1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Stewardship in Veterinary Medicine

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: David H. Lloyd1, Stephen W. Page2
  • Editors: Frank Møller Aarestrup3, Stefan Schwarz4, Jianzhong Shen5, Lina Cavaco6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Clinical Sciences and Services, Royal Veterinary College (University of London), Hawkshead Campus North Mymms, Hatfield AL9 7TA, United Kingdom; 2: Advanced Veterinary Therapeutics, Newtown, NSW 2042, Australia; 3: Technical University of Denmark, Lyngby, Denmark; 4: Freie Universität Berlin, Berlin, Germany; 5: China Agricultural University, Beijing, China; 6: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
  • Received 24 May 2017 Accepted 03 January 2018 Published 08 June 2018
  • David H Lloyd, [email protected]
image of Antimicrobial Stewardship in Veterinary Medicine
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Antimicrobial Stewardship in Veterinary Medicine, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0023-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/3/ARBA-0023-2017-2.gif
  • Abstract:

    While antimicrobial resistance is already a public health crisis in human medicine, therapeutic failure in veterinary medicine due to antimicrobial resistance remains relatively uncommon. However, there are many pathways by which antimicrobial resistance determinants can travel between animals and humans: by close contact, through the food chain, or indirectly via the environment. Antimicrobial stewardship describes measures that can help mitigate the public health crisis and preserve the effectiveness of available antimicrobial agents. Antimicrobial stewardship programs have been principally developed, implemented, and studied in human hospitals but are beginning to be adapted for other applications in human medicine. Key learning from the experiences of antimicrobial stewardship programs in human medicine are summarized in this article—guiding the development of a stewardship framework suitable for adaptation and use in both companion animal and livestock practice. The antimicrobial stewardship program for veterinary use integrates infection prevention and control together with approaches emphasizing avoidance of antimicrobial agents. The 5R framework of continuous improvement that is described recognizes the importance of executive support; highly motivated organizations and teams (responsibility); the need to review the starting position, set objectives, and determine means of measuring progress and success; and a critical focus on reducing, replacing, and refining the use of antimicrobial agents. Significant issues that are currently the focus of intensive research include improved detection and diagnosis of infections, refined dosing regimens that are simultaneously effective while not selecting resistance, searches for alternatives to antimicrobial agents, and development of improved vaccines to enhance immunity and reduce disease.

  • Citation: Lloyd D, Page S. 2018. Antimicrobial Stewardship in Veterinary Medicine. Microbiol Spectrum 6(3):ARBA-0023-2017. doi:10.1128/microbiolspec.ARBA-0023-2017.

