No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antimicrobial Resistance in Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Laura Luque-Sastre1, Cristina Arroyo2, Edward M. Fox3, Barry J. McMahon4, Li Bai5, Fengqin Li6, Séamus Fanning7
  • Editors: Frank Møller Aarestrup8, Stefan Schwarz9, Jianzhong Shen10, Lina Cavaco11
    Affiliations: 1: UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland; 2: UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland; 3: CSIRO Agriculture and Food, Werribee, Victoria, Australia; 4: UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland; 5: Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China; 6: Key Laboratory of Food Safety Risk Assessment of Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing 100021, The Peoples Republic of China; 7: UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy, and Sports Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin, Belfield, Dublin D04 N2E5, Ireland; 8: Technical University of Denmark, Lyngby, Denmark; 9: Freie Universität Berlin, Berlin, Germany; 10: China Agricultural University, Beijing, China; 11: Statens Serum Institute, Copenhagen, Denmark
  • Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
  • Received 13 February 2017 Accepted 21 February 2018 Published 19 July 2018
  • Séamus Fanning, [email protected]
image of Antimicrobial Resistance in <span class="jp-italic">Listeria</span> Species
    Preview this microbiology spectrum article:
    Zoom in

    Antimicrobial Resistance in Species, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0031-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/4/ARBA-0031-2017-2.gif
  • Abstract:

    For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus currently comprises 17 recognized species found throughout the environment. is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas causes infections mainly in ruminants. is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.

  • Citation: Luque-Sastre L, Arroyo C, Fox E, McMahon B, Bai L, Li F, Fanning S. 2018. Antimicrobial Resistance in Species. Microbiol Spectrum 6(4):ARBA-0031-2017. doi:10.1128/microbiolspec.ARBA-0031-2017.


