of an Actinobacillus pleuropneumoniae multi-resistance plasmid, pHB0503. Plasmid 61:135–139 http://dx.doi.org/10.1016/j.plasmid.2008.11.001.
96. Philippon A, Joly B, Reynaud D, Paul G, Martel J-L, Sirot D, Cluzel R, Névot P. 1986. Characterization of a β-lactamase from Pasteurella multocida. Ann Inst Pasteur Microbiol 1985 137A:153–158 http://dx.doi.org/10.1016/S0769-2609(86)80020-5.
97. Moleres J, Santos-López A, Lázaro I, Labairu J, Prat C, Ardanuy C, González-Zorn B, Aragon V, Garmendia J. 2015. Novel bla ROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl Environ Microbiol 81:3255–3267 http://dx.doi.org/10.1128/AEM.03865-14. [PubMed]
98. Wood AR, Lainson FA, Wright F, Baird GD, Donachie W. 1995. A native plasmid of Pasteurella haemolytica serotype A1: DNA sequence analysis and investigation of its potential as a vector. Res Vet Sci 58:163–168 http://dx.doi.org/10.1016/0034-5288(95)90071-3.
99. Galán JC, Morosini MI, Baquero MR, Reig M, Baquero F. 2003. Haemophilus influenzae bla(ROB-1) mutations in hypermutagenic deltaampC Escherichia coli conferring resistance to cefotaxime and β-lactamase inhibitors and increased susceptibility to cefaclor. Antimicrob Agents Chemother 47:2551–2557 http://dx.doi.org/10.1128/AAC.47.8.2551-2557.2003. [PubMed]
100. Craig FF, Coote JG, Parton R, Freer JH, Gilmour NJ. 1989. A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol 135:2885–2890.
101. Schwarz S, Spies U, Reitz B, Seyfert H-M, Lämmler C, Blobel H. 1989. Detection and interspecies-transformation of a β-lactamase-encoding plasmid from Pasteurella haemolytica. Zentralbl Bakteriol Mikrobiol Hyg [A] 270:462–469 http://dx.doi.org/10.1016/S0176-6724(89)80017-3.
102. Rossmanith SER, Wilt GR, Wu G. 1991. Characterization and comparison of antimicrobial susceptibilities and outer membrane protein and plasmid DNA profiles of Pasteurella haemolytica and certain other members of the genus Pasteurella. Am J Vet Res 52:2016–2022. [PubMed]
103. Chang YF, Ma DP, Bai HQ, Young R, Struck DK, Shin SJ, Lein DH. 1992. Characterization of plasmids with antimicrobial resistant genes in Pasteurella haemolytica A1. DNA Seq 3:89–97 http://dx.doi.org/10.3109/10425179209034001. [PubMed]
104. Murphy GL, Robinson LC, Burrows GE. 1993. Restriction endonuclease analysis and ribotyping differentiate Pasteurella haemolytica serotype A1 isolates from cattle within a feedlot. J Clin Microbiol 31:2303–2308. [PubMed]
105. Chang YF, Shi J, Shin SJ, Lein DH. 1992. Sequence analysis of the ROB-1 β-lactamase gene from Actinobacillus pleuropneumoniae. Vet Microbiol 32:319–325 http://dx.doi.org/10.1016/0378-1135(92)90154-L.
106. Lalonde G, Miller JF, Tompkins LS, O’Hanley P. 1989. Transformation of Actinobacillus pleuropneumoniae and analysis of R factors by electroporation. Am J Vet Res 50:1957–1960. [PubMed]
107. Ishii H, Hayashi F, Iyobe S, Hashimoto H. 1991. Characterization and classification of Actinobacillus ( Haemophilus) pleuropneumoniae plasmids. Am J Vet Res 52:1816–1820. [PubMed]
108. Matter D, Rossano A, Sieber S, Perreten V. 2008. Small multidrug resistance plasmids in Actinobacillus porcitonsillarum. Plasmid 59:144–152 http://dx.doi.org/10.1016/j.plasmid.2007.11.003. [PubMed]
109. Schwarz S, Cloeckaert A, Roberts MC. 2006. Mechanisms and spread of bacterial resistance to antimicrobial agents, p 73–98. In Aarestrup FM (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
110. Schwarz S, Spies U, Schäfer F, Blobel H. 1989. Isolation and interspecies-transfer of a plasmid from Pasteurella multocida encoding for streptomycin resistance. Med Microbiol Immunol (Berl) 178:121–125 http://dx.doi.org/10.1007/BF00203308.