References

1. Rollin BE. 2005. Reflections on stewardship. Proceedings of the North American Veterinary Conference, January 8–12, 2005, Orlando, FL. http://www.ivis.org/proceedings/navc/2005/SAE/180.pdf?LA=1. [PubMed]
2. Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. 2014. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 14:13 http://dx.doi.org/10.1186/1471-2334-14-13.
3. O’Neill J (chair). 2016. The review on antimicrobial resistance. Tackling drug resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.
4. Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. 2015. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654 http://dx.doi.org/10.1073/pnas.1503141112. [PubMed]
5. O’Neill J (chair). 2015. The review on antimicrobial resistance. Antimicrobials in agriculture and the environment: reducing unnecessary use and waste. https://amr-review.org/sites/default/files/Antimicrobials%20in%20agriculture%20and%20the%20environment%20-%20Reducing%20unnecessary%20use%20and%20waste.pdf.
6. Landers TF, Cohen B, Wittum TE, Larson EL. 2012. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 127:4–22 http://dx.doi.org/10.1177/003335491212700103.
7. Damborg P, Broens EM, Chomel BB, Guenther S, Pasmans F, Wagenaar JA, Weese JS, Wieler LH, Windahl U, Vanrompay D, Guardabassi L. 2016. Bacterial zoonoses transmitted by household pets: state-of-the-art and future perspectives for targeted research and policy actions. J Comp Pathol 155(Suppl 1) :S27–S40 http://dx.doi.org/10.1016/j.jcpa.2015.03.004. [PubMed]
8. Soares Magalhães RJ, Loeffler A, Lindsay J, Rich M, Roberts L, Smith H, Lloyd DH, Pfeiffer DU. 2010. Risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection in dogs and cats: a case-control study. Vet Res 41:55 http://dx.doi.org/10.1051/vetres/2010028. [PubMed]
9. Loeffler A, Pfeiffer DU, Lindsay JA, Soares Magalhães RJ, Lloyd DH. 2011. Prevalence of and risk factors for MRSA carriage in companion animals: a survey of dogs, cats and horses. Epidemiol Infect 139:1019–1028 http://dx.doi.org/10.1017/S095026881000227X.
10. Fritz SA, Hogan PG, Singh LN, Thompson RM, Wallace MA, Whitney K, Al-Zubeidi D, Burnham CA, Fraser VJ. 2014. Contamination of environmental surfaces with Staphylococcus aureus in households with children infected with methicillin-resistant S aureus. JAMA Pediatr 168:1030–1038 http://dx.doi.org/10.1001/jamapediatrics.2014.1218. [PubMed]
11. Sluyter FJ. 2001. Traceability of Equidae: a population in motion. Rev Sci Tech 20:500–509 http://dx.doi.org/10.20506/rst.20.2.1292. [PubMed]
12. Müller A, Seinige D, Jansen W, Klein G, Ehricht R, Monecke S, Kehrenberg C. 2016. Variety of antimicrobial resistances and virulence factors in Staphylococcus aureus isolates from meat products legally and illegally introduced to Germany. PLoS One 11:e0167864 http://dx.doi.org/10.1371/journal.pone.0167864. [PubMed]
13. Queenan K, Häsler B, Rushton J. 2016. A One Health approach to antimicrobial resistance surveillance: is there a business case for it? Int J Antimicrob Agents 48:422–427 http://dx.doi.org/10.1016/j.ijantimicag.2016.06.014. [PubMed]
14. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient. Nature 477:457–461 http://dx.doi.org/10.1038/nature10388. [PubMed]
15. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD. 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953 http://dx.doi.org/10.1371/journal.pone.0034953. [PubMed]
16. Hall BG, Barlow M. 2004. Evolution of the serine β-lactamases: past, present and future. Drug Resist Updat 7:111–123 http://dx.doi.org/10.1016/j.drup.2004.02.003. [PubMed]
17. Davey P, Brown E, Fenelon L, Finch R, Gould I, Hartman G, Holmes A, Ramsay C, Taylor E, Wilcox M, Wiffen P. 2005. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev Oct 19;(4):CD003543.
18. Davey P, Marwick CA, Scott CL, Charani E, McNeil K, Brown E, Gould IM, Ramsay CR, Michie S. 2017. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev Feb 9;2:CD003543.
19. Schuts EC, Hulscher MEJL, Mouton JW, Verduin CM, Stuart JWTC, Overdiek HWPM, van der Linden PD, Natsch S, Hertogh CMPM, Wolfs TFW, Schouten JA, Kullberg BJ, Prins JM. 2016. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis 16:847–856 http://dx.doi.org/10.1016/S1473-3099(16)00065-7.
20. van de Beek D, de Gans J, Spanjaard L, Vermeulen M, Dankert J. 2002. Antibiotic guidelines and antibiotic use in adult bacterial meningitis in The Netherlands. J Antimicrob Chemother 49:661–666 http://dx.doi.org/10.1093/jac/49.4.661. [PubMed]
21. Brown EM. 2002. Guidelines for antibiotic usage in hospitals. J Antimicrob Chemother 49:587–592 http://dx.doi.org/10.1093/jac/49.4.587. [PubMed]
22. Principi N, Esposito S. 2016. Antimicrobial stewardship in paediatrics. BMC Infect Dis 16:424 http://dx.doi.org/10.1186/s12879-016-1772-z. [PubMed]
23. Charani E, Edwards R, Sevdalis N, Alexandrou B, Sibley E, Mullett D, Franklin BD, Holmes A. 2011. Behavior change strategies to influence antimicrobial prescribing in acute care: a systematic review. Clin Infect Dis 53:651–662 http://dx.doi.org/10.1093/cid/cir445. [PubMed]
24. Charani E, Castro-Sánchez E, Sevdalis N, Kyratsis Y, Drumright L, Shah N, Holmes A. 2013. Understanding the determinants of antimicrobial prescribing within hospitals: the role of “prescribing etiquette”. Clin Infect Dis 57:188–196 http://dx.doi.org/10.1093/cid/cit212. [PubMed]
25. Mattick K, Kelly N, Rees C. 2014. A window into the lives of junior doctors: narrative interviews exploring antimicrobial prescribing experiences. J Antimicrob Chemother 69:2274–2283 http://dx.doi.org/10.1093/jac/dku093. [PubMed]
26. Parker HM, Mattick K. 2016. The determinants of antimicrobial prescribing among hospital doctors in England: a framework to inform tailored stewardship interventions. Br J Clin Pharmacol 82:431–440 http://dx.doi.org/10.1111/bcp.12953. [PubMed]
27. World Health Organization. 2017. Critically Important Antimicrobials for Human Medicine, 5th revision. World Health Organization, Geneva. http://www.who.int/foodsafety/publications/antimicrobials-fifth/en/.
28. World Organisation for Animal Health (OIE). 2015. OIE list of antimicrobials of veterinary importance. 2015. Available at http://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/Eng_OIE_List_antimicrobials_May2015.pdf.
29. Tiong JJ, Loo JS, Mai CW. 2016. Global antimicrobial stewardship: a closer look at the formidable implementation challenges. Front Microbiol 7:1860 http://dx.doi.org/10.3389/fmicb.2016.01860. [PubMed]
30. Hajjou M, Krech L, Lane-Barlow C, Roth L, Pribluda VS, Phanouvong S, El-Hadri L, Evans L III, Raymond C, Yuan E, Siv L, Vuong TA, Boateng KP, Okafor R, Chibwe KM, Lukulay PH. 2015. Monitoring the quality of medicines: results from Africa, Asia, and South America. Am J Trop Med Hyg 92(Suppl) :68–74 http://dx.doi.org/10.4269/ajtmh.14-0535. [PubMed]
31. Kelesidis T, Falagas ME. 2015. Substandard/counterfeit antimicrobial drugs. Clin Microbiol Rev 28:443–464 http://dx.doi.org/10.1128/CMR.00072-14. [PubMed]
32. Mackey TK, Nayyar G. 2016. Digital danger: a review of the global public health, patient safety and cybersecurity threats posed by illicit online pharmacies. Br Med Bull 118:110–126 http://dx.doi.org/10.1093/bmb/ldw016. [PubMed]
33. Loeffler A, McCarthy A, Lloyd DH, Musilová E, Pfeiffer DU, Lindsay JA. 2013. Whole-genome comparison of meticillin-resistant Staphylococcus aureus CC22 SCC mecIV from people and their in-contact pets. Vet Dermatol 24:538–e128 http://dx.doi.org/10.1111/vde.12062. [PubMed]
34. DANMAP. 2014. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. http://www.danmap.org/∼/media/Projekt%20sites/Danmap/DANMAP%20reports/DANMAP%202014/Danmap_2014.ashx.
35. Larsen J, Petersen A, Sørum M, Stegger M, van Alphen L, Valentiner-Branth P, Knudsen LK, Larsen LS, Feingold B, Price LB, Andersen PS, Larsen AR, Skov RL. 2015. Meticillin-resistant Staphylococcus aureus CC398 is an increasing cause of disease in people with no livestock contact in Denmark, 1999 to 2011. Euro Surveill 20:30021 http://dx.doi.org/10.2807/1560-7917.ES.2015.20.37.30021. [PubMed]
36. Cuny C, Wieler LH, Witte W. 2015. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel) 4:521–543 http://dx.doi.org/10.3390/antibiotics4040521. [PubMed]
37. van der Mee-Marquet NL, Corvaglia A, Haenni M, Bertrand X, Franck JB, Kluytmans J, Girard M, Quentin R, François P. 2014. Emergence of a novel subpopulation of CC398 Staphylococcus aureus infecting animals is a serious hazard for humans. Front Microbiol 5:652 http://dx.doi.org/10.3389/fmicb.2014.00652. [PubMed]
38. Grøntvedt CA, Elstrøm P, Stegger M, Skov RL, Skytt Andersen P, Larssen KW, Urdahl AM, Angen Ø, Larsen J, Åmdal S, Løtvedt SM, Sunde M, Bjørnholt JV. 2016. Methicillin-resistant Staphylococcus aureus CC398 in humans and pigs in Norway: a “One Health” perspective on introduction and transmission. Clin Infect Dis 63:1431–1438 http://dx.doi.org/10.1093/cid/ciw552. [PubMed]
39. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C, Threlfall J. 2013. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56:1030–1037 http://dx.doi.org/10.1093/cid/cis1043.
40. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168 http://dx.doi.org/10.1016/S1473-3099(15)00424-7.
41. Skov RL, Monnet DL. 2016. Plasmid-mediated colistin resistance ( mcr-1 gene): three months later, the story unfolds. Euro Surveill 21:30155 http://dx.doi.org/10.2807/1560-7917.ES.2016.21.9.30155. [PubMed]