1. Orsi RH, Wiedmann M. 2016. Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100:5273–5287 http://dx.doi.org/10.1007/s00253-016-7552-2. [PubMed]
2. Feresu SB, Jones D. 1988. Taxonomic studies on Brochothrix, Erysipelothrix, Listeria and atypical lactobacilli. J Gen Microbiol 134:1165–1183. [PubMed]
3. Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couvé E, de Daruvar A, Dehoux P, Domann E, Domínguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, García-del Portillo F, Garrido P, Gautier L, Goebel W, Gómez-López N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Pérez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, et al. 2001. Comparative genomics of Listeria species. Science 294:849–852. [PubMed]
4. Orsi RH, den Bakker HC, Wiedmann M. 2011. Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301:79–96 http://dx.doi.org/10.1016/j.ijmm.2010.05.002.
5. Piffaretti JC, Kressebuch H, Aeschbacher M, Bille J, Bannerman E, Musser JM, Selander RK, Rocourt J. 1989. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci USA 86:3818–3822 http://dx.doi.org/10.1073/pnas.86.10.3818. [PubMed]
6. Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M. 2006. Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology 152:685–693 http://dx.doi.org/10.1099/mic.0.28503-0. [PubMed]
7. Ward TJ, Ducey TF, Usgaard T, Dunn KA, Bielawski JP. 2008. Multilocus genotyping assays for single nucleotide polymorphism-based subtyping of Listeria monocytogenes isolates. Appl Environ Microbiol 74:7629–7642 http://dx.doi.org/10.1128/AEM.01127-08. [PubMed]
8. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States: major pathogens. Emerg Infect Dis 17:7–15 http://dx.doi.org/10.3201/eid1701.P11101. [PubMed]
9. Murray EGD, Webb RA, Swann MBR. 1926. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J Pathol Bacteriol 29:407–439 http://dx.doi.org/10.1002/path.1700290409.
10. Walland J, Lauper J, Frey J, Imhof R, Stephan R, Seuberlich T, Oevermann A. 2015. Listeria monocytogenes infection in ruminants: is there a link to the environment, food and human health? A review. Schweiz Arch Tierheilkd 157:319–328 http://dx.doi.org/10.17236/sat00022. [PubMed]
11. Lyautey E, Hartmann A, Pagotto F, Tyler K, Lapen DR, Wilkes G, Piveteau P, Rieu A, Robertson WJ, Medeiros DT, Edge TA, Gannon V, Topp E. 2007. Characteristics and frequency of detection of fecal Listeria monocytogenes shed by livestock, wildlife, and humans. Can J Microbiol 53:1158–1167 http://dx.doi.org/10.1139/W07-084. [PubMed]
12. Lopez J. 2008. Listeria monocytogenes, p. 1238–1254. In OIE Biological Standards Commission (ed), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, vol 2, 6th ed. World Organisation for Animal Health (OIE), Paris, France.
13. Dhama K, Karthik K, Tiwari R, Shabbir MZ, Barbuddhe S, Malik SVS, Singh RK. 2015. Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Vet Q 35:211–235 http://dx.doi.org/10.1080/01652176.2015.1063023. [PubMed]
14. Gray ML. 1958. Listeriosis in fowls: a review. Avian Dis 2:296 http://dx.doi.org/10.2307/1587530.
15. Loncarevic A, Artursson, Johansson. 1999. A case of canine cutaneous listeriosis. Vet Dermatol 10:69–71 http://dx.doi.org/10.1046/j.1365-3164.1999.00127.x.
16. Revold T, Abayneh T, Brun-Hansen H, Kleppe SL, Ropstad E-O, Hellings RA, Sørum H. 2015. Listeria monocytogenes associated kerato-conjunctivitis in four horses in Norway. Acta Vet Scand 57:76 http://dx.doi.org/10.1186/s13028-015-0167-2. [PubMed]
17. Weber A, Prell A, Potel J, Schäfer R. 1993. Occurrence of Listeria monocytogenes in snakes, tortoises, lizards and amphibians raised as pets. Berl Munch Tierarztl Wochenschr 106:293–295. (In German.) [PubMed]
18. Arumugaswamy R, Gibson LF. 1999. Listeria in zoo animals and rivers. Aust Vet J 77:819–820 http://dx.doi.org/10.1111/j.1751-0813.1999.tb12955.x. [PubMed]
19. Bauwens L, Vercammen F, Hertsens A. 2003. Detection of pathogenic Listeria spp. in zoo animal faeces: use of immunomagnetic separation and a chromogenic isolation medium. Vet Microbiol 91:115–123 http://dx.doi.org/10.1016/S0378-1135(02)00265-1.
20. Yoshida T, Sugimoto T, Sato M, Hirai K. 2000. Incidence of Listeria monocytogenes in wild animals in Japan. J Vet Med Sci 62:673–675 http://dx.doi.org/10.1292/jvms.62.673. [PubMed]
21. Nowakiewicz A, Zięba P, Ziółkowska G, Gnat S, Muszyńska M, Tomczuk K, Majer Dziedzic B, Ulbrych Ł, Trościańczyk A. 2016. Free-living species of carnivorous mammals in Poland: red fox, beech marten, and raccoon as a potential reservoir of Salmonella, Yersinia, Listeria spp. and coagulase-positive Staphylococcus.PLoS One 11:e0155533 http://dx.doi.org/10.1371/journal.pone.0155533. [PubMed]
22. Fenlon DR, Wilson J, Donachie W. 1996. The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J Appl Bacteriol 81:641–650 http://dx.doi.org/10.1111/j.1365-2672.1996.tb03559.x. [PubMed]
23. Fieseler L, Doyscher D, Loessner MJ, Schuppler M. 2014. Acanthamoeba release compounds which promote growth of Listeria monocytogenes and other bacteria. Appl Microbiol Biotechnol 98:3091–3097 http://dx.doi.org/10.1007/s00253-014-5534-9. [PubMed]
24. Freitag NE, Port GC, Miner MD. 2009. Listeria monocytogenes: from saprophyte to intracellular pathogen. Nat Rev Microbiol 7:623–628 http://dx.doi.org/10.1038/nrmicro2171. [PubMed]
25. Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M. 2004. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70:4458–4467 http://dx.doi.org/10.1128/AEM.70.8.4458-4467.2004. [PubMed]
26. Oliver SP, Jayarao BM, Almeida RA. 2005. Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129 http://dx.doi.org/10.1089/fpd.2005.2.115. [PubMed]
27. Wilkes G, Edge TA, Gannon VPJ, Jokinen C, Lyautey E, Neumann NF, Ruecker N, Scott A, Sunohara M, Topp E, Lapen DR. 2011. Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds. Water Res 45:5807–5825 http://dx.doi.org/10.1016/j.watres.2011.06.021. [PubMed]
28. Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A, Roberts A, Wiedmann M, Buncic S, Iida T, Kanzaki M, Nakama A, Kokubo Y, Maruyama T, Kaneuchi C, Skovgaard N, Norrung B, de Valk H, Vaillant V, Jacquet C, Rocourt J, Le Querrec F, Stainer F, Quelquejeu N, Pierre O, Pierre V, Desenclos J, Goulet V, McLauchlin J, Hall S, Velani S, Gilbert R, Giovannacci I, Ragimbeau C, Queguiner S, Salvat G, Vendeuvre J, Carlier V, Ermel G, Nightingale K, Schukken Y, Nightingale C, Fortes E, Ho A, Her Z, Grohn Y, McDonough P, Wiedmann M, Gandhi M, Chikindas M, Fenlon D, et al. 2009. Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain. BMC Vet Res 5:2. [PubMed]