111. Silver RP, Leming B, Garon CF, Hjerpe CA. 1979. R-plasmids in Pasteurella multocida. Plasmid 2:493–497 http://dx.doi.org/10.1016/0147-619X(79)90033-7.
112. Coté S, Harel J, Higgins R, Jacques M. 1991. Resistance to antimicrobial agents and prevalence of R plasmids in Pasteurella multocida from swine. Am J Vet Res 52:1653–1657. [PubMed]
113. Yamamoto J, Sakano T, Shimizu M. 1990. Drug resistance and R plasmids in Pasteurella multocida isolates from swine. Microbiol Immunol 34:715–721 http://dx.doi.org/10.1111/j.1348-0421.1990.tb01049.x. [PubMed]
114. Liu W, Yang M, Xu Z, Zheng H, Liang W, Zhou R, Wu B, Chen H. 2012. Complete genome sequence of Pasteurella multocida HN06, a toxigenic strain of serogroup D. J Bacteriol 194:3292–3293 http://dx.doi.org/10.1128/JB.00215-12. [PubMed]
115. Zimmerman ML, Hirsh DC. 1980. Demonstration of an R plasmid in a strain of Pasteurella haemolytica isolated from feedlot cattle. Am J Vet Res 41:166–169. [PubMed]
116. Kehrenberg C, Schwarz S. 2002. Nucleotide sequence and organization of plasmid pMVSCS1 from Mannheimia varigena: identification of a multiresistance gene cluster. J Antimicrob Chemother 49:383–386 http://dx.doi.org/10.1093/jac/49.2.383. [PubMed]
117. Gilbride KA, Rosendal S, Brunton JL. 1989. Plasmid mediated antimicrobial resistance in Ontario isolates of Actinobacillus ( Haemophilus) pleuropneumoniae. Can J Vet Res 53:38–42. [PubMed]
118. Willson PJ, Deneer HG, Potter A, Albritton W. 1989. Characterization of a streptomycin-sulfonamide resistance plasmid from Actinobacillus pleuropneumoniae. Antimicrob Agents Chemother 33:235–238 http://dx.doi.org/10.1128/AAC.33.2.235. [PubMed]
119. Ishii H, Nakasone Y, Shigehara S, Honma K, Araki Y, Iyobe S, Hashimoto H. 1990. Drug-susceptibility and isolation of a plasmid in Haemophilus ( Actinobacillus) pleuropneumoniae. Nippon Juigaku Zasshi 52:1–9 http://dx.doi.org/10.1292/jvms1939.52.1. [PubMed]
120. Kiuchi A, Hara M, Tabuchi K. 1992. Drug resistant plasmid of Actinobacillus pleuropneumoniae isolated from swine pleuropneumonia in Thailand. Kansenshogaku Zasshi 66:1243–1247 http://dx.doi.org/10.11150/kansenshogakuzasshi1970.66.1243. [PubMed]
121. Ito H, Ishii H, Akiba M. 2004. Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. Plasmid 51:41–47 http://dx.doi.org/10.1016/j.plasmid.2003.10.001. [PubMed]
122. Bossé JT, Li Y, Walker S, Atherton T, Fernandez Crespo R, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Oshota O, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, BRaDP1T Consortium. 2015. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae. J Antimicrob Chemother 70:2217–2222 http://dx.doi.org/10.1093/jac/dkv121. [PubMed]
123. Hsu YM, Shieh HK, Chen WH, Sun TY, Shiang J-H. 2007. Antimicrobial susceptibility, plasmid profiles and haemocin activities of Avibacterium paragallinarum strains. Vet Microbiol 124:209–218 http://dx.doi.org/10.1016/j.vetmic.2007.04.024. [PubMed]
124. Chiou C-S, Jones AL. 1993. Nucleotide sequence analysis of a transposon (Tn 5393) carrying streptomycin resistance genes in Erwinia amylovora and other Gram-negative bacteria. J Bacteriol 175:732–740 http://dx.doi.org/10.1128/jb.175.3.732-740.1993. [PubMed]
125. Kehrenberg C, Schwarz S. 2001. Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. FEMS Microbiol Lett 205:283–290 http://dx.doi.org/10.1111/j.1574-6968.2001.tb10962.x. [PubMed]
126. Ojo KK, Kehrenberg C, Schwarz S, Odelola HA. 2002. Identification of a complete dfrA14 gene cassette integrated at a secondary site in a resistance plasmid of uropathogenic Escherichia coli from Nigeria. Antimicrob Agents Chemother 46:2054–2055 http://dx.doi.org/10.1128/AAC.46.6.2054-2055.2002. [PubMed]
127. Sundin GW. 2000. Examination of base pair variants of the strA- strB streptomycin resistance genes from bacterial pathogens of humans, animals and plants. J Antimicrob Chemother 46:848–849 http://dx.doi.org/10.1093/jac/46.5.848.