42. European Medicines Agency. 2016. Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/07/WC500211080.pdf.
43. Goldman JL, Jackson MA. 2015. Tip of the iceberg: understanding the unintended consequences of antibiotics. Pediatrics 136:e492–e493 http://dx.doi.org/10.1542/peds.2015-1296. [PubMed]
44. Dethlefsen L, Huse S, Sogin ML, Relman DA. 2008. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280 http://dx.doi.org/10.1371/journal.pbio.0060280. [PubMed]
45. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. 2014. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 168:1063–1069 http://dx.doi.org/10.1001/jamapediatrics.2014.1539. [PubMed]
46. Saari A, Virta LJ, Sankilampi U, Dunkel L, Saxen H. 2015. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics 135:617–626 http://dx.doi.org/10.1542/peds.2014-3407. [PubMed]
47. Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS, Lee DY, Lewis JD. 2016. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology 151:120–129.e5 http://dx.doi.org/10.1053/j.gastro.2016.03.006. [PubMed]
48. Horton DB, Scott FI, Haynes K, Putt ME, Rose CD, Lewis JD, Strom BL. 2015. Antibiotic exposure and juvenile idiopathic arthritis: a case–control study. Pediatrics 136:e333–e343 http://dx.doi.org/10.1542/peds.2015-0036. [PubMed]
49. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. 2016. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165:1762–1775 http://dx.doi.org/10.1016/j.cell.2016.06.001. [PubMed]
50. Cogliani C, Goossens H, Greko C. 2011. Restricting antimicrobial use in food animals: lessons from Europe. Microbe 6:274–279.
51. World Health Organization. 2015. Global Action Plan on Antimicrobial Resistance. http://www.wpro.who.int/entity/drug_resistance/resources/global_action_plan_eng.pdf.
52. Food and Agriculture Organisation of the United Nations. 2016. The FAO action plan on antimicrobial resistance 2016–2020. FAO Rome, September 2016. http://www.fao.org/3/a-i5996e.pdf.
53. World Health Organization, Food and Agriculture Organization, World Organisation for Animal Health. 2016. Antimicrobial Resistance. A Manual for Developing National Action Plans, version 1. http://apps.who.int/iris/bitstream/10665/204470/1/9789241549530_eng.pdf?ua=1.
54. FAO/WHO Codex Alimentarius. 2015. Codex texts on foodborne antimicrobial resistance. ftp://ftp.fao.org/codex/Publications/Booklets/Antimicrobial/Antimicrobial_2015Tri.pdf.
55. European Centre for Disease Prevention and Control. 2016. Antibiotic resistance strategies and action plans. http://ecdc.europa.eu/en/healthtopics/Healthcare-associated_infections/guidance-infection-prevention-control/Pages/antimicrobial-resistance-strategies-action-plans.aspx. Accessed 20 December 2016.
56. Commonwealth of Australia. 2015. Responding to the Threat of Antimicrobial Resistance. Australia’s first National Antimicrobial Resistance Strategy 2015–2019. Commonwealth of Australia, Canberra, Australia. https://www.amr.gov.au/australias-response/national-amr-strategy.
57. Public Health Agency of Canada. 2015. Federal Action Plan on Antimicrobial Resistance and Use in Canada. Building on the Federal Framework for Action. Public Health Agency of Canada, Ottawa, Canada. http://healthycanadians.gc.ca/alt/pdf/publications/drugs-products-medicaments-produits/antibiotic-resistance-antibiotique/action-plan-daction-eng.pdf. Accessed December 20 2016.
58. The White House. 2014. National strategy for combating antibiotic-resistant bacteria, September 2014. Available at http://obamawhitehouse.archives.gov/sites/default/files/docs/carb_national_strategy.pdf. Accessed December 20 2016.
59. Elliott K. 2015. Antibiotics on the farm: agriculture’s role in drug resistance. CGD Policy Paper 59. Center for Global Development, Washington, DC. http://www.cgdev.org/publication/antibiotics-farm-agricultures-role-drug-resistance.
60. Center for Veterinary Medicine (CVM). 2017. FDA announces implementation of GFI #213, outlines continuing efforts to address antimicrobial resistance. http://www.fda.gov/AnimalVeterinary/NewsEvents/CVMUpdates/ucm535154.htm. Accessed 9 June 2017.
61. Kimang’a AN. 2012. A situational analysis of antimicrobial drug resistance in Africa: are we losing the battle? Ethiop J Health Sci 22:135–143. [PubMed]
62. Nguyen KV, Thi Do NT, Chandna A, Nguyen TV, Pham CV, Doan PM, Nguyen AQ, Thi Nguyen CK, Larsson M, Escalante S, Olowokure B, Laxminarayan R, Gelband H, Horby P, Thi Ngo HB, Hoang MT, Farrar J, Hien TT, Wertheim HF. 2013. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health 13:1158 http://dx.doi.org/10.1186/1471-2458-13-1158. [PubMed]
63. Huttner B, Harbarth S, Nathwani D, ESCMID Study Group for Antibiotic Policies (ESGAP). 2014. Success stories of implementation of antimicrobial stewardship: a narrative review. Clin Microbiol Infect 20:954–962 http://dx.doi.org/10.1111/1469-0691.12803. [PubMed]
64. Bender JB, Barlam TF, Glore RP, Gumley N, Grayzel SE, Hoang C, Murphy MJ, Papich MG, Sykes JE, Watts JL, Whichard JM, AVMA Task Force for Antimicrobial Stewardship in Companion Animal Practice. 2015. Antimicrobial stewardship in companion animal practice. J Am Vet Med Assoc 246:287–288 http://dx.doi.org/10.2460/javma.246.3.287. [PubMed]
65. Weese JS, Giguère S, Guardabassi L, Morley PS, Papich M, Ricciuto DR, Sykes JE. 2015. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J Vet Intern Med 29:487–498 http://dx.doi.org/10.1111/jvim.12562. [PubMed]
66. Prescott JF, Szkotnicki J, McClure JT, Reid-Smith RJ, Léger DF. 2012. Conference report: antimicrobial stewardship in Canadian agriculture and veterinary medicine. How is Canada doing and what still needs to be done? Can Vet J 53:402–407. [PubMed]
67. Weese JS, Blondeau JM, Boothe D, Breitschwerdt EB, Guardabassi L, Hillier A, Lloyd DH, Papich MG, Rankin SC, Turnidge JD, Sykes JE. 2011. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: antimicrobial guidelines working group of the international society for companion animal infectious diseases. Vet Med Int 2011:263768 http://dx.doi.org/10.4061/2011/263768. [PubMed]
68. Hillier A, Lloyd DH, Weese JS, Blondeau JM, Boothe D, Breitschwerdt E, Guardabassi L, Papich MG, Rankin S, Turnidge JD, Sykes JE. 2014. Guidelines for the diagnosis and antimicrobial therapy of canine superficial bacterial folliculitis (Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases). Vet Dermatol 25:163–175, e42–e43.
69. Lappin MR, Blondeau J, Boothe D, Breitschwerdt EB, Guardabassi L, Lloyd DH, Papich MG, Rankin SC, Sykes JE, Turnidge J, Weese JS. 2017. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med 31:279–294 http://dx.doi.org/10.1111/jvim.14627. [PubMed]
70. European Commission Directorate-General for Health and Food Safety. 2017. Final report of a fact-finding mission carried out in The Netherlands from 13 September 2016 to 20 September 2016 in order to gather information on the prudent use of antimicrobials in animals. Audit number 2016-8889, March 1 2017. http://ec.europa.eu/food/audits-analysis/audit_reports/details.cfm?rep_id=3753.
71. Prescott JF, Boerlin P. 2016. Antimicrobial use in companion animals and Good Stewardship Practice. Vet Rec 179:486–488 http://dx.doi.org/10.1136/vr.i5908. [PubMed]
72. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK. 2016. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:e51–e77 http://dx.doi.org/10.1093/cid/ciw118. [PubMed]
73. de With K, Allerberger F, Amann S, Apfalter P, Brodt H-R, Eckmanns T, Fellhauer M, Geiss HK, Janata O, Krause R, Lemmen S, Meyer E, Mittermayer H, Porsche U, Presterl E, Reuter S, Sinha B, Strauß R, Wechsler-Fördös A, Wenisch C, Kern WV. 2016. Strategies to enhance rational use of antibiotics in hospital: a guideline by the German Society for Infectious Diseases. Infection 44:395–439 http://dx.doi.org/10.1007/s15010-016-0885-z. [PubMed]
74. Doron S, Davidson LE. 2011. Antimicrobial stewardship. Mayo Clin Proc 86:1113–1123 http://dx.doi.org/10.4065/mcp.2011.0358. [PubMed]
75. Duguid M, Cruickshank M (ed). 2011. Antimicrobial Stewardship in Australian Hospitals. Australian Commission on Safety and Quality in Health Care, Sydney, Australia.
76. Hanson A, Crank CW. 2017. Development and execution of stewardship interventions, p 290–301. In LaPlante KL, Cunha CB, Morrill HJ, Rice LB, Mylonakis E (ed), Antimicrobial Stewardship: Principles and Practice. CAB International, Wallingford, Oxfordshire, United Kingdom. http://dx.doi.org/10.1079/9781780644394.0290
77. Jeffs L, Thampi N, Maione M, Steinberg M, Morris AM, Bell CM. 2015. A qualitative analysis of implementation of antimicrobial stewardship at 3 academic hospitals: understanding the key influences on success. Can J Hosp Pharm 68:395–400 http://dx.doi.org/10.4212/cjhp.v68i5.1486. [PubMed]
78. LaPlante KL, Cunha CB, Morrill HJ, Rice LB, Mylonakis E. 2017. Antimicrobial Stewardship: Principles and Practice. CAB International, Wallingford, Oxfordshire, United Kingdom. http://dx.doi.org/10.1079/9781780644394.0000
79. Laundy M, Gilchrist M, Whitney L. 2016. Antimicrobial Stewardship. Oxford University Press, Oxford, United Kingdom. http://dx.doi.org/10.1093/med/9780198758792.001.0001
80. Pulcini C, Ergonul O, Can F, Beovic B. 2017. Antimicrobial Stewardship. Elsevier Science Publishing Co., Inc., San Diego, CA.
81. Sanchez GV, Fleming-Dutra KE, Roberts RM, Hicks LA. 2016. Core elements of outpatient antibiotic stewardship. MMWR Recomm Rep 65:1–12 http://dx.doi.org/10.15585/mmwr.rr6506a1. [PubMed]