29. Weber A, Potel J, Schäfer-Schmidt R, Prell A, Datzmann C. 1995. Studies on the occurrence of Listeria monocytogenes in fecal samples of domestic and companion animals. Zentralbl Hyg Umweltmed 198:117–123. (In German.) [PubMed]
30. Walland J, Lauper J, Frey J, Imhof R, Stephan R, Seuberlich T, Oevermann A. 2015. Listeria monocytogenes infection in ruminants: is there a link to the environment, food and human health? A review. Schweiz Arch Tierheilkd 157:319–328 http://dx.doi.org/10.17236/sat00022. [PubMed]
31. Rocourt J, Hof H, Schrettenbrunner A, Malinverni R, Bille J. 1986. Acute purulent Listeria seelingeri meningitis in an immunocompetent adult. Schweiz Med Wochenschr 116:248–251. (In French.) [PubMed]
32. Perrin M, Bemer M, Delamare C. 2003. Fatal case of Listeria innocua bacteremia. J Clin Microbiol 41:5308–5309 http://dx.doi.org/10.1128/JCM.41.11.5308-5309.2003. [PubMed]
33. Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. 2001. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640 http://dx.doi.org/10.1128/CMR.14.3.584-640.2001. [PubMed]
34. Cossart P, Lebreton A. 2014. A trip in the “New Microbiology” with the bacterial pathogen Listeria monocytogenes. FEBS Lett 588:2437–2445 http://dx.doi.org/10.1016/j.febslet.2014.05.051. [PubMed]
35. Appelberg R, Castro AG, Silva MT. 1994. Neutrophils as effector cells of T-cell-mediated, acquired immunity in murine listeriosis. Immunology 83:302–307. [PubMed]
36. Carvalho F, Sousa S, Cabanes D. 2014. How Listeria monocytogenes organizes its surface for virulence. Front Cell Infect Microbiol 4:48 http://dx.doi.org/10.3389/fcimb.2014.00048. [PubMed]
37. Cossart P, Lecuit M. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J 17:3797–3806 http://dx.doi.org/10.1093/emboj/17.14.3797. [PubMed]
38. Pizarro-Cerdá J, Kühbacher A, Cossart P. 2012. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2:a010009 http://dx.doi.org/10.1101/cshperspect.a010009. [PubMed]
39. Camejo A, Carvalho F, Reis O, Leitão E, Sousa S, Cabanes D. 2011. The arsenal of virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. Virulence 2:379–394 http://dx.doi.org/10.4161/viru.2.5.17703. [PubMed]
40. Mohammed HO, Stipetic K, McDonough PL, Gonzalez RN, Nydam DV, Atwill ER. 2009. Identification of potential on-farm sources of Listeria monocytogenes in herds of dairy cattle. Am J Vet Res 70:383–388 http://dx.doi.org/10.2460/ajvr.70.3.383. [PubMed]
41. Walker JK, Morgan JH, McLauchlin J, Grant KA, Shallcross JA. 1994. Listeria innocua isolated from a case of ovine meningoencephalitis. Vet Microbiol 42:245–253 http://dx.doi.org/10.1016/0378-1135(94)90023-X. [PubMed]
42. Oevermann A, Di Palma S, Doherr MG, Abril C, Zurbriggen A, Vandevelde M. 2010. Neuropathogenesis of naturally occurring encephalitis caused by Listeria monocytogenes in ruminants. Brain Pathol 20:378–390 http://dx.doi.org/10.1111/j.1750-3639.2009.00292.x. [PubMed]
43. Hird DW, Genigeorgis C. 1990. Listeriosis in food animals: clinical signs and livestock as a potential source of direct (nonfoodborne) infection for humans, p 31–39. In Miller, AJ, Smith, JL, Somkuti, GA (ed), Foodborne Listeriosis: Topics in Industrial Microbiology. Elsevier, Amsterdam, The Netherlands.
44. Clark RG, Gill JM, Swanney S. 2004. Listeria monocytogenes gastroenteritis in sheep. N Z Vet J 52:46–47 http://dx.doi.org/10.1080/00480169.2004.36391. [PubMed]
45. Starič J, Križanec F, Zadnik T. 2008. Listeria monocytogenes keratoconjunctivitis and uveitis in dairy cattle. Bull Vet Inst Pulawy 52:351–355.
46. Ivanek R, Gröhn YT, Wiedmann M. 2006. Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling. Foodborne Pathog Dis 3:319–336 http://dx.doi.org/10.1089/fpd.2006.3.319. [PubMed]
47. Kahn CM. 2005. Listeriosis, p. 2240–2241. In Kahn CN, Line Scott (ed), The Merck Veterinary Manual, 9th ed. Merck Publishing Group, Rahway, NJ.
48. Jeckel S, Wood A, Grant K, Amar C, King SA, Whatmore AM, Koylass M, Anjum M, James J, Welchman DB. 2015. Outbreak of encephalitic listeriosis in red-legged partridges ( Alectoris rufa). Avian Pathol 44:269–277 http://dx.doi.org/10.1080/03079457.2015.1042427. [PubMed]
49. Kurazono M, Nakamura K, Yamada M, Yonemaru T, Sakoda T. 2003. Pathology of listerial encephalitis in chickens in Japan. Avian Dis 47:1496–1502 http://dx.doi.org/10.1637/7066. [PubMed]
50. Guillet C, Join-Lambert O, Le Monnier A, Leclercq A, Mechaï F, Mamzer-Bruneel M-F, Bielecka MK, Scortti M, Disson O, Berche P, Vazquez-Boland J, Lortholary O, Lecuit M. 2010. Human listeriosis caused by Listeria ivanovii. Emerg Infect Dis 16:136–138 http://dx.doi.org/10.3201/eid1601.091155. [PubMed]
51. Lecuit M, Nelson DM, Smith SD, Khun H, Huerre M, Vacher-Lavenu M-C, Gordon JI, Cossart P. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA 101:6152–6157 http://dx.doi.org/10.1073/pnas.0401434101. [PubMed]
52. McLauchlin J. 1992. Listeriosis. BMJ 304:1583–1584 http://dx.doi.org/10.1136/bmj.304.6842.1583. [PubMed]
53. Goulet V, King LA, Vaillant V, de Valk H. 2013. What is the incubation period for listeriosis? BMC Infect Dis 13:11 http://dx.doi.org/10.1186/1471-2334-13-11. [PubMed]
54. Wesley IV. 1999. Listeriosis in animals, p. 39–73. In Ryser ET, Marth EH (ed), Listeria, Listeriosis, and Food Safety, 2nd ed. Marcel Dekker Inc., New York, NY.
55. Portnoy DA, Auerbuch V, Glomski IJ. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol 158:409–414 http://dx.doi.org/10.1083/jcb.200205009. [PubMed]
56. Edelson BT, Cossart P, Unanue ER. 1999. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J Immunol 163:4087–4090. [PubMed]
57. Berche P, Bonnichon M, Beretti JL, Raveneau J, Gaillard JL, Veron M, Kreis H, Reich KA, Cossart P, Geoffroy C, Geslin P. 1990. Detection of anti-listeriolysin O for serodiagnosis of human listeriosis. Lancet 335:624–627 http://dx.doi.org/10.1016/0140-6736(90)90411-W. [PubMed]
58. Low JC, Davies RC, Donachie W. 1992. Purification of listeriolysin O and development of an immunoassay for diagnosis of listeric infections in sheep. J Clin Microbiol 30:2705–2708. [PubMed]
59. Baetz AL, Wesley IV, Stevens MG. 1996. The use of listeriolysin O in an ELISA, a skin test and a lymphocyte blastogenesis assay on sheep experimentally infected with Listeria monocytogenes, Listeria ivanovii, or Listeria innocua. Vet Microbiol 51:151–159 http://dx.doi.org/10.1016/0378-1135(96)00033-8.
60. Hof H, Nichterlein T, Kretschmar M. 1997. Management of listeriosis. Clin Microbiol Rev 10:345–357. [PubMed]
61. Chopra S, Sharma V, Shukla S, Nayak A. 2015. Antibiogram of Listeria spp. isolated from reproductive disorders and livestock products of ruminants. J Anim Res 2:187–190.
62. Charpentier E, Courvalin P. 1999. Antibiotic resistance in Listeria spp. Antimicrob Agents Chemother 43:2103–2108. [PubMed]