128. Sundin GW. 2002. Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. Curr Microbiol 45:63–69 http://dx.doi.org/10.1007/s00284-001-0100-y. [PubMed]
129. Sundin GW, Bender CL. 1996. Dissemination of the strA- strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 5:133–143 http://dx.doi.org/10.1111/j.1365-294X.1996.tb00299.x. [PubMed]
130. Kehrenberg C, Schwarz S. 2011. Trimethoprim resistance in a porcine Pasteurella aerogenes isolate is based on a dfrA1 gene cassette located in a partially truncated class 2 integron. J Antimicrob Chemother 66:450–452 http://dx.doi.org/10.1093/jac/dkq461. [PubMed]
131. Schwarz S, Kehrenberg C, Salmon SA, Watts JL. 2004. In vitro activities of spectinomycin and comparator agents against Pasteurella multocida and Mannheimia haemolytica from respiratory tract infections of cattle. J Antimicrob Chemother 53:379–382 http://dx.doi.org/10.1093/jac/dkh059. [PubMed]
132. Kehrenberg C, Catry B, Haesebrouck F, de Kruif A, Schwarz S. 2005. Novel spectinomycin/streptomycin resistance gene, aadA14, from Pasteurella multocida. Antimicrob Agents Chemother 49:3046–3049 http://dx.doi.org/10.1128/AAC.49.7.3046-3049.2005. [PubMed]
133. Oka A, Sugisaki H, Takanami M. 1981. Nucleotide sequence of the kanamycin resistance transposon Tn 903. J Mol Biol 147:217–226 http://dx.doi.org/10.1016/0022-2836(81)90438-1.
134. Dixon LG, Albritton WL, Willson PJ. 1994. An analysis of the complete nucleotide sequence of the Haemophilus ducreyi broad-host-range plasmid pLS88. Plasmid 32:228–232 http://dx.doi.org/10.1006/plas.1994.1060. [PubMed]
135. Kehrenberg C, Schwarz S. 2005. Molecular basis of resistance to kanamycin and neomycin in Pasteurella and Mannheimia isolates of animal origin. Abstr A47, ASM Conference on Pasteurellaceae 2005, p. 55.
136. Makosky PC, Dahlberg AE. 1987. Spectinomycin resistance at site 1192 in 16S ribosomal RNA of E. coli: an analysis of three mutants. Biochimie 69:885–889 http://dx.doi.org/10.1016/0300-9084(87)90216-1.
137. De Stasio EA, Moazed D, Noller HF, Dahlberg AE. 1989. Mutations in 16S ribosomal RNA disrupt antibiotic-RNA interactions. EMBO J 8:1213–1216. [PubMed]
138. Brink MF, Brink G, Verbeet MP, de Boer HA. 1994. Spectinomycin interacts specifically with the residues G 1064 and C 1192 in 16S rRNA, thereby potentially freezing this molecule into an inactive conformation. Nucleic Acids Res 22:325–331 http://dx.doi.org/10.1093/nar/22.3.325. [PubMed]
139. Galimand M, Gerbaud G, Courvalin P. 2000. Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob Agents Chemother 44:1365–1366 http://dx.doi.org/10.1128/AAC.44.5.1365-1366.2000. [PubMed]
140. O’Connor M, Dahlberg AE. 2002. Isolation of spectinomycin resistance mutations in the 16S rRNA of Salmonella enterica serovar Typhimurium and expression in Escherichia coli and Salmonella. Curr Microbiol 45:429–433 http://dx.doi.org/10.1007/s00284-002-3684-y. [PubMed]
141. Funatsu G, Schiltz E, Wittmann HG. 1972. Ribosomal proteins. XXVII. Localization of the amino acid exchanges in protein S5 from two Escherichia coli mutants resistant to spectinomycin. Mol Gen Genet 114:106–111 http://dx.doi.org/10.1007/BF00332781. [PubMed]
142. Davies C, Bussiere DE, Golden BL, Porter SJ, Ramakrishnan V, White SW. 1998. Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance. J Mol Biol 279:873–888 http://dx.doi.org/10.1006/jmbi.1998.1780. [PubMed]
143. Kehrenberg C, Schwarz S. 2007. Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida. Antimicrob Agents Chemother 51:2244–2246 http://dx.doi.org/10.1128/AAC.00229-07. [PubMed]
144. de Groot R, Sluijter M, de Bruyn A, Campos J, Goessens WH, Smith AL, Hermans PW. 1996. Genetic characterization of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother 40:2131–2136. [PubMed]
145. Enne VI, King A, Livermore DM, Hall LM. 2002. Sulfonamide resistance in Haemophilus influenzae mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrob Agents Chemother 46:1934–1939 http://dx.doi.org/10.1128/AAC.46.6.1934-1939.2002. [PubMed]
146. Kehrenberg C, Schwarz S. 2005. dfrA20, A novel trimethoprim resistance gene from Pasteurella multocida. Antimicrob Agents Chemother 49:414–417 http://dx.doi.org/10.1128/AAC.49.1.414-417.2005. [PubMed]
147. Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E. 1989. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271–288 http://dx.doi.org/10.1016/0378-1119(89)90273-4.