82. Sedrak A, Anpalahan M, Luetsch K. 2017. Enablers and barriers to the use of antibiotic guidelines in the assessment and treatment of community-acquired pneumonia: a qualitative study of clinicians’ perspectives. Int J Clin Pract 71:e12959 http://dx.doi.org/10.1111/ijcp.12959. [PubMed]
83. Sikkens JJ, van Agtmael MA, Peters EJG, Lettinga KD, van der Kuip M, Vandenbroucke-Grauls CMJE, Wagner C, Kramer MHH. 2017. Behavioral approach to appropriate antimicrobial prescribing in hospitals: The Dutch Unique Method for Antimicrobial Stewardship (DUMAS) participatory intervention study. JAMA Intern Med 177:1130–1138 http://dx.doi.org/10.1001/jamainternmed.2017.0946. [PubMed]
84. van Buul LW, Sikkens JJ, van Agtmael MA, Kramer MHH, van der Steen JT, Hertogh CMPM. 2014. Participatory action research in antimicrobial stewardship: a novel approach to improving antimicrobial prescribing in hospitals and long-term care facilities. J Antimicrob Chemother 69:1734–1741 http://dx.doi.org/10.1093/jac/dku068. [PubMed]
85. McDougall S, Compton C. 2015. Effect of infusing an internal teat sealant into a gland infected with a major pathogen. Livestock (Lond) 20:194–200 http://dx.doi.org/10.12968/live.2015.20.4.194.
86. Postma M, Vanderhaeghen W, Sarrazin S, Maes D, Dewulf J. 2017. Reducing antimicrobial usage in pig production without jeopardizing production parameters. Zoonoses Public Health 64:63–74 http://dx.doi.org/10.1111/zph.12283. [PubMed]
87. Reyher KK, Barrett DC, Tisdall DA. 2017. Achieving responsible antimicrobial use: communicating with farmers. In Pract 39:63–71 http://dx.doi.org/10.1136/inp.j341.
88. Tisdall DA, Reyher KK, Barrett DC. 2017. Achieving responsible medicines use at practice and farm level. In Pract 39:119–127 http://dx.doi.org/10.1136/inp.j658.
89. van Dijk L, Hayton A, Main DCJ, Booth A, King A, Barrett DC, Buller HJ, Reyher KK. 2017. Participatory policy making by dairy producers to reduce anti-microbial use on farms. Zoonoses Public Health 64:476–484 http://dx.doi.org/10.1111/zph.12329. [PubMed]
90. Hurst AL, Child J, Pearce K, Palmer C, Todd JK, Parker SK. 2016. Handshake stewardship: a highly effective rounding-based antimicrobial optimization service. Pediatr Infect Dis J 35:1104–1110 http://dx.doi.org/10.1097/INF.0000000000001245. [PubMed]
91. Messacar K, Campbell K, Pearce K, Pyle L, Hurst AL, Child J, Parker SK. 2017. A handshake from antimicrobial stewardship opens doors for infectious disease consultations. Clin Infect Dis 64:1449–1452 http://dx.doi.org/10.1093/cid/cix139. [PubMed]
92. Gorman A. 2017. Handshake-free zone: stopping the spread of germs in the hospital. Medscape. http://www.medscape.com/viewarticle/880856. Accessed 30 May 2017.
93. Giry M, Pulcini C, Rabaud C, Boivin JM, Mauffrey V, Birgé J. 2016. Acceptability of antibiotic stewardship measures in primary care. Med Mal Infect 46:276–284 http://dx.doi.org/10.1016/j.medmal.2016.02.001. [PubMed]
94. Tamma PD, Avdic E, Keenan JF, Zhao Y, Anand G, Cooper J, Dezube R, Hsu S, Cosgrove SE. 2017. What is the more effective antibiotic stewardship intervention: pre-prescription authorization or post-prescription review with feedback? Clin Infect Dis 64:537–543. [PubMed]
95. Hallsworth M, Chadborn T, Sallis A, Sanders M, Berry D, Greaves F, Clements L, Davies SC. 2016. Provision of social norm feedback to high prescribers of antibiotics in general practice: a pragmatic national randomised controlled trial. Lancet 387:1743–1752 http://dx.doi.org/10.1016/S0140-6736(16)00215-4.
96. Meeker D, Linder JA, Fox CR, Friedberg MW, Persell SD, Goldstein NJ, Knight TK, Hay JW, Doctor JN. 2016. Effect of behavioral interventions on inappropriate antibiotic prescribing among primary care practices: a randomized clinical trial. JAMA 315:562–570 http://dx.doi.org/10.1001/jama.2016.0275. [PubMed]
97. Mitchell MW, Fowkes FG. 1985. Audit reviewed: does feedback on performance change clinical behaviour? J R Coll Physicians Lond 19:251–254. [PubMed]
98. van Buul LW, van der Steen JT, Achterberg WP, Schellevis FG, Essink RTGM, de Greeff SC, Natsch S, Sloane PD, Zimmerman S, Twisk JWR, Veenhuizen RB, Hertogh CMPM. 2015. Effect of tailored antibiotic stewardship programmes on the appropriateness of antibiotic prescribing in nursing homes. J Antimicrob Chemother 70:2153–2162.
99. Dunn F, Dunn J. 2012. Clinical audit: application in small animal practice. In Pract 34:243–245 http://dx.doi.org/10.1136/inp.e1763.
100. Page S, Prescott J, Weese S. 2014. The 5Rs approach to antimicrobial stewardship. Vet Rec 175:207–208 http://dx.doi.org/10.1136/vr.g5327. [PubMed]
101. Weese JS, Page SW, Prescott JF. 2013. Antimicrobial stewardship in animals, p 117–132. In Giguère S, Prescott JF, Dowling PM (ed), Antimicrobial Therapy in Veterinary Medicine, 5th ed. John Wiley & Sons, Inc., Ames, IA. http://dx.doi.org/10.1002/9781118675014.ch7
102. Guardabassi L, Prescott JF. 2015. Antimicrobial stewardship in small animal veterinary practice: from theory to practice. Vet Clin North Am Small Anim Pract 45:361–376, vii http://dx.doi.org/10.1016/j.cvsm.2014.11.005. [PubMed]
103. Morris AM, Stewart TE, Shandling M, McIntaggart S, Liles WC. 2010. Establishing an antimicrobial stewardship program. Healthc Q 13:64–70 http://dx.doi.org/10.12927/hcq.2013.21672. [PubMed]
104. Traynor K. 2016. Smaller size no barrier to effective antimicrobial stewardship. Am J Health Syst Pharm 73:1116–1120 http://dx.doi.org/10.2146/news160046. [PubMed]
105. Turnidge J. 2015. Antimicrobial stewardship: what is it, and how does it work? Anim Prod Sci 55:1432–1436.
106. Robb F, Seaton A. 2016. What are the principles and goals of antimicrobial stewardship? p 12–19. In Laundy M, Gilchrist M, Whitney L (ed), Antimicrobial Stewardship. Oxford University Press, Oxford, United Kingdom. http://dx.doi.org/10.1093/med/9780198758792.003.0002
107. CDC. 2017. Core elements of hospital antibiotic stewardship programs. https://www.cdc.gov/getsmart/healthcare/implementation/core-elements.html. Accessed 1 March 2017.
108. Kwok YLA, Harris P, McLaws M-L. 2017. Social cohesion: the missing factor required for a successful hand hygiene program. Am J Infect Control 45:222–227 http://dx.doi.org/10.1016/j.ajic.2016.10.021. [PubMed]
109. Bonansea SJ. 1906. Veterinary hygiene: applied to the protection of man against zoonosis. Public Health Pap Rep 32:320–324. [PubMed]
110. Jones LM. 1955. Suggestions for antibiotic therapy. Cornell Vet 45:316–326. [PubMed]
111. Koblentz GD. 2010. Biosecurity reconsidered: calibrating biological threats and responses. Int Secur 34:96–132 http://dx.doi.org/10.1162/isec.2010.34.4.96.
112. EMA (European Medicines Agency), EFSA (European Food Safety Authority). 2017. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). EFSA J 15(1). doi:10.2903/j.efsa.2017.4666.
113. Aviagen. 2014. Ross Broiler Management Manual. Aviagen, Newbridge, Midlothian, Scotland.
114. Cobb. 2013. Cobb Broiler Management Guide. Cobb-Vantress Inc, Siloam Springs, AK.
115. Green M, Bradley A, Breen J, Higgins H, Hudson C, Huxley J, Statham J, Green L, Hayton A. 2012. Dairy Herd Health. CABI, Wallingford, Oxfordshire, United Kingdom. http://dx.doi.org/10.1079/9781845939977.0000
116. Sanderson M. 2009. Biosecurity for feedlot enterprises, p 633–636. In Anderson DE, Rings DM (ed), Food Animal Practice, 5th ed. W.B. Saunders, Saint Louis, MO. http://dx.doi.org/10.1016/B978-141603591-6.10122-8
117. Laanen M, Persoons D, Ribbens S, de Jong E, Callens B, Strubbe M, Maes D, Dewulf J. 2013. Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. Vet J 198:508–512 http://dx.doi.org/10.1016/j.tvjl.2013.08.029. [PubMed]
118. Palić D, Scarfe AD, Walster CI. 2015. A standardized approach for meeting national and international aquaculture biosecurity requirements for preventing, controlling, and eradicating infectious diseases. J Appl Aquacult 27:185–219 http://dx.doi.org/10.1080/10454438.2015.1084164.
119. Gelaude P, Schlepers M, Verlinden M, Laanen M, Dewulf J. 2014. Biocheck.UGent: a quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use. Poult Sci 93:2740–2751 http://dx.doi.org/10.3382/ps.2014-04002. [PubMed]
120. DEFRA. 2017. Biosecurity and Preventing Disease in Captive Birds within a Prevention Zone. Department for Environment, Food & Rural Affairs, London, United Kingdom.
121. Burgess BA, Morley PS. 2015. Veterinary hospital surveillance systems. Vet Clin North Am Small Anim Pract 45:235–242, v http://dx.doi.org/10.1016/j.cvsm.2014.11.002. [PubMed]
122. Burgess BA, Morley PS. 2014. Infection control in equine critical care settings. Vet Clin North Am Equine Pract 30:467–474, ix–x http://dx.doi.org/10.1016/j.cveq.2014.04.009. [PubMed]
123. Stull JW, Weese JS. 2015. Hospital-associated infections in small animal practice. Vet Clin North Am Small Anim Pract 45:217–233, v http://dx.doi.org/10.1016/j.cvsm.2014.11.009. [PubMed]
124. AVA. 2017. Guidelines for Veterinary Personal Biosecurity, 3rd ed. Australian Veterinary Association, St. Leonards, NSW, Australia.
125. Canadian Committee on Antibiotic Resistance. 2008. Infection Prevention and Control Best Practices for Small Animal Veterinary Clinics. Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada.
126. Williams CJ, Scheftel JM, Elchos BL, Hopkins SG, Levine JF. 2015. Compendium of veterinary standard precautions for zoonotic disease prevention in veterinary personnel: National Association of State Public Health Veterinarians: Veterinary Infection Control Committee 2015. J Am Vet Med Assoc 247:1252–1277 http://dx.doi.org/10.2460/javma.247.11.1252. [PubMed]