63. Janakiraman V. 2008. Listeriosis in pregnancy: diagnosis, treatment, and prevention. Rev Obstet Gynecol 1:179–185. [PubMed]
64. Wright GD. 2010. Q&A: Antibiotic resistance: where does it come from and what can we do about it? BMC Biol 8:123 http://dx.doi.org/10.1186/1741-7007-8-123. [PubMed]
65. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51 http://dx.doi.org/10.1038/nrmicro3380. [PubMed]
66. Charpentier E, Gerbaud G, Courvalin P. 1999. Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among Gram-positive and Gram-negative bacteria. J Bacteriol 181:3368–3374. [PubMed]
67. Godreuil S, Galimand M, Gerbaud G, Jacquet C, Courvalin P. 2003. Efflux pump Lde is associated with fluoroquinolone resistance in Listeria monocytogenes. Antimicrob Agents Chemother 47:704–708 http://dx.doi.org/10.1128/AAC.47.2.704-708.2003. [PubMed]
68. Troxler R, von Graevenitz A, Funke G, Wiedemann B, Stock I. 2000. Natural antibiotic susceptibility of Listeria species: L. grayi, L. innocua, L. ivanovii, L. monocytogenes, L. seeligeri and L. welshimeri strains. Clin Microbiol Infect 6:525–535 http://dx.doi.org/10.1046/j.1469-0691.2000.00168.x. [PubMed]
69. Morvan A, Moubareck C, Leclercq A, Hervé-Bazin M, Bremont S, Lecuit M, Courvalin P, Le Monnier A. 2010. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother 54:2728–2731 http://dx.doi.org/10.1128/AAC.01557-09. [PubMed]
70. Lungu B, O’Bryan CA, Muthaiyan A, Milillo SR, Johnson MG, Crandall PG, Ricke SC. 2011. Listeria monocytogenes: antibiotic resistance in food production. Foodborne Pathog Dis 8:569–578 http://dx.doi.org/10.1089/fpd.2010.0718. [PubMed]
71. Poyart-Salmeron C, Carlier C, Trieu-Cuot P, Courtieu AL, Courvalin P. 1990. Transferable plasmid-mediated antibiotic resistance in Listeria monocytogenes. Lancet 335:1422–1426 http://dx.doi.org/10.1016/0140-6736(90)91447-I.
72. Jones FT, Ricke SC. 2003. Observations on the history of the development of antimicrobials and their use in poultry feeds. Poult Sci 82:613–617 http://dx.doi.org/10.1093/ps/82.4.613. [PubMed]
73. Castanon JIR. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86:2466–2471 http://dx.doi.org/10.3382/ps.2007-00249. [PubMed]
74. Robicsek A, Jacoby GA, Hooper DC. 2006. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6:629–640 http://dx.doi.org/10.1016/S1473-3099(06)70599-0.
75. Lyon SA, Berrang ME, Fedorka-Cray PJ, Fletcher DL, Meinersmann RJ. 2008. Antimicrobial resistance of Listeria monocytogenes isolated from a poultry further processing plant. Foodborne Pathog Dis 5:253–259 http://dx.doi.org/10.1089/fpd.2007.0070. [PubMed]
76. Chen S, Cui S, McDermott PF, Zhao S, White DG, Paulsen I, Meng J. 2007. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar typhimurium to fluoroquinolones and other antimicrobials. Antimicrob Agents Chemother 51:535–542 http://dx.doi.org/10.1128/AAC.00600-06. [PubMed]
77. Liu J-H, Deng Y-T, Zeng Z-L, Gao J-H, Chen L, Arakawa Y, Chen Z-L. 2008. Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemother 52:2992–2993 http://dx.doi.org/10.1128/AAC.01686-07. [PubMed]
78. Lampidis R, Kostrewa D, Hof H. 2002. Molecular characterization of the genes encoding DNA gyrase and topoisomerase IV of Listeria monocytogenes. J Antimicrob Chemother 49:917–924 http://dx.doi.org/10.1093/jac/dkf065. [PubMed]
79. Moreno LZ, Paixão R, Gobbi DDS, Raimundo DC, Ferreira TP, Moreno AM, Hofer E, Reis CMF, Matté GR, Matté MH. 2014. Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. J Infect Dev Ctries 8:416–423 http://dx.doi.org/10.3855/jidc.4188. [PubMed]
80. Mata MT, Baquero F, Pérez-Díaz JC. 2000. A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol Lett 187:185–188 http://dx.doi.org/10.1111/j.1574-6968.2000.tb09158.x. [PubMed]
81. Guérin F, Galimand M, Tuambilangana F, Courvalin P, Cattoir V. 2014. Overexpression of the novel MATE fluoroquinolone efflux pump FepA in Listeria monocytogenes is driven by inactivation of its local repressor FepR. PLoS One 9:e106340 http://dx.doi.org/10.1371/journal.pone.0106340. [PubMed]
82. Srinivasan V, Nam HM, Nguyen LT, Tamilselvam B, Murinda SE, Oliver SP. 2005. Prevalence of antimicrobial resistance genes in Listeria monocytogenes isolated from dairy farms. Foodborne Pathog Dis 2:201–211 http://dx.doi.org/10.1089/fpd.2005.2.201. [PubMed]
83. Zawadzka-Skomial J, Markiewicz Z, Nguyen-Distèche M, Devreese B, Frère J-M, Terrak M. 2006. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J Bacteriol 188:1875–1881 http://dx.doi.org/10.1128/JB.188.5.1875-1881.2006. [PubMed]
84. Aubry C, Goulard C, Nahori M-A, Cayet N, Decalf J, Sachse M, Boneca IG, Cossart P, Dussurget O. 2011. OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 204:731–740 http://dx.doi.org/10.1093/infdis/jir396. [PubMed]
85. Allen KJ, Wałecka-Zacharska E, Chen JC, Katarzyna K-P, Devlieghere F, Van Meervenne E, Osek J, Wieczorek K, Bania J. 2016. Listeria monocytogenes: an examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiol 54:178–189 http://dx.doi.org/10.1016/j.fm.2014.08.006.
86. Shaw KJ, Rather PN, Hare RS, Miller GH. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163. [PubMed]
87. Lancaster H, Roberts AP, Bedi R, Wilson M, Mullany P. 2004. Characterization of Tn 916S, a Tn 916-like element containing the tetracycline resistance determinant tet(S). J Bacteriol 186:4395–4398 http://dx.doi.org/10.1128/JB.186.13.4395-4398.2004. [PubMed]
88. van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. 2011. Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203 http://dx.doi.org/10.3389/fmicb.2011.00203. [PubMed]
89. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542 http://dx.doi.org/10.1016/j.femsre.2004.04.001. [PubMed]
90. Li L, Olsen RH, Shi L, Ye L, He J, Meng H. 2016. Characterization of a plasmid carrying cat, ermB and tetS genes in a foodborne Listeria monocytogenes strain and uptake of the plasmid by cariogenic Streptococcus mutans. Int J Food Microbiol 238:68–71 http://dx.doi.org/10.1016/j.ijfoodmicro.2016.08.038. [PubMed]
91. Roberts MC, Facinelli B, Giovanetti E, Varaldo PE. 1996. Transferable erythromycin resistance in Listeria spp. isolated from food. Appl Environ Microbiol 62:269–270. [PubMed]
92. Granier SA, Moubareck C, Colaneri C, Lemire A, Roussel S, Dao T-T, Courvalin P, Brisabois A. 2011. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol 77:2788–2790 http://dx.doi.org/10.1128/AEM.01381-10. [PubMed]
93. Bertsch D, Anderegg J, Lacroix C, Meile L, Stevens MJA. 2013. pDB2011, a 7.6 kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. Plasmid 70:284–287 http://dx.doi.org/10.1016/j.plasmid.2013.06.001. [PubMed]