148. Kim EH, Aoki T. 1996. Sulfonamide resistance gene in a transferable R plasmid of Pasteurella piscicida. Microbiol Immunol 40:397–399 http://dx.doi.org/10.1111/j.1348-0421.1996.tb01085.x. [PubMed]
149. Rådström P, Swedberg G. 1988. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother 32:1684–1692 http://dx.doi.org/10.1128/AAC.32.11.1684. [PubMed]
150. Wright CL, Strugnell RA, Hodgson ALM. 1997. Characterization of a Pasteurella multocida plasmid and its use to express recombinant proteins in P. multocida. Plasmid 37:65–79 http://dx.doi.org/10.1006/plas.1996.1276. [PubMed]
151. Escande F, Gerbaud G, Martel J-L, Courvalin P. 1991. Resistance to trimethoprim and 2,4-diamino-6,7-diisopropyl-pteridine (0/129) in Pasteurella haemolytica. Vet Microbiol 26:107–114 http://dx.doi.org/10.1016/0378-1135(91)90047-J.
152. Anantham S, Hall RM. 2012. pCERC1, a small, globally disseminated plasmid carrying the dfrA14 cassette in the strA gene of the sul2- strA- strB gene cluster. Microb Drug Resist 18:364–371 http://dx.doi.org/10.1089/mdr.2012.0008. [PubMed]
153. Dayao DAE, Seddon JM, Gibson JS, Blackall PJ, Turni C. 2016. Whole genome sequence analysis of pig respiratory bacterial pathogens with elevated minimum inhibitory concentrations for macrolides. Microb Drug Resist 22:531–537 http://dx.doi.org/10.1089/mdr.2015.0214. [PubMed]
154. Yang SS, Sun J, Liao XP, Liu BT, Li LL, Li L, Fang LX, Huang T, Liu YH. 2013. Co-location of the erm(T) gene and bla ROB-1 gene on a small plasmid in Haemophilus parasuis of pig origin. J Antimicrob Chemother 68:1930–1932 http://dx.doi.org/10.1093/jac/dkt112. [PubMed]
155. Kadlec K, Brenner Michael G, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Watts JL, Schwarz S. 2011. Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother 55:2475–2477 http://dx.doi.org/10.1128/AAC.00092-11. [PubMed]
156. Desmolaize B, Rose S, Warrass R, Douthwaite S. 2011. A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida. Mol Microbiol 80:184–194 http://dx.doi.org/10.1111/j.1365-2958.2011.07567.x. [PubMed]
157. Michael GB, Eidam C, Kadlec K, Meyer K, Sweeney MT, Murray RW, Watts JL, Schwarz S. 2012. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)- mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J Antimicrob Chemother 67:1555–1557 http://dx.doi.org/10.1093/jac/dks076. [PubMed]
158. Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. 2003. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 47:1017–1022 http://dx.doi.org/10.1128/AAC.47.3.1017-1022.2003. [PubMed]
159. Olsen AS, Warrass R, Douthwaite S. 2015. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 70:420–423 http://dx.doi.org/10.1093/jac/dku385. [PubMed]
160. Desmolaize B, Rose S, Wilhelm C, Warrass R, Douthwaite S. 2011. Combinations of macrolide resistance determinants in field isolates of Mannheimia haemolytica and Pasteurella multocida. Antimicrob Agents Chemother 55:4128–4133 http://dx.doi.org/10.1128/AAC.00450-11. [PubMed]
161. Chen LP, Cai XW, Wang XR, Zhou XL, Wu DF, Xu XJ, Chen HC. 2010. Characterization of plasmid-mediated lincosamide resistance in a field isolate of Haemophilus parasuis. J Antimicrob Chemother 65:2256–2258 http://dx.doi.org/10.1093/jac/dkq304. [PubMed]
162. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542 http://dx.doi.org/10.1016/j.femsre.2004.04.001. [PubMed]
163. Vassort-Bruneau C, Lesage-Descauses MC, Martel J-L, Lafont J-P, Chaslus-Dancla E. 1996. CAT III chloramphenicol resistance in Pasteurella haemolytica and Pasteurella multocida isolated from calves. J Antimicrob Chemother 38:205–213 http://dx.doi.org/10.1093/jac/38.2.205. [PubMed]
164. Kawahara K, Kawase H, Nakai T, Kume K, Danbara H. 1990. Drug resistance plasmids of Actinobacillus ( Haemophilus) pleuropneumoniae serotype 2 strains isolated from swine. Kitasato Arch Exp Med 63:131–136. [PubMed]
165. Ishii H, Fukuyasu T, Iyobe S, Hashimoto H. 1993. Characterization of newly isolated plasmids from Actinobacillus pleuropneumoniae. Am J Vet Res 54:701–708. [PubMed]
166. Powell M, Livermore DM. 1988. Mechanisms of chloramphenicol resistance in Haemophilus influenzae in the United Kingdom. J Med Microbiol 27:89–93 http://dx.doi.org/10.1099/00222615-27-2-89. [PubMed]
167. Murray IA, Martinez-Suarez JV, Close TJ, Shaw WV. 1990. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Biochem J 272:505–510 http://dx.doi.org/10.1042/bj2720505. [PubMed]
168. Hörmansdorfer S, Bauer J. 1996. Resistance pattern of bovine Pasteurella. Berl Munch Tierarztl Wochenschr 109:168–171. (In German.) [PubMed]
169. Hörmansdorfer S, Bauer J. 1998. Resistance of bovine and porcine Pasteurella against florfenicol and other antibiotics. Berl Munch Tierarztl Wochenschr 111:422–426. (In German.) [PubMed]
170. Priebe S, Schwarz S. 2003. In vitro activities of florfenicol against bovine and porcine respiratory tract pathogens. Antimicrob Agents Chemother 47:2703–2705 http://dx.doi.org/10.1128/AAC.47.8.2703-2705.2003. [PubMed]
171. Kehrenberg C, Mumme J, Wallmann J, Verspohl J, Tegeler R, Kühn T, Schwarz S. 2004. Monitoring of florfenicol susceptibility among bovine and porcine respiratory tract pathogens collected in Germany during the years 2002 and 2003. J Antimicrob Chemother 54:572–574 http://dx.doi.org/10.1093/jac/dkh371. [PubMed]
172. Kaspar H, Schröer U, Wallmann J. 2007. Quantitative resistance level (MIC) of Pasteurella multocida isolated from pigs between 2004 and 2006: national resistance monitoring by the BVL. Berl Munch Tierarztl Wochenschr 120:442–451. [PubMed]
173. Wallmann J, Schröer U, Kaspar H. 2007. Quantitative resistance level (MIC) of bacterial pathogens ( Escherichia coli, Pasteurella multocida, Pseudomonas aeruginosa, Salmonella sp., Staphylococcus aureus) isolated from chickens and turkeys: national resistance monitoring by the BVL 2004/2005. Berl Munch Tierarztl Wochenschr 120:452–463. [PubMed]
174. Kehrenberg C, Schwarz S. 2005. Plasmid-borne florfenicol resistance in Pasteurella multocida. J Antimicrob Chemother 55:773–775 http://dx.doi.org/10.1093/jac/dki102. [PubMed]
175. Whittle G, Katz ME, Clayton EH, Cheetham BF. 2000. Identification and characterization of a native Dichelobacter nodosus plasmid, pDN1. Plasmid 43:230–234 http://dx.doi.org/10.1006/plas.1999.1456.