127. Bishop SC, Axford RFE, Nicholas FW, Owen JB. 2010. Breeding for Disease Resistance in Farm Animals, 3rd ed. CABI, Wallingford, Oxfordshire, United Kingdom. http://dx.doi.org/10.1079/9781845935559.0000
128. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL. 2017. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13:e1006206 http://dx.doi.org/10.1371/journal.ppat.1006206. [PubMed]
129. Gadde U, Kim WH, Oh ST, Lillehoj HS. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim Health Res Rev 18:26–45 http://dx.doi.org/10.1017/S1466252316000207. [PubMed]
130. Reiner G. 2016. Genetic resistance: an alternative for controlling PRRS? Porcine Health Manag 2:27 http://dx.doi.org/10.1186/s40813-016-0045-y. [PubMed]
131. Swaggerty CL, Pevzner IY, He H, Genovese KJ, Kogut MH. 2017. Selection for pro-inflammatory mediators produces chickens more resistant to Campylobacter jejuni. Poult Sci 96:1623–1627 http://dx.doi.org/10.3382/ps/pew465. [PubMed]
132. Whyte J, Blesbois E, McGrew MJ. 2016. Increased sustainability in poultry production: new tools and resources for genetic management. In Burton E, Gatcliffe J, O’Neill HM, Scholey D (ed), Sustainable Poultry Production in Europe, vol. 31. CABI, Wallingford, Oxfordshire, United Kingdom. http://dx.doi.org/10.1079/9781780645308.0214
133. NORM/NORM-VET. 2016. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway. 2015. Tromsø/Oslo, Norway.
134. Fertner M, Toft N, Martin HL, Boklund A. 2016. A register-based study of the antimicrobial usage in Danish veal calves and young bulls. Prev Vet Med 131:41–47 http://dx.doi.org/10.1016/j.prevetmed.2016.07.004. [PubMed]
135. Bak H, Rathkjen PH. 2009. Reduced use of antimicrobials after vaccination of pigs against porcine proliferative enteropathy in a Danish SPF herd. Acta Vet Scand 51:1 http://dx.doi.org/10.1186/1751-0147-51-1. [PubMed]
136. Beskow P, Söderlind O, Thafvelin B. 1989. Actinobacillus ( Haemophilus) pleuropneumoniae infections in swine: serological investigations and vaccination trials in combination with environmental improvements. Zentralbl Veterinarmed B 36:487–494.
137. Kyriakis SC, Alexopoulos C, Vlemmas J, Sarris K, Lekkas S, Koutsoviti-Papadopoulou M, Saoulidis K. 2001. Field study on the efficacy of two different vaccination schedules with HYORESP in a Mycoplasma hyopneumoniae-infected commercial pig unit. J Vet Med B Infect Dis Vet Public Health 48:675–684 http://dx.doi.org/10.1046/j.1439-0450.2001.00494.x. [PubMed]
138. Maass P. 2016. Ileitis vaccine: an alternative to antibiotics? Pig Prog (Doetinchem) 32:13–15.
139. Kleven SH. 2008. Control of avian mycoplasma infections in commercial poultry. Avian Dis 52:367–374 http://dx.doi.org/10.1637/8323-041808-Review.1. [PubMed]
140. Hay KE, Barnes TS, Morton JM, Gravel JL, Commins MA, Horwood PF, Ambrose RC, Clements ACA, Mahony TJ. 2016. Associations between exposure to viruses and bovine respiratory disease in Australian feedlot cattle. Prev Vet Med 127:121–133 http://dx.doi.org/10.1016/j.prevetmed.2016.01.024. [PubMed]
141. Hay KE, Morton JM, Clements ACA, Mahony TJ, Barnes TS. 2016. Associations between feedlot management practices and bovine respiratory disease in Australian feedlot cattle. Prev Vet Med 128:23–32 http://dx.doi.org/10.1016/j.prevetmed.2016.03.017. [PubMed]
142. Hay KE, Morton JM, Mahony TJ, Clements ACA, Barnes TS. 2016. Associations between animal characteristic and environmental risk factors and bovine respiratory disease in Australian feedlot cattle. Prev Vet Med 125:66–74 http://dx.doi.org/10.1016/j.prevetmed.2016.01.013. [PubMed]
143. Hay KE, Morton JM, Schibrowski ML, Clements ACA, Mahony TJ, Barnes TS. 2016. Associations between prior management of cattle and risk of bovine respiratory disease in feedlot cattle. Prev Vet Med 127:37–43 http://dx.doi.org/10.1016/j.prevetmed.2016.02.006. [PubMed]
144. Elbers AR, Cromwijk WA, Hunneman WA, Tielen MJ. 1990. Log book registration of farms for slaughtering pigs in the Integrated Quality Control Project. I. Use of drugs and vaccines. Tijdschr Diergeneeskd (In Dutch.) 115:249–261.
145. Elbers AR, Tielen MJ, Cromwijk WA, vd Voorst PH, Bais JT, Verhaegh G, de Bruyn AA. 1992. Logbook registration in slaughtering pig farms within the project Integrated Quality Control. II. Drug utilization in relation to clinical observation, farm conditions and prevalence of pathological findings. Tijdschr Diergeneeskd (In Dutch.) 117:41–48.
146. Greko C. 2013. Reduction of sales of antimicrobials for dogs: Swedish experiences. Eur J Companion Anim Pract 23:55–60.
147. Allen HK, Trachsel J, Looft T, Casey TA. 2014. Finding alternatives to antibiotics. Ann N Y Acad Sci 1323:91–100 http://dx.doi.org/10.1111/nyas.12468. [PubMed]
148. Cheng G, Hao H, Xie S, Wang X, Dai M, Huang L, Yuan Z. 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol 5:217 http://dx.doi.org/10.3389/fmicb.2014.00217. [PubMed]
149. Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, Cui C, Liu X, Zhang J, Zhang Y. 2017. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol 18:13 http://dx.doi.org/10.1186/s13059-016-1144-4. [PubMed]
150. United States Department of Agriculture and World Organisation for Animal Health. 2016. 2nd International Symposium on Alternatives to Antibiotics (ATA). Challenges and Solutions in Animal Production. https://www.ars.usda.gov/alternativestoantibiotics/Symposium2016/ATA%20Abstracts%202016.pdf.
151. Palamidi I, Paraskeuas V, Theodorou G, Breitsma R, Schatzmayr G, Theodoropoulos G, Fegeros K, Mountzouris KC. 2017. Effects of dietary acidifier supplementation on broiler growth performance, digestive and immune function indices. Anim Prod Sci 57:271–281.
152. Lynch H, Leonard FC, Walia K, Lawlor PG, Duffy G, Fanning S, Markey BK, Brady C, Gardiner GE, Argüello H. 2017. Investigation of in-feed organic acids as a low cost strategy to combat Salmonella in grower pigs. Prev Vet Med 139(Pt A) :50–57 http://dx.doi.org/10.1016/j.prevetmed.2017.02.008.
153. Finck DN, Ribeiro FRBP, Burdick NC, Parr SL, Carroll JA, Young TR, Bernhard BC, Corley JR, Estefan AG, Rathmann RJ, Johnson BJ. 2014. Yeast supplementation alters the performance and health status of receiving cattle. Prof Anim Sci 30:333–341 http://dx.doi.org/10.15232/S1080-7446(15)30125-X.
154. Mountzouris KC, Dalaka E, Palamidi I, Paraskeuas V, Demey V, Theodoropoulos G, Fegeros K. 2015. Evaluation of yeast dietary supplementation in broilers challenged or not with Salmonella on growth performance, cecal microbiota composition and Salmonella in ceca, cloacae and carcass skin. Poult Sci 94:2445–2455 http://dx.doi.org/10.3382/ps/pev243. [PubMed]
155. Vohra A, Syal P, Madan A. 2016. Probiotic yeasts in livestock sector. Anim Feed Sci Technol 219:31–47 http://dx.doi.org/10.1016/j.anifeedsci.2016.05.019.
156. Banerjee G, Ray AK. 2017. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 115:66–77 http://dx.doi.org/10.1016/j.rvsc.2017.01.016. [PubMed]
157. Callaway TR, Edrington TS, Byrd JA, Nisbet DJ, Ricke SC. 2017. Use of direct-fed microbials in layer hen production: performance response and salmonella control, p 301–322. In Ricke S, Gast R (ed), Producing Safe Eggs. Academic Press, San Diego, CA.
158. Wisener LV, Sargeant JM, O’Connor AM, Faires MC, Glass-Kaastra SK. 2015. The use of direct-fed microbials to reduce shedding of Escherichia coli O157 in beef cattle: a systematic review and meta-analysis. Zoonoses Public Health 62:75–89 http://dx.doi.org/10.1111/zph.12112. [PubMed]
159. Ducatelle R, Eeckhaut V, Haesebrouck F, Van Immerseel F. 2015. A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal 9:43–48 http://dx.doi.org/10.1017/S1751731114002584. [PubMed]
160. Hoseinifar SH, Esteban MA, Cuesta A, Sun Y. 2015. Prebiotics and fish immune response: a review of current knowledge and future perspectives. Rev Fish Sci Aquacult 23:315–328 http://dx.doi.org/10.1080/23308249.2015.1052365.
161. Rose L, Rose J, Gosling S, Holmes M. 2017. Efficacy of a probiotic-prebiotic supplement on incidence of diarrhea in a dog shelter: a randomized, double-blind, placebo-controlled trial. J Vet Intern Med 31:377–382 http://dx.doi.org/10.1111/jvim.14666. [PubMed]
162. Stover MG, Watson RR, Collier RJ. 2016. Pre- and probiotic supplementation in ruminant livestock production, p 25–36. In Preedy VR, Watson RR (ed), Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion. Academic Press, San Diego, CA.
163. Ben Lagha A, Haas B, Gottschalk M, Grenier D. 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res (Faisalabad) 48:22 http://dx.doi.org/10.1186/s13567-017-0425-6. [PubMed]
164. Wang S, Zeng X, Yang Q, Qiao S. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17:E603 http://dx.doi.org/10.3390/ijms17050603. [PubMed]
165. Carvalho C, Costa AR, Silva F, Oliveira A. 2017. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol 43:583–601 http://dx.doi.org/10.1080/1040841X.2016.1271309. [PubMed]
166. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9:E50 http://dx.doi.org/10.3390/v9030050. [PubMed]
167. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA. 2017. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712. [PubMed]
168. Porter J, Anderson J, Carter L, Donjacour E, Paros M. 2016. In vitro evaluation of a novel bacteriophage cocktail as a preventative for bovine coliform mastitis. J Dairy Sci 99:2053–2062 http://dx.doi.org/10.3168/jds.2015-9748. [PubMed]