94. Huovinen P, Huovinen P. 2001. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis 32:1608–1614 http://dx.doi.org/10.1086/320532. [PubMed]
95. Charpentier E, Courvalin P. 1997. Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob Agents Chemother 41:1134–1136. [PubMed]
96. Bertsch D, Uruty A, Anderegg J, Lacroix C, Perreten V, Meile L. 2013. Tn 6198, a novel transposon containing the trimethoprim resistance gene dfrG embedded into a Tn 916 element in Listeria monocytogenes. J Antimicrob Chemother 68:986–991 http://dx.doi.org/10.1093/jac/dks531. [PubMed]
97. European Union. 2012. Regulation (EU) 528/2012 of 22 May 2012 concerning the making available on the market and use of biocidal products. European Union Regul.
98. Harbarth S, Tuan Soh S, Horner C, Wilcox MH. 2014. Is reduced susceptibility to disinfectants and antiseptics a risk in healthcare settings? A point/counterpoint review. J Hosp Infect 87:194–202 http://dx.doi.org/10.1016/j.jhin.2014.04.012. [PubMed]
99. Ortega Morente E, Fernández-Fuentes MA, Grande Burgos MJ, Abriouel H, Pérez Pulido R, Gálvez A. 2013. Biocide tolerance in bacteria. Int J Food Microbiol 162:13–25 http://dx.doi.org/10.1016/j.ijfoodmicro.2012.12.028. [PubMed]
100. McBain AJ, Ledder RG, Moore LE, Catrenich CE, Gilbert P. 2004. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl Environ Microbiol 70:3449–3456 http://dx.doi.org/10.1128/AEM.70.6.3449-3456.2004. [PubMed]
101. McDonnell G, Russell AD. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179. [PubMed]
102. Goddard P, McCue K. 2001. Disinfectants and Antiseptics. Disinfection, Sterilization, and Preservation. Lippincott Williams & Wilkins, Philadelphia, PA.
103. Elhanafi D, Dutta V, Kathariou S. 2010. Genetic characterization of plasmid-associated benzalkonium chloride resistance determinants in a Listeria monocytogenes strain from the 1998-1999 outbreak. Appl Environ Microbiol 76:8231–8238 http://dx.doi.org/10.1128/AEM.02056-10. [PubMed]
104. Dutta V, Elhanafi D, Kathariou S. 2013. Conservation and distribution of the benzalkonium chloride resistance cassette bcrABC in Listeria monocytogenes. Appl Environ Microbiol 79:6067–6074 http://dx.doi.org/10.1128/AEM.01751-13. [PubMed]
105. Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S. 2013. Tn 6188: a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8:e76835 http://dx.doi.org/10.1371/journal.pone.0076835. [PubMed]
106. Müller A, Rychli K, Zaiser A, Wieser C, Wagner M, Schmitz-Esser S. 2014. The Listeria monocytogenes transposon Tn 6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide. FEMS Microbiol Lett 361:166–173 http://dx.doi.org/10.1111/1574-6968.12626. [PubMed]
107. Kovacevic J, Ziegler J, Wałecka-Zacharska E, Reimer A, Kitts DD, Gilmour MW. 2015. Tolerance of Listeria monocytogenes to quaternary ammonium sanitizers is mediated by a novel efflux pump encoded by emrE. Appl Environ Microbiol 82:939–953 http://dx.doi.org/10.1128/AEM.03741-15. [PubMed]
108. Tamburro M, Ripabelli G, Vitullo M, Dallman TJ, Pontello M, Amar CFL, Sammarco ML. 2015. Gene expression in Listeria monocytogenes exposed to sublethal concentration of benzalkonium chloride. Comp Immunol Microbiol Infect Dis 40:31–39 http://dx.doi.org/10.1016/j.cimid.2015.03.004. [PubMed]
109. Mereghetti L, Quentin R, Marquet-Van Der Mee N, Audurier A. 2000. Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl Environ Microbiol 66:5083–5086 http://dx.doi.org/10.1128/AEM.66.11.5083-5086.2000. [PubMed]
110. Romanova NA, Wolffs PFG, Brovko LY, Griffiths MW. 2006. Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to benzalkonium chloride. Appl Environ Microbiol 72:3498–3503 http://dx.doi.org/10.1128/AEM.72.5.3498-3503.2006. [PubMed]
111. Jones RD, Jampani HB, Newman JL, Lee AS. 2000. Triclosan: a review of effectiveness and safety in health care settings. Am J Infect Control 28:184–196 http://dx.doi.org/10.1067/mic.2000.102378. [PubMed]
112. Schweizer HP. 2001. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7 http://dx.doi.org/10.1111/j.1574-6968.2001.tb10772.x. [PubMed]
113. Heath RJ, Yu YT, Shapiro MA, Olson E, Rock CO. 1998. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem 273:30316–30320 http://dx.doi.org/10.1074/jbc.273.46.30316. [PubMed]
114. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114 http://dx.doi.org/10.1074/jbc.274.16.11110. [PubMed]
115. Slater-Radosti C, Van Aller G, Greenwood R, Nicholas R, Keller PM, DeWolf WE Jr, Fan F, Payne DJ, Jaworski DD. 2001. Biochemical and genetic characterization of the action of triclosan on Staphylococcus aureus. J Antimicrob Chemother 48:1–6 http://dx.doi.org/10.1093/jac/48.1.1. [PubMed]
116. Fan F, Yan K, Wallis NG, Reed S, Moore TD, Rittenhouse SF, DeWolf WE Jr, Huang J, McDevitt D, Miller WH, Seefeld MA, Newlander KA, Jakas DR, Head MS, Payne DJ. 2002. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 46:3343–3347 http://dx.doi.org/10.1128/AAC.46.11.3343-3347.2002. [PubMed]
117. Kampf G, Kramer A. 2004. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev 17:863–893 http://dx.doi.org/10.1128/CMR.17.4.863-893.2004. [PubMed]
118. Villalaín J, Mateo CR, Aranda FJ, Shapiro S, Micol V. 2001. Membranotropic effects of the antibacterial agent triclosan. Arch Biochem Biophys 390:128–136 http://dx.doi.org/10.1006/abbi.2001.2356. [PubMed]
119. Escalada MG, Russell AD, Maillard J-Y, Ochs D. 2005. Triclosan-bacteria interactions: single or multiple target sites? Lett Appl Microbiol 41:476–481 http://dx.doi.org/10.1111/j.1472-765X.2005.01790.x. [PubMed]
120. Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA, Coldham N, Hobman JL, Wain J, Woodward MJ, Piddock LJV. 2009. Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother 64:973–985 http://dx.doi.org/10.1093/jac/dkp320. [PubMed]
121. Nielsen LN, Larsen MH, Skovgaard S, Kastbjerg V, Westh H, Gram L, Ingmer H. 2013. Staphylococcus aureus but not Listeria monocytogenes adapt to triclosan and adaptation correlates with increased fabI expression and agr deficiency. BMC Microbiol 13:177 http://dx.doi.org/10.1186/1471-2180-13-177. [PubMed]
122. Kastbjerg VG, Hein-Kristensen L, Gram L. 2014. Triclosan-induced aminoglycoside-tolerant Listeria monocytogenes isolates can appear as small-colony variants. Antimicrob Agents Chemother 58:3124–3132 http://dx.doi.org/10.1128/AAC.02266-13. [PubMed]
123. Appelberg R. 2006. Macrophage nutriprive antimicrobial mechanisms. J Leukoc Biol 79:1117–1128 http://dx.doi.org/10.1189/jlb.0206079. [PubMed]