176. Blickwede M, Schwarz S. 2004. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. J Antimicrob Chemother 53:58–64 http://dx.doi.org/10.1093/jac/dkh007. [PubMed]
177. Sørum H, Roberts MC, Crosa JH. 1992. Identification and cloning of a tetracycline resistance gene from the fish pathogen Vibrio salmonicida. Antimicrob Agents Chemother 36:611–615 http://dx.doi.org/10.1128/AAC.36.3.611. [PubMed]
178. Kehrenberg C, Wallmann J, Schwarz S. 2008. Molecular analysis of florfenicol-resistant Pasteurella multocida isolates in Germany. J Antimicrob Chemother 62:951–955 http://dx.doi.org/10.1093/jac/dkn359. [PubMed]
179. Katsuda K, Kohmoto M, Mikami O, Tamamura Y, Uchida I. 2012. Plasmid-mediated florfenicol resistance in Mannheimia haemolytica isolated from cattle. Vet Microbiol 155:444–447 http://dx.doi.org/10.1016/j.vetmic.2011.09.033. [PubMed]
180. Li B, Zhang Y, Wei J, Shao D, Liu K, Shi Y, Qiu Y, Ma Z. 2015. Characterization of a novel small plasmid carrying the florfenicol resistance gene floR in Haemophilus parasuis. J Antimicrob Chemother 70:3159–3161 http://dx.doi.org/10.1093/jac/dkv230. [PubMed]
181. Bossé JT, Li Y, Atherton TG, Walker S, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, BRaDP1T Consortium. 2015. Characterisation of a mobilisable plasmid conferring florfenicol and chloramphenicol resistance in Actinobacillus pleuropneumoniae. Vet Microbiol 178:279–282 http://dx.doi.org/10.1016/j.vetmic.2015.05.020. [PubMed]
182. da Silva GC, Rossi CC, Santana MF, Langford PR, Bossé JT, Bazzolli DMS. 2017. p518, A small floR plasmid from a South American isolate of Actinobacillus pleuropneumoniae. Vet Microbiol 204:129–132 http://dx.doi.org/10.1016/j.vetmic.2017.04.019. [PubMed]
183. Kehrenberg C, Meunier D, Targant H, Cloeckaert A, Schwarz S, Madec J-Y. 2006. Plasmid-mediated florfenicol resistance in Pasteurella trehalosi. J Antimicrob Chemother 58:13–17 http://dx.doi.org/10.1093/jac/dkl174. [PubMed]
184. Blackall PJ, Bojesen AM, Christensen H, Bisgaard M. 2007. Reclassification of [ Pasteurella] trehalosi as Bibersteinia trehalosi gen. nov., comb. nov. Int J Syst Evol Microbiol 57:666–674 http://dx.doi.org/10.1099/ijs.0.64521-0.
185. Tegetmeyer HE, Jones SC, Langford PR, Baltes N. 2008. IS Apl1, a novel insertion element of Actinobacillus pleuropneumoniae, prevents ApxIV-based serological detection of serotype 7 strain AP76. Vet Microbiol 128:342–353 http://dx.doi.org/10.1016/j.vetmic.2007.10.025. [PubMed]
186. Goldstein EJC, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. 2002. In vitro activities of garenoxacin (BMS-284756) against 170 clinical isolates of nine Pasteurella species. Antimicrob Agents Chemother 46:3068–3070 http://dx.doi.org/10.1128/AAC.46.9.3068-3070.2002. [PubMed]
187. Cárdenas M, Barbé J, Llagostera M, Miró E, Navarro F, Mirelis B, Prats G, Badiola I. 2001. Quinolone resistance-determining regions of gyrA and parC in Pasteurella multocida strains with different levels of nalidixic acid resistance. Antimicrob Agents Chemother 45:990–991 http://dx.doi.org/10.1128/AAC.45.3.990-991.2001. [PubMed]
188. Kong LC, Gao D, Gao YH, Liu SM, Ma HX. 2014. Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China. J Vet Med Sci 76:1655–1657 http://dx.doi.org/10.1292/jvms.14-0240. [PubMed]
189. Katsuda K, Kohmoto M, Mikami O, Uchida I. 2009. Antimicrobial resistance and genetic characterization of fluoroquinolone-resistant Mannheimia haemolytica isolates from cattle with bovine pneumonia. Vet Microbiol 139:74–79 http://dx.doi.org/10.1016/j.vetmic.2009.04.020. [PubMed]
190. Wang Y-C, Chan JP-W, Yeh K-S, Chang C-C, Hsuan S-L, Hsieh Y-M, Chang Y-C, Lai T-C, Lin W-H, Chen T-H. 2010. Molecular characterization of enrofloxacin resistant Actinobacillus pleuropneumoniae isolates. Vet Microbiol 142:309–312 http://dx.doi.org/10.1016/j.vetmic.2009.09.067. [PubMed]
191. Guo L, Zhang J, Xu C, Zhao Y, Ren T, Zhang B, Fan H, Liao M. 2011. Molecular characterization of fluoroquinolone resistance in Haemophilus parasuis isolated from pigs in South China. J Antimicrob Chemother 66:539–542 http://dx.doi.org/10.1093/jac/dkq497. [PubMed]
192. Zhang Q, Zhou M, Song D, Zhao J, Zhang A, Jin M. 2013. Molecular characterisation of resistance to fluoroquinolones in Haemophilus parasuis isolated from China. Int J Antimicrob Agents 42:87–89 http://dx.doi.org/10.1016/j.ijantimicag.2013.03.011. [PubMed]
193. Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother 56:20–51 http://dx.doi.org/10.1093/jac/dki171. [PubMed]
194. Chen L, Wu D, Cai X, Guo F, Blackall PJ, Xu X, Chen H. 2012. Electrotransformation of Haemophilus parasuis with in vitro modified DNA based on a novel shuttle vector. Vet Microbiol 155:310–316 http://dx.doi.org/10.1016/j.vetmic.2011.08.020. [PubMed]