169. Richards GP. 2014. Bacteriophage remediation of bacterial pathogens in aquaculture: a review of the technology. Bacteriophage 4:e975540 http://dx.doi.org/10.4161/21597081.2014.975540. [PubMed]
170. Verstappen KM, Tulinski P, Duim B, Fluit AC, Carney J, van Nes A, Wagenaar JA. 2016. The effectiveness of bacteriophages against methicillin-resistant Staphylococcus aureus ST398 nasal colonization in pigs. PLoS One 11:e0160242 http://dx.doi.org/10.1371/journal.pone.0160242. [PubMed]
171. Wagenaar JA, Van Bergen MA, Mueller MA, Wassenaar TM, Carlton RM. 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–283 http://dx.doi.org/10.1016/j.vetmic.2005.06.002. [PubMed]
172. Hammer KA, Carson CF. 2011. Antibacterial and antifungal activities of essential oils, p 255–306. In Thormar H (ed), Lipids and Essential Oils as Antimicrobial Agents. John Wiley & Sons, Ltd., Chichester, United Kingdom. http://dx.doi.org/10.1002/9780470976623.ch11.
173. Chávez-González ML, Rodríguez-Herrera R, Aguilar CN. 2016. Essential oils: a natural alternative to combat antibiotics resistance, p 227–237. In Kon K, Rai M (ed), Antibiotic Resistance. Mechanisms and New Antimicrobial Approaches. Academic Press, San Diego CA http://dx.doi.org/10.1016/B978-0-12-803642-6.00011-3.
174. Maruhashi E, Braz BS, Nunes T, Pomba C, Belas A, Duarte-Correia JH, Lourenço AM. 2016. Efficacy of medical grade honey in the management of canine otitis externa: a pilot study. Vet Dermatol 27:93-8e27 http://dx.doi.org/10.1111/vde.12291.
175. Timsit E, Workentine M, Crepieux T, Miller C, Regev-Shoshani G, Schaefer A, Alexander T. 2017. Effects of nasal instillation of a nitric oxide-releasing solution or parenteral administration of tilmicosin on the nasopharyngeal microbiota of beef feedlot cattle at high-risk of developing respiratory tract disease. Res Vet Sci 115:117–124 http://dx.doi.org/10.1016/j.rvsc.2017.02.001. [PubMed]
176. Shatzkes K, Connell ND, Kadouri DE. 2017. Predatory bacteria: a new therapeutic approach for a post-antibiotic era. Future Microbiol 12:469–472 http://dx.doi.org/10.2217/fmb-2017-0021. [PubMed]
177. Tyson J, Sockett RE. 2017. Predatory bacteria: moving from curiosity towards curative. Trends Microbiol 25:90–91 http://dx.doi.org/10.1016/j.tim.2016.12.011. [PubMed]
178. Gadde U, Rathinam T, Lillehoj HS. 2015. Passive immunization with hyperimmune egg-yolk IgY as prophylaxis and therapy for poultry diseases: a review. Anim Health Res Rev 16:163–176 http://dx.doi.org/10.1017/S1466252315000195. [PubMed]
179. Li X, Wang L, Zhen Y, Li S, Xu Y. 2015. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: a review. J Anim Sci Biotechnol 6:40 http://dx.doi.org/10.1186/s40104-015-0038-8. [PubMed]
180. Xu Y, Li X, Jin L, Zhen Y, Lu Y, Li S, You J, Wang L. 2011. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. Biotechnol Adv 29:860–868 http://dx.doi.org/10.1016/j.biotechadv.2011.07.003. [PubMed]
181. Niewold TA, van Dijk AJ, Geenen PL, Roodink H, Margry R, van der Meulen J. 2007. Dietary specific antibodies in spray-dried immune plasma prevent enterotoxigenic Escherichia coli F4 (ETEC) post weaning diarrhoea in piglets. Vet Microbiol 124:362–369 http://dx.doi.org/10.1016/j.vetmic.2007.04.034. [PubMed]
182. Torrallardona D. 2010. Spray dried animal plasma as an alternative to antibiotics in weanling pigs: a review. Asian-Australas J Anim Sci 23:131–148 http://dx.doi.org/10.5713/ajas.2010.70630.
183. McDougall S, Compton C, Botha N. 2017. Factors influencing antimicrobial prescribing by veterinarians and usage by dairy farmers in New Zealand. N Z Vet J 65:84–92 http://dx.doi.org/10.1080/00480169.2016.1246214. [PubMed]
184. Ruiz R, Tedeschi LO, Sepúlveda A. 2017. Investigation of the effect of pegbovigrastim on some periparturient immune disorders and performance in Mexican dairy herds. J Dairy Sci 100:3305–3317 http://dx.doi.org/10.3168/jds.2016-12003. [PubMed]
185. Lloyd DH. 2012. Alternatives to conventional antimicrobial drugs: a review of future prospects. Vet Dermatol 23:299–304, e259–260.
186. Schoster A, Guardabassi L, Staempfli HR, Abrahams M, Jalali M, Weese JS. 2016. The longitudinal effect of a multi-strain probiotic on the intestinal bacterial microbiota of neonatal foals. Equine Vet J 48:689–696 http://dx.doi.org/10.1111/evj.12524. [PubMed]
187. Schoster A, Weese JS, Guardabassi L. 2014. Probiotic use in horses: what is the evidence for their clinical efficacy? J Vet Intern Med 28:1640–1652 http://dx.doi.org/10.1111/jvim.12451. [PubMed]
188. Frank LA, Loeffler A. 2012. Meticillin-resistant Staphylococcus pseudintermedius: clinical challenge and treatment options. Vet Dermatol 23:283–291, e256.
189. Karki S, Cheng AC. 2012. Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect 82:71–84 http://dx.doi.org/10.1016/j.jhin.2012.07.005. [PubMed]
190. Jeffers JG. 2013. Topical therapy for drug-resistant pyoderma in small animals. Vet Clin North Am Small Anim Pract 43:41–50 http://dx.doi.org/10.1016/j.cvsm.2012.09.006. [PubMed]
191. Poole K. 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends Microbiol 25:820–832 http://dx.doi.org/10.1016/j.tim.2017.04.010. [PubMed]
192. Slifierz MJ, Friendship RM, Weese JS. 2015. Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Appl Environ Microbiol 81:2690–2695 http://dx.doi.org/10.1128/AEM.00036-15. [PubMed]
193. Vahjen W, Pietruszyńska D, Starke IC, Zentek J. 2015. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog 7:23 http://dx.doi.org/10.1186/s13099-015-0071-3. [PubMed]
194. Amachawadi RG, Scott HM, Alvarado CA, Mainini TR, Vinasco J, Drouillard JS, Nagaraja TG. 2013. Occurrence of the transferable copper resistance gene tcrB among fecal enterococci of U.S. feedlot cattle fed copper-supplemented diets. Appl Environ Microbiol 79:4369–4375 http://dx.doi.org/10.1128/AEM.00503-13. [PubMed]
195. Hasman H, Kempf I, Chidaine B, Cariolet R, Ersbøll AK, Houe H, Bruun Hansen HC, Aarestrup FM. 2006. Copper resistance in Enterococcus faecium, mediated by the tcrB gene, is selected by supplementation of pig feed with copper sulfate. Appl Environ Microbiol 72:5784–5789 http://dx.doi.org/10.1128/AEM.02979-05. [PubMed]
196. Aperce CC, Amachawadi R, Van Bibber-Krueger CL, Nagaraja TG, Scott HM, Vinasco-Torre J, Drouillard JS. 2016. Effects of menthol supplementation in feedlot cattle diets on the fecal prevalence of antimicrobial-resistant Escherichia coli.PLoS One 11:e0168983 http://dx.doi.org/10.1371/journal.pone.0168983. [PubMed]
197. Rodríguez-Rojas A, Rodríguez-Beltrán J, Valverde J, Blázquez J. 2015. Can clays in livestock feed promote antibiotic resistance and virulence in pathogenic bacteria? Antibiotics (Basel) 4:299–308 http://dx.doi.org/10.3390/antibiotics4030299.
198. Kubicek-Sutherland JZ, Lofton H, Vestergaard M, Hjort K, Ingmer H, Andersson DI. 2017. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother 72:115–127 http://dx.doi.org/10.1093/jac/dkw381. [PubMed]
199. O’Neill J. (chair). 2015. Review on antimicrobial resistance. Rapid diagnostics: stopping unnecessary use of antibiotics. https://amr-review.org/sites/default/files/Rapid%20Diagnostics%20-%20Stopping%20Unnecessary%20use%20of%20Antibiotics.pdf.
200. Timsit E, Dendukuri N, Schiller I, Buczinski S. 2016. Diagnostic accuracy of clinical illness for bovine respiratory disease (BRD) diagnosis in beef cattle placed in feedlots: a systematic literature review and hierarchical Bayesian latent-class meta-analysis. Prev Vet Med 135:67–73 http://dx.doi.org/10.1016/j.prevetmed.2016.11.006. [PubMed]
201. Griffin D. 2009. Respiratory disease treatment considerations in feedyards, p 509–519. In Anderson DE, Rings DM (ed), Food Animal Practice, 5th ed. W.B. Saunders, Saint Louis, MO.
202. European Commission. 2017. Commission awards €1 million to breakthrough test which distinguishes between viral or bacterial infections. http://europa.eu/rapid/press-release_IP-17-205_en.htm.
203. Nesta. 2017. Longitude prize. https://longitudeprize.org/. Accessed 1 March 2017.
204. Okeke IN, Peeling RW, Goossens H, Auckenthaler R, Olmsted SS, de Lavison JF, Zimmer BL, Perkins MD, Nordqvist K. 2011. Diagnostics as essential tools for containing antibacterial resistance. Drug Resist Updat 14:95–106 http://dx.doi.org/10.1016/j.drup.2011.02.002. [PubMed]
205. Colles FM, Cain RJ, Nickson T, Smith AL, Roberts SJ, Maiden MCJ, Lunn D, Dawkins MS. 2016. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter. Proc Biol Sci 283:283 http://dx.doi.org/10.1098/rspb.2015.2323. [PubMed]
206. Dawkins MS, Roberts SJ, Cain RJ, Nickson T, Donnelly CA. 2017. Early warning of footpad dermatitis and hockburn in broiler chicken flocks using optical flow, bodyweight and water consumption. Vet Rec 180:499 http://dx.doi.org/10.1136/vr.104066. [PubMed]
207. De Montis A, Pinna A, Barra M, Vranken E. 2013. Analysis of poultry eating and drinking behavior by software eYeNamic. J Agric Eng Res 44:166–173.
208. Matthews SG, Miller AL, Clapp J, Plötz T, Kyriazakis I. 2016. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Vet J 217:43–51 http://dx.doi.org/10.1016/j.tvjl.2016.09.005. [PubMed]
209. Johnston D, Kenny DA, McGee M, Waters SM, Kelly AK, Earley B. 2016. Electronic feeding behavioural data as indicators of health status in dairy calves. Ir J Agric Food Res 55:159 http://dx.doi.org/10.1515/ijafr-2016-0016.