124. Botella H, Peyron P, Levillain F, Poincloux R, Poquet Y, Brandli I, Wang C, Tailleux L, Tilleul S, Charrière GM, Waddell SJ, Foti M, Lugo-Villarino G, Gao Q, Maridonneau-Parini I, Butcher PD, Castagnoli PR, Gicquel B, de Chastellier C, Neyrolles O. 2011. Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10:248–259 http://dx.doi.org/10.1016/j.chom.2011.08.006. [PubMed]
125. White C, Lee J, Kambe T, Fritsche K, Petris MJ. 2009. A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284:33949–33956 http://dx.doi.org/10.1074/jbc.M109.070201. [PubMed]
126. den Bakker HC, Cummings CA, Ferreira V, Vatta P, Orsi RH, Degoricija L, Barker M, Petrauskene O, Furtado MR, Wiedmann M. 2010. Comparative genomics of the bacterial genus Listeria: genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics 11:688 http://dx.doi.org/10.1186/1471-2164-11-688. [PubMed]
127. Kuenne C, Voget S, Pischimarov J, Oehm S, Goesmann A, Daniel R, Hain T, Chakraborty T. 2010. Comparative analysis of plasmids in the genus Listeria. PLoS One 5:5 http://dx.doi.org/10.1371/journal.pone.0012511. [PubMed]
128. Yoon KP, Silver S. 1991. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J Bacteriol 173:7636–7642 http://dx.doi.org/10.1128/jb.173.23.7636-7642.1991. [PubMed]
129. Allnutt TR, Bradbury MI, Fanning S, Chandry PS, Fox EM. 2016. Draft genome sequences of 15 isolates of Listeria monocytogenes serotype 1/2a, subgroup ST204. Genome Announc 4:4 http://dx.doi.org/10.1128/genomeA.00935-16. [PubMed]
130. Wales AD, Davies RH. 2015. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics (Basel) 4:567–604 http://dx.doi.org/10.3390/antibiotics4040567. [PubMed]
131. Schmitz-Esser S, Müller A, Stessl B, Wagner M. 2015. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front Microbiol 6:380 http://dx.doi.org/10.3389/fmicb.2015.00380. [PubMed]
132. Mortvedt JJ. 1996. Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43:55–61 http://dx.doi.org/10.1007/BF00747683.
133. Yazdankhah S, Rudi K, Bernhoft A. 2014. Zinc and copper in animal feed: development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis 25:25.
134. Barakat MA. 2011. New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377 http://dx.doi.org/10.1016/j.arabjc.2010.07.019.
135. Guan Y, Shao C, Ju M. 2014. Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int J Environ Res Public Health 11:7286–7303 http://dx.doi.org/10.3390/ijerph110707286. [PubMed]
136. Xu D, Nie Q, Wang W, Shi L, Yan H. 2016. Characterization of a transferable bcrABC and cadAC genes-harboring plasmid in Listeria monocytogenes strain isolated from food products of animal origin. Int J Food Microbiol 217:117–122 http://dx.doi.org/10.1016/j.ijfoodmicro.2015.10.021. [PubMed]
137. Pritchard TJ, Flanders KJ, Donnelly CW. 1995. Comparison of the incidence of Listeria on equipment versus environmental sites within dairy processing plants. Int J Food Microbiol 26:375–384 http://dx.doi.org/10.1016/0168-1605(94)00130-X.
138. Fox EM, Wall PG, Fanning S. 2015. Control of Listeria species food safety at a poultry food production facility. Food Microbiol 51:81–86 http://dx.doi.org/10.1016/j.fm.2015.05.002. [PubMed]
139. Mullapudi S, Siletzky RM, Kathariou S. 2008. Heavy-metal and benzalkonium chloride resistance of Listeria monocytogenes isolates from the environment of turkey-processing plants. Appl Environ Microbiol 74:1464–1468 http://dx.doi.org/10.1128/AEM.02426-07. [PubMed]
140. Khan Z, Rehman A, Hussain SZ, Nisar MA, Zulfiqar S, Shakoori AR. 2016. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express 6:54 http://dx.doi.org/10.1186/s13568-016-0225-9. [PubMed]
141. Lee S, Rakic-Martinez M, Graves LM, Ward TJ, Siletzky RM, Kathariou S. 2013. Genetic determinants for cadmium and arsenic resistance among Listeria monocytogenes serotype 4b isolates from sporadic human listeriosis patients. Appl Environ Microbiol 79:2471–2476 http://dx.doi.org/10.1128/AEM.03551-12. [PubMed]
142. Xu D, Li Y, Zahid MSH, Yamasaki S, Shi L, Li JR, Yan H. 2014. Benzalkonium chloride and heavy-metal tolerance in Listeria monocytogenes from retail foods. Int J Food Microbiol 190:24–30 http://dx.doi.org/10.1016/j.ijfoodmicro.2014.08.017. [PubMed]
143. Lebrun M, Loulergue J, Chaslus-Dancla E, Audurier A. 1992. Plasmids in Listeria monocytogenes in relation to cadmium resistance. Appl Environ Microbiol 58:3183–3186. [PubMed]
144. Lebrun M, Audurier A, Cossart P. 1994. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. J Bacteriol 176:3040–3048 http://dx.doi.org/10.1128/jb.176.10.3040-3048.1994. [PubMed]
145. Tynecka Z, Gos Z, Zajac J. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J Bacteriol 147:313–319. [PubMed]
146. Endo G, Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J Bacteriol 177:4437–4441 http://dx.doi.org/10.1128/jb.177.15.4437-4441.1995. [PubMed]
147. McLauchlin J, Hampton MD, Shah S, Threlfall EJ, Wieneke AA, Curtis GD. 1997. Subtyping of Listeria monocytogenes on the basis of plasmid profiles and arsenic and cadmium susceptibility. J Appl Microbiol 83:381–388 http://dx.doi.org/10.1046/j.1365-2672.1997.00238.x. [PubMed]
148. Ratani SS, Siletzky RM, Dutta V, Yildirim S, Osborne JA, Lin W, Hitchins AD, Ward TJ, Kathariou S. 2012. Heavy metal and disinfectant resistance of Listeria monocytogenes from foods and food processing plants. Appl Environ Microbiol 78:6938–6945 http://dx.doi.org/10.1128/AEM.01553-12. [PubMed]
149. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395 http://dx.doi.org/10.1093/nar/gkh562. [PubMed]
150. Mullapudi S, Siletzky RM, Kathariou S. 2010. Diverse cadmium resistance determinants in Listeria monocytogenes isolates from the turkey processing plant environment. Appl Environ Microbiol 76:627–630 http://dx.doi.org/10.1128/AEM.01751-09. [PubMed]
151. Briers Y, Klumpp J, Schuppler M, Loessner MJ. 2011. Genome sequence of Listeria monocytogenes Scott A, a clinical isolate from a food-borne listeriosis outbreak. J Bacteriol 193:4284–4285 http://dx.doi.org/10.1128/JB.05328-11. [PubMed]
152. Sarkar A, Paul B. 2016. The global menace of arsenic and its conventional remediation: a critical review. Chemosphere 158:37–49 http://dx.doi.org/10.1016/j.chemosphere.2016.05.043. [PubMed]
153. Henke KR, Atwood DA. Arsenic in human history and modern societies, p 277–302. In Arsenic. John Wiley & Sons, Ltd., Chichester, United Kingdom. http://dx.doi.org/10.1002/9780470741122.ch5
154. Chapman HD, Johnson ZB. 2002. Use of antibiotics and roxarsone in broiler chickens in the USA: analysis for the years 1995 to 2000. Poult Sci 81:356–364 http://dx.doi.org/10.1093/ps/81.3.356. [PubMed]
155. Jesse HE, Roberts IS, Cavet JS. 2014. Metal ion homeostasis in Listeria monocytogenes and importance in host-pathogen interactions. Adv Microb Physiol 65:83–123 http://dx.doi.org/10.1016/bs.ampbs.2014.08.003. [PubMed]