195. Luan SL, Chaudhuri RR, Peters SE, Mayho M, Weinert LA, Crowther SA, Wang J, Langford PR, Rycroft A, Wren BW, Tucker AW, Maskell DJ, BRaDP1T Consortium. 2013. Generation of a Tn 5 transposon library in Haemophilus parasuis and analysis by transposon-directed insertion-site sequencing (TraDIS). Vet Microbiol 166:558–566 http://dx.doi.org/10.1016/j.vetmic.2013.07.008. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0022-2017
2018-06-14
2019-08-21

Abstract:

Members of the highly heterogeneous family cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (, , , , and ). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the structure and organization of genes found in (H)-carrying plasmids from , , [.] , and . Comparison of the maps of the partially sequenced plasmids pPMT1 (accession no. Y15510) and pVM111 (accession nos. AJ514834 and U00792), both from , pMHT1 (accession no. Y16103) from , and pPAT1 (accession no. AJ245947) from [.] (accession no. Z21724) and the completely sequenced plasmids p9956 (accession no. AY362554; 5,674 bp) and p12494 (accession no. DQ517426; 14,393 bp), both from . Genes are shown as arrows, with the arrowhead indicating the direction of transcription. The following genes are involved in antimicrobial resistance: -(H) (tetracycline resistance), (sulfonamide resistance), and and (streptomycin resistance); plasmid replication: ; mobilization functions: , , , and ; recombination functions: ; DNA partition: ; virulence: and ; unknown function: the open reading frame indicated by the white arrow. The Δ symbol indicates a truncated functionally inactive gene. The white boxes in the maps of pPMT1 and p12494 indicate the limits of the insertion sequences IS, IS, and IS; the arrows within these boxes indicate the reading frames of the corresponding transposase genes. Gray shaded areas indicate the -(H) gene region common to all these plasmids with ≥95% nucleotide sequence identity. A distance scale in kilobases is shown at the bottom of the figure.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the structure and organization of -, (L)-, and (B)-carrying plasmids from , , [] , [.] , and . Comparison of the maps of the -carrying streptomycin/spectinomycin resistance plasmid pCCK647 (accession no. AJ884726; 5,198 bp) from , the (L)-carrying tetracycline resistance plasmid pCCK3259 (accession no. AJ966516; 5,317 bp) from , and the (B)-carrying tetracycline resistance plasmids pHS-Tet (accession no. AY862435; 5,147 bp) from [] , pPAT2 (accession no. AJ278685; partially sequenced) from [.] , p11745 (accession no. DQ176855; 5,486 bp) from , pHPS1019 (accession no. HQ622101; 4,597 bp) from [.] , and pB1001 (accession no. EU252517; 5,128 bp) from . Genes are shown as arrows, with the arrowhead indicating the direction of transcription. The following genes are involved in antimicrobial resistance: -(B), (B), and (L) (tetracycline resistance) and (streptomycin/spectinomycin resistance); plasmid replication: ; mobilization functions: , , and ; unknown function: the open reading frames indicated by white arrows. Gray-shaded areas indicate the regions common to plasmids, and the different shades of gray illustrate the percentages of nucleotide sequence identity between the plasmids, as indicated by the scale at the bottom of the figure. A distance scale in kilobases is shown.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of the structure and organization of the -carrying resistance plasmids from , [] , , , and “.” Comparison of the maps of -carrying resistance plasmids pAB2 (accession no. Z21724; 4,316 bp) from , pB1000 (accession no. DQ840517; 4,613 bp) from [] , pB1002 (accession no. EU283341; 5,685 bp) from , APP7_A (accession no. CP001094; 5,685 bp) from , pIMD50 (accession no. AJ830711; 8,751 bp) from “,” and pHB0503 (accession no. EU715370; 15,079 bp) from . It should be noted that another three pIMD50-related -carrying resistance plasmids from “” have been sequenced completely: pKMA5 (accession no. AM748705), pKMA202 (accession no. AM748706), and pKMA1467 (accession no. AJ830712). Genes are shown as arrows, with the arrowhead indicating the direction of transcription. The following genes are involved in antimicrobial resistance: (sulfonamide resistance), and (streptomycin resistance), (β-lactam resistance), (gentamicin resistance), (chloramphenicol resistance), and (kanamycin/neomycin resistance); plasmid replication: ; mobilization functions: , , and ; resolvase function: ; DNA partition: ; unknown function: open reading frames indicated by white arrows. The prefix Δ indicates a truncated functionally inactive gene. Gray-shaded areas indicate the regions common to plasmids, and the different shades of gray illustrate the percentages of nucleotide sequence identity between the plasmids, as indicated by the scale at the bottom of the figure. A distance scale in kilobases is shown.