210. Jackson KS, Carstens GE, Tedeschi LO, Pinchak WE. 2016. Changes in feeding behavior patterns and dry matter intake before clinical symptoms associated with bovine respiratory disease in growing bulls. J Anim Sci 94:1644–1652 http://dx.doi.org/10.2527/jas.2015-9993. [PubMed]
211. White BJ, Goehl DR, Amrine DE, Booker C, Wildman B, Perrett T. 2016. Bayesian evaluation of clinical diagnostic test characteristics of visual observations and remote monitoring to diagnose bovine respiratory disease in beef calves. Prev Vet Med 126:74–80 http://dx.doi.org/10.1016/j.prevetmed.2016.01.027. [PubMed]
212. Wolfger B, Schwartzkopf-Genswein KS, Barkema HW, Pajor EA, Levy M, Orsel K. 2015. Feeding behavior as an early predictor of bovine respiratory disease in North American feedlot systems. J Anim Sci 93:377–385 http://dx.doi.org/10.2527/jas.2013-8030. [PubMed]
213. Ferrari S, Silva M, Guarino M, Aerts JM, Berckmans D. 2008. Cough sound analysis to identify respiratory infection in pigs. Comput Electron Agric 64:318–325 http://dx.doi.org/10.1016/j.compag.2008.07.003.
214. Vandermeulen J, Bahr C, Johnston D, Earley B, Tullo E, Fontana I, Guarino M, Exadaktylos V, Berckmans D. 2016. Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds. Comput Electron Agric 129:15–26 http://dx.doi.org/10.1016/j.compag.2016.07.014.
215. Mang AV, Buczinski S, Booker CW, Timsit E. 2015. Evaluation of a computer-aided lung auscultation system for diagnosis of bovine respiratory disease in feedlot cattle. J Vet Intern Med 29:1112–1116 http://dx.doi.org/10.1111/jvim.12657. [PubMed]
216. Schaefer AL, Cook NJ, Bench C, Chabot JB, Colyn J, Liu T, Okine EK, Stewart M, Webster JR. 2012. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res Vet Sci 93:928–935 http://dx.doi.org/10.1016/j.rvsc.2011.09.021. [PubMed]
217. Martínez-Avilés M, Fernández-Carrión E, López García-Baones JM, Sánchez-Vizcaíno JM. 2017. Early detection of infection in pigs through an online monitoring system. Transbound Emerg Dis 64:364–373 http://dx.doi.org/10.1111/tbed.12372. [PubMed]
218. Abdallah A, Hewson J, Francoz D, Selim H, Buczinski S. 2016. Systematic review of the diagnostic accuracy of haptoglobin, serum amyloid A, and fibrinogen versus clinical reference standards for the diagnosis of bovine respiratory disease. J Vet Intern Med 30:1356–1368 http://dx.doi.org/10.1111/jvim.13975. [PubMed]
219. Cray C. 2012. Acute phase proteins in animals. Prog Mol Biol Transl Sci 105:113–150. [PubMed]
220. Schneider A. 2015. Acute phase proteins for diagnosis of diseases in dairy cattle. Vet J 205:333–334 http://dx.doi.org/10.1016/j.tvjl.2015.05.009. [PubMed]
221. Guardabassi L, Hedberg S, Jessen LR, Damborg P. 2015. Optimization and evaluation of Flexicult® Vet for detection, identification and antimicrobial susceptibility testing of bacterial uropathogens in small animal veterinary practice. Acta Vet Scand 57:72 http://dx.doi.org/10.1186/s13028-015-0165-4. [PubMed]
222. Madoz LV, Prunner I, Jaureguiberry M, Gelfert CC, de la Sota RL, Giuliodori MJ, Drillich M. 2017. Application of a bacteriological on-farm test to reduce antimicrobial usage in dairy cows with purulent vaginal discharge. J Dairy Sci 100:3875–3882 http://dx.doi.org/10.3168/jds.2016-11931. [PubMed]
223. Bosward KL, House JK, Deveridge A, Mathews K, Sheehy PA. 2016. Development of a loop-mediated isothermal amplification assay for the detection of Streptococcus agalactiae in bovine milk. J Dairy Sci 99:2142–2150 http://dx.doi.org/10.3168/jds.2015-10073. [PubMed]
224. Hasman H, Saputra D, Sicheritz-Ponten T, Lund O, Svendsen CA, Frimodt-Møller N, Aarestrup FM. 2014. Rapid whole-genome sequencing for detection and characterization of microorganisms directly from clinical samples. J Clin Microbiol 52:139–146 http://dx.doi.org/10.1128/JCM.02452-13. [PubMed]
225. Kinoshita Y, Niwa H, Katayama Y. 2015. Use of loop-mediated isothermal amplification to detect six groups of pathogens causing secondary lower respiratory bacterial infections in horses. Microbiol Immunol 59:365–370 http://dx.doi.org/10.1111/1348-0421.12257. [PubMed]
226. Li Y, Fan P, Zhou S, Zhang L. 2017. Loop-mediated isothermal amplification (LAMP): a novel rapid detection platform for pathogens. Microb Pathog 107:54–61 http://dx.doi.org/10.1016/j.micpath.2017.03.016. [PubMed]
227. Oved K, Cohen A, Boico O, Navon R, Friedman T, Etshtein L, Kriger O, Bamberger E, Fonar Y, Yacobov R, Wolchinsky R, Denkberg G, Dotan Y, Hochberg A, Reiter Y, Grupper M, Srugo I, Feigin P, Gorfine M, Chistyakov I, Dagan R, Klein A, Potasman I, Eden E. 2015. A novel host-proteome signature for distinguishing between acute bacterial and viral infections. PLoS One 10:e0120012 http://dx.doi.org/10.1371/journal.pone.0120012. [PubMed]
228. Jacob ME, Crowell MD, Fauls MB, Griffith EH, Ferris KK. 2016. Diagnostic accuracy of a rapid immunoassay for point of-care detection of urinary tract infection in dogs. Am J Vet Res 77:162–166 http://dx.doi.org/10.2460/ajvr.77.2.162. [PubMed]
229. Seidel C, Peters S, Eschbach E, Feßler AT, Oberheitmann B, Schwarz S. 2017. Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. Vet Microbiol 200:101–106 http://dx.doi.org/10.1016/j.vetmic.2016.08.009. [PubMed]
230. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. 2011. The selective treatment of clinical mastitis based on on-farm culture results. I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci 94:4441–4456 http://dx.doi.org/10.3168/jds.2010-4046. [PubMed]
231. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. 2011. The selective treatment of clinical mastitis based on on-farm culture results. II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J Dairy Sci 94:4457–4467 http://dx.doi.org/10.3168/jds.2010-4047.
232. Vasquez AK, Nydam DV, Capel MB, Eicker S, Virkler PD. 2017. Clinical outcome comparison of immediate blanket treatment versus a delayed pathogen-based treatment protocol for clinical mastitis in a New York dairy herd. J Dairy Sci 100:2992–3003 http://dx.doi.org/10.3168/jds.2016-11614. [PubMed]
233. Higgins HM, Golding SE, Mouncey J, Nanjiani I, Cook AJ. 2017. Understanding veterinarians’ prescribing decisions on antibiotic dry cow therapy. J Dairy Sci 100:2909–2916 http://dx.doi.org/10.3168/jds.2016-11923. [PubMed]
234. Scherpenzeel CGM, den Uijl IEM, van Schaik G, Riekerink RGMO, Hogeveen H, Lam TJGM. 2016. Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. J Dairy Sci 99:3753–3764 http://dx.doi.org/10.3168/jds.2015-9963.
235. Courvalin P. 2008. Can pharmacokinetic-pharmacodynamic parameters provide dosing regimens that are less vulnerable to resistance? Clin Microbiol Infect 14:989–994 http://dx.doi.org/10.1111/j.1469-0691.2008.02081.x. [PubMed]
236. Ehrlich P. 1913. Address in pathology on chemotherapeutics. Scientific principles, methods, and results. Lancet 182:445–451 http://dx.doi.org/10.1016/S0140-6736(01)38705-6.
237. Lhermie G, Gröhn YT, Raboisson D. 2017. Addressing antimicrobial resistance: an overview of priority actions to prevent suboptimal antimicrobial use in food-animal production. Front Microbiol 7:2114 http://dx.doi.org/10.3389/fmicb.2016.02114. [PubMed]
238. Martinez MN, Papich MG, Drusano GL. 2012. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 56:2795–2805 http://dx.doi.org/10.1128/AAC.05360-11. [PubMed]
239. Bajwa J. 2016. Canine superficial pyoderma and therapeutic considerations. Can Vet J 57:204–206. [PubMed]
240. Collineau L, Belloc C, Stärk KDC, Hémonic A, Postma M, Dewulf J, Chauvin C. 2017. Guidance on the selection of appropriate indicators for quantification of antimicrobial usage in humans and animals. Zoonoses Public Health 64:165–184 http://dx.doi.org/10.1111/zph.12298. [PubMed]
241. James R, Upjohn L, Cotta M, Luu S, Marshall C, Buising K, Thursky K. 2015. Measuring antimicrobial prescribing quality in Australian hospitals: development and evaluation of a national antimicrobial prescribing survey tool. J Antimicrob Chemother 70:1912–1918.
242. Kallen MC, Prins JM. 2017. A systematic review of quality indicators for appropriate antibiotic use in hospitalized adult patients. Infect Dis Rep 9:6821 http://dx.doi.org/10.4081/idr.2017.6821. [PubMed]
243. Retamar P, Martín ML, Molina J, del Arco A. 2013. Evaluating the quality of antimicrobial prescribing: is standardisation possible? Enferm Infecc Microbiol Clin 31(Suppl 4) :25–30 http://dx.doi.org/10.1016/S0213-005X(13)70129-0.
244. Schouten JA, Berrevoets MAH, Hulscher ME. 2017. Quality indicators to measure appropriate antibiotic use: some thoughts on the black box. Clin Infect Dis 64:1295 http://dx.doi.org/10.1093/cid/cix172. [PubMed]
245. Spivak ES, Cosgrove SE, Srinivasan A. 2016. Measuring appropriate antimicrobial use: attempts at opening the black box. Clin Infect Dis 63:1639–1644 http://dx.doi.org/10.1093/cid/ciw658. [PubMed]
246. Schwartz DN, Wu US, Lyles RD, Xiang Y, Kieszkowski P, Hota B, Weinstein RA. 2009. Lost in translation? Reliability of assessing inpatient antimicrobial appropriateness with use of computerized case vignettes. Infect Control Hosp Epidemiol 30:163–171 http://dx.doi.org/10.1086/593970. [PubMed]
247. van den Bosch CM, Hulscher ME, Natsch S, Wille J, Prins JM, Geerlings SE. 2016. Applicability of generic quality indicators for appropriate antibiotic use in daily hospital practice: a cross-sectional point-prevalence multicenter study. Clin Microbiol Infect 22:888.e1–888.e9 http://dx.doi.org/10.1016/j.cmi.2016.07.011. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.ARBA-0023-2017
2018-06-08
2019-10-20