156. Castillo Y, Tachibana M, Nakatsu Y, Watanabe K, Shimizu T, Watarai M. 2015. Combination of zinc and all-trans retinoic acid promotes protection against Listeria monocytogenes infection. PLoS One 10:e0137463 http://dx.doi.org/10.1371/journal.pone.0137463. [PubMed]
157. Corbett D, Schuler S, Glenn S, Andrew PW, Cavet JS, Roberts IS. 2011. The combined actions of the copper-responsive repressor CsoR and copper-metallochaperone CopZ modulate CopA-mediated copper efflux in the intracellular pathogen Listeria monocytogenes. Mol Microbiol 81:457–472 http://dx.doi.org/10.1111/j.1365-2958.2011.07705.x. [PubMed]
158. Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, Barbuddhe S, Hain T, Chakraborty T. 2013. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 14:47 http://dx.doi.org/10.1186/1471-2164-14-47. [PubMed]
159. Camejo A, Buchrieser C, Couvé E, Carvalho F, Reis O, Ferreira P, Sousa S, Cossart P, Cabanes D. 2009. In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog 5:e1000449 http://dx.doi.org/10.1371/journal.ppat.1000449. [PubMed]
160. Bertrand S, Huys G, Yde M, D’Haene K, Tardy F, Vrints M, Swings J, Collard J-M. 2005. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J Med Microbiol 54:1151–1156 http://dx.doi.org/10.1099/jmm.0.46142-0. [PubMed]
161. Pourshaban M, Ferrini AM, Mannoni V, Oliva B, Aureli P. 2002. Transferable tetracycline resistance in Listeria monocytogenes from food in Italy. J Med Microbiol 51:564–566 http://dx.doi.org/10.1099/0022-1317-51-7-564. [PubMed]
162. Humphrey B, Thomson NR, Thomas CM, Brooks K, Sanders M, Delsol AA, Roe JM, Bennett PM, Enne VI. 2012. Fitness of Escherichia coli strains carrying expressed and partially silent IncN and IncP1 plasmids. BMC Microbiol 12:53 http://dx.doi.org/10.1186/1471-2180-12-53. [PubMed]
163. Clewell DB, Weaver KE, Dunny GM, Coque TM, Francia MV, Hayes F. 2014. Extrachromosomal and mobile elements in enterococci: transmission, maintenance, and epidemiology. In Gilmore MS, Clewell DB, Ike Y, Shankar N (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary, Boston, MA. Available from https://www.ncbi.nlm.nih.gov/books/NBK190430/.
164. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI. 2011. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158 http://dx.doi.org/10.1371/journal.ppat.1002158. [PubMed]
165. Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. 2014. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 5:e01918–e14 http://dx.doi.org/10.1128/mBio.01918-14. [PubMed]
166. Jensen LB, Garcia-Migura L, Valenzuela AJS, Løhr M, Hasman H, Aarestrup FM. 2010. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43 http://dx.doi.org/10.1016/j.mimet.2009.10.012. [PubMed]
167. Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238 http://dx.doi.org/10.1128/AAC.01707-08. [PubMed]
168. Romanova N, Favrin S, Griffiths MW. 2002. Sensitivity of Listeria monocytogenes to sanitizers used in the meat processing industry. Appl Environ Microbiol 68:6405–6409 http://dx.doi.org/10.1128/AEM.68.12.6405-6409.2002. [PubMed]
169. Zhang H, Zhou Y, Bao H, Zhang L, Wang R, Zhou X. 2015. Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol Res 172:1–6 http://dx.doi.org/10.1016/j.micres.2015.01.008. [PubMed]
170. Bertsch D, Muelli M, Weller M, Uruty A, Lacroix C, Meile L. 2014. Antimicrobial susceptibility and antibiotic resistance gene transfer analysis of foodborne, clinical, and environmental Listeria spp. isolates including Listeria monocytogenes. MicrobiologyOpen 3:118–127 http://dx.doi.org/10.1002/mbo3.155. [PubMed]
171. Poyart-Salmeron C, Trieu-Cuot P, Carlier C, MacGowan A, McLauchlin J, Courvalin P. 1992. Genetic basis of tetracycline resistance in clinical isolates of Listeria monocytogenes. Antimicrob Agents Chemother 36:463–466 http://dx.doi.org/10.1128/AAC.36.2.463. [PubMed]
172. Hadorn K, Hächler H, Schaffner A, Kayser FH. 1993. Genetic characterization of plasmid-encoded multiple antibiotic resistance in a strain of Listeria monocytogenes causing endocarditis. Eur J Clin Microbiol Infect Dis 12:928–937 http://dx.doi.org/10.1007/BF01992167. [PubMed]
173. Piddock LJV. 2006. Multidrug-resistance efflux pumps: not just for resistance. Nat Rev Microbiol 4:629–636 http://dx.doi.org/10.1038/nrmicro1464. [PubMed]
174. Li X-Z, Nikaido H. 2009. Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623 http://dx.doi.org/10.2165/11317030-000000000-00000. [PubMed]
175. Webber MA, Piddock LJV. 2003. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9–11 http://dx.doi.org/10.1093/jac/dkg050. [PubMed]
176. Crimmins GT, Herskovits AA, Rehder K, Sivick KE, Lauer P, Dubensky TW Jr, Portnoy DA. 2008. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci USA 105:10191–10196 http://dx.doi.org/10.1073/pnas.0804170105. [PubMed]
177. Kaplan Zeevi M, Shafir NS, Shaham S, Friedman S, Sigal N, Nir Paz R, Boneca IG, Herskovits AA. 2013. Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol 195:5250–5261 http://dx.doi.org/10.1128/JB.00794-13. [PubMed]
178. Schwartz KT, Carleton JD, Quillin SJ, Rollins SD, Portnoy DA, Leber JH. 2012. Hyperinduction of host beta interferon by a Listeria monocytogenes strain naturally overexpressing the multidrug efflux pump MdrT. Infect Immun 80:1537–1545 http://dx.doi.org/10.1128/IAI.06286-11. [PubMed]
179. Marquez B, Pourcelle V, Vallet CM, Mingeot-Leclercq M-P, Tulkens PM, Marchand-Bruynaert J, Van Bambeke F. 2014. Pharmacological characterization of 7-(4-(Piperazin-1-yl)) ciprofloxacin derivatives: antibacterial activity, cellular accumulation, susceptibility to efflux transporters, and intracellular activity. Pharm Res 31:1290–1301 http://dx.doi.org/10.1007/s11095-013-1250-x.
180. Lismond A, Tulkens PM, Mingeot-Leclercq M-P, Courvalin P, Van Bambeke F. 2008. Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin. Antimicrob Agents Chemother 52:3040–3046 http://dx.doi.org/10.1128/AAC.00105-08. [PubMed]
181. Scortti M, Lacharme-Lora L, Wagner M, Chico-Calero I, Losito P, Vázquez-Boland JA. 2006. Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro- in vivo paradox. Nat Med 12:515–517 http://dx.doi.org/10.1038/nm1396. [PubMed]
182. Collins B, Curtis N, Cotter PD, Hill C, Ross RP. 2010. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various beta-lactam antibiotics. Antimicrob Agents Chemother 54:4416–4423 http://dx.doi.org/10.1128/AAC.00503-10. [PubMed]
183. Walsh D, Duffy G, Sheridan JJ, Blair IS, McDowell DA. 2001. Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. J Appl Microbiol 90:517–522 http://dx.doi.org/10.1046/j.1365-2672.2001.01273.x. [PubMed]