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic representation of the structure and organization of selected -based (multi-)resistance plasmids from , “,” , , [.] , , unnamed taxon 10, , and . Comparison of the maps of the plasmids pKMA2425 (accession no. AJ830714; 3,156 bp) from , pARD3079 (accession no. AM748707; 4,065 bp) from , pKMA757 (accession no. AJ830713; 4,556 bp) from “,” ABB7_B (accession no. NC_010941; 4,236 bp) from , pIG1 (accession no. U57647) from , pYFC1 (accession no. M83717) from , pFZG1012 (accession no. HQ015158; partially sequenced) from [.] , pLS88 (accession no. L23118; 4,772 bp) from , pYMH5 (accession no. EF015636; 4,772 bp) from , pM3224T (accession no. KP197004; 6,050 bp) from , pMS260 (accession no. AB109805; 8,124 bp) from , pMVSCS1 (accession no. AJ319822; 5,621 bp) from , pMHSCS1 (accession no. AJ249249; 4,992 bp) from unnamed taxon 10, pFZ51 (accession no. JN202624; 15,672 bp) from [.] , and pKMA757 (accession no. AJ830713; 4,556 bp) from “.” The map of another -based multiresistance plasmid, pIMD50 (accession no. AJ830711) from “,” is displayed in Fig. 3 . Genes are shown as arrows, with the arrowhead indicating the direction of transcription. The following genes are involved in antimicrobial resistance: (sulfonamide resistance), and (streptomycin resistance), (chloramphenicol resistance), (kanamycin/neomycin resistance), and (β-lactam resistance); plasmid replication: , , , and ; mobilization functions: , , , , , and ; unknown function: open reading frames indicated by white arrows. The prefix Δ indicates a truncated functionally inactive gene. Gray-shaded areas indicate the regions common to plasmids and the different shades of gray illustrate the percentages of nucleotide sequence identity between the plasmids, as indicated by the scale at the bottom of the figure. A distance scale in kilobases is shown.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic representation of the structure and organization of selected -based (multi-)resistance plasmids from compared to an in-part-related plasmid from [] , and , [.] , , and -based (multi-)resistance plasmids from and [.] . Comparison of the maps of plasmids pCCK13698 (accession no. AM183225) from and its in-part-related plasmid pHS-Rec (accession no. AY862436; 9,462 bp) from [.] , pCCK381 (accession no. AJ871969; 10,874 bp) from , pCCK1900 (accession no. FM179941; 10,226 bp) from , pHPSF1 (accession no. KR262062; 6,328 bp) from [.] , pM3446F (accession no. KP696484; 7,709 bp) from , pMh1405 (accession no. NC_019260; 7,674 bp) from , p518 (accession no. KT355773; 3,937 bp) from , pFZG1012 (accession no. HQ015158; partially sequenced) from [.] , and pLS88 (accession no. L23118; 4,772 bp) from . Genes are shown as arrows, with the arrowhead indicating the direction of transcription. The following genes are involved in antimicrobial resistance: (sulfonamide resistance), and (streptomycin resistance), (chloramphenicol resistance), (chloramphenicol/florfenicol resistance), and (kanamycin/neomycin resistance); plasmid replication: , , , and ; mobilization functions: , , , and ; transposition functions: ; recombinase or integrase functions: and ; DNA partition: ; unknown function: open reading frames indicated by white arrows. The prefix Δ indicates a truncated functionally inactive gene. The boxes in the map of pCCK13698 indicate the limits of the insertion sequences IS and IS; the arrows within these boxes indicate the reading frames of the corresponding transposase genes. Gray-shaded areas indicate the regions common to plasmids, and the different shades of gray illustrate the percentages of nucleotide sequence identity between the plasmids, as indicated by the scale at the bottom of the figure. A distance scale in kilobases is shown.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Percentages of resistance of , , , and isolates from different animal sources against selected antimicrobial agents

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Generic image for table
TABLE 2

Antimicrobial resistance genes and mutations identified in , , , , and isolates of veterinary importance

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017
Generic image for table
TABLE 3

Subset of resistance plasmids identified in , , and of veterinary importance

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0022-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error