Abstract:

While antimicrobial resistance is already a public health crisis in human medicine, therapeutic failure in veterinary medicine due to antimicrobial resistance remains relatively uncommon. However, there are many pathways by which antimicrobial resistance determinants can travel between animals and humans: by close contact, through the food chain, or indirectly via the environment. Antimicrobial stewardship describes measures that can help mitigate the public health crisis and preserve the effectiveness of available antimicrobial agents. Antimicrobial stewardship programs have been principally developed, implemented, and studied in human hospitals but are beginning to be adapted for other applications in human medicine. Key learning from the experiences of antimicrobial stewardship programs in human medicine are summarized in this article—guiding the development of a stewardship framework suitable for adaptation and use in both companion animal and livestock practice. The antimicrobial stewardship program for veterinary use integrates infection prevention and control together with approaches emphasizing avoidance of antimicrobial agents. The 5R framework of continuous improvement that is described recognizes the importance of executive support; highly motivated organizations and teams (responsibility); the need to review the starting position, set objectives, and determine means of measuring progress and success; and a critical focus on reducing, replacing, and refining the use of antimicrobial agents. Significant issues that are currently the focus of intensive research include improved detection and diagnosis of infections, refined dosing regimens that are simultaneously effective while not selecting resistance, searches for alternatives to antimicrobial agents, and development of improved vaccines to enhance immunity and reduce disease.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Key elements of antimicrobial stewardship. 1. GSP requires embedded thinking and action to improve antimicrobial use and minimize resistance selection and impact. 2. Responsibility implies high-level commitment, with everybody taking and sharing responsibility 3. The 3Rs of responsible use—reduce, refine, and replace—should be applied wherever possible. 4. Review antimicrobial use and infection control and develop objectives to improve current practice and implementation of the stewardship plan. 5. Every cycle of 5R stewardship reflects continuous improvement () and leads to best practices in infection prevention and control and antimicrobial use. (Figure graphics by Ed Hewson.)

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Decision-making and application of GSP in suspected bacterial infection.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Interventions that can guide enhanced AMS.

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Objectives of the WHO Global Action Plan on Antimicrobial Resistance

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Generic image for table
TABLE 2

Principal elements in the establishment of an effective veterinary AMS framework

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Generic image for table
TABLE 3

Biosecurity and disease prevention

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Generic image for table
TABLE 4

Core principles of judicious use of antimicrobial agents

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017
Generic image for table
TABLE 5

Assessment of quality of use

Source: microbiolspec June 2018 vol. 6 no. 3 doi:10.1128/microbiolspec.ARBA-0023-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error