Article metrics loading...



For nearly a century the use of antibiotics to treat infectious diseases has benefited human and animal health. In recent years there has been an increase in the emergence of antibiotic-resistant bacteria, in part attributed to the overuse of compounds in clinical and farming settings. The genus currently comprises 17 recognized species found throughout the environment. is the etiological agent of listeriosis in humans and many vertebrate species, including birds, whereas causes infections mainly in ruminants. is the third-most-common cause of death from food poisoning in humans, and infection occurs in at-risk groups, including pregnant women, newborns, the elderly, and immunocompromised individuals.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

species maximum likelihood phylogenetic tree based on concatenated nucleotide sequences of the 16S rRNA genes from all species. Values on branches represent bootstrap values based on 500 bootstrap replicates; bootstrap values >80% are not displayed. species are color coded according the new genera classification proposed by Orsi et al. ( 1 ).

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Transmission dynamics of listeriosis involving human and animal hosts. Potential transmission pathways of species are indicated by arrows, and vehicles are represented by colored boxes.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

L. monocytogenes . (a) invades the host cells via a zipper mechanism, by the interaction of surface internalins InlA and InlB with the host cell surface receptors E-cadherin and Met, respectively. (b) escapes from the phagosome before the fusion with the lysosome occurs, by the action of the secreted proteins, the pore-forming toxin LLO, and phosphatidylinositide phospholipase C (PI-PLC). (c) may replicate in the cytosol, and (d) it spreads by actin polymerization, which propels the bacteria unidirectionally, (e) promoting cell-to-cell spreading of . (f) Rupture of the two-membrane vacuole is mainly mediated by the action of LLO and phosphatidylcholine-specific phospholipase C (PC-PLC).

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Heavy metal resistance operons in the strain ScottA. (A) Arsenic resistance operon. (B) cadmium resistance operon.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

L. monocytogenes. The ATP-binding cassette (ABC) superfamily, the major facilitator superfamily (MFS), the multidrug and toxic-compound extrusion (MATE) family, and the small multidrug resistance (SMR) family. Common examples of the individual proteins that form each class of efflux pump are shown.

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

lineages and serotype distribution

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Generic image for table

Mammals, birds, and other species from which species have been isolated

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Generic image for table

species, hosts, and forms of disease

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Generic image for table

Intrinsic or natural antibiotic susceptibility and resistance of species

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017
Generic image for table

Multidrug efflux transporters characterzsed in

Source: microbiolspec July 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.ARBA-0031-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error