No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Ecological Therapeutic Opportunities for Oral Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    244.10 Kb
  • HTML
    243.42 Kb
  • PDF
    5.44 MB
  • Authors: Anilei Hoare1, Philip D. Marsh2, Patricia I. Diaz3
  • Editors: Robert Allen Britton4, Patrice D. Cani5
    Affiliations: 1: Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, Farmington, CT 06030; 2: Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom; 3: Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, Farmington, CT 06030; 4: Baylor College of Medicine, Houston, TX; 5: Université catholique de Louvain, Brussels, Belgium
  • Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0006-2016
  • Received 17 October 2016 Accepted 04 November 2016 Published 25 August 2017
  • Patricia I. Diaz, [email protected]
image of Ecological Therapeutic Opportunities for Oral Diseases
    Preview this microbiology spectrum article:
    Zoom in

    Ecological Therapeutic Opportunities for Oral Diseases, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/BAD-0006-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/4/BAD-0006-2016-2.gif
  • Abstract:

    The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.

  • Citation: Hoare A, Marsh P, Diaz P. 2017. Ecological Therapeutic Opportunities for Oral Diseases. Microbiol Spectrum 5(4):BAD-0006-2016. doi:10.1128/microbiolspec.BAD-0006-2016.


1. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. 2010. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford) 2010:baq013. http://dx.doi.org/10.1093/database/baq013 [PubMed]
2. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192:5002–5017. http://dx.doi.org/10.1128/JB.00542-10 [PubMed]
3. Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD. 2014. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One 9:e90899. http://dx.doi.org/10.1371/journal.pone.0090899 [PubMed]
4. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. 2004. Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101:6176–6181. http://dx.doi.org/10.1073/pnas.0308766101 [PubMed]
5. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. 2015. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med 7:27. http://dx.doi.org/10.1186/s13073-015-0153-3 [PubMed]
6. Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. 2016. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA 113:E791–E800. http://dx.doi.org/10.1073/pnas.1522149113 [PubMed]
7. Zijnge V, van Leeuwen MB, Degener JE, Abbas F, Thurnheer T, Gmür R, Harmsen HJ. 2010. Oral biofilm architecture on natural teeth. PLoS One 5:e9321. http://dx.doi.org/10.1371/journal.pone.0009321 [PubMed]
8. Marsh PD, Moter A, Devine DA. 2011. Dental plaque biofilms: communities, conflict and control. Periodontol 2000 55:16–35. http://dx.doi.org/10.1111/j.1600-0757.2009.00339.x [PubMed]
9. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732. http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005 [PubMed]
10. Diaz PI, Dupuy AK, Abusleme L, Reese B, Obergfell C, Choquette L, Dongari-Bagtzoglou A, Peterson DE, Terzi E, Strausbaugh LD. 2012. Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol Oral Microbiol 27:182–201. http://dx.doi.org/10.1111/j.2041-1014.2012.00642.x [PubMed]
11. Frandsen EV, Pedrazzoli V, Kilian M. 1991. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129–133. http://dx.doi.org/10.1111/j.1399-302X.1991.tb00466.x [PubMed]
12. Xu X, He J, Xue J, Wang Y, Li K, Zhang K, Guo Q, Liu X, Zhou Y, Cheng L, Li M, Li Y, Li Y, Shi W, Zhou X. 2015. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17:699–710. http://dx.doi.org/10.1111/1462-2920.12502 [PubMed]
13. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J 7:1016–1025. http://dx.doi.org/10.1038/ismej.2012.174 [PubMed]
14. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. 2012. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 7:e47722. http://dx.doi.org/10.1371/journal.pone.0047722 [PubMed]
15. Cephas KD, Kim J, Mathai RA, Barry KA, Dowd SE, Meline BS, Swanson KS. 2011. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS One 6:e23503. http://dx.doi.org/10.1371/journal.pone.0023503 [PubMed]
16. Huttenhower C, et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. http://dx.doi.org/10.1038/nature11234 [PubMed]
17. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. 2002. Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505. http://dx.doi.org/10.1128/MMBR.66.3.486-505.2002 [PubMed]
18. Palmer RJ Jr, Gordon SM, Cisar JO, Kolenbrander PE. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 185:3400–3409. http://dx.doi.org/10.1128/JB.185.11.3400-3409.2003
19. Nobbs AH, Lamont RJ, Jenkinson HF. 2009. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450. http://dx.doi.org/10.1128/MMBR.00014-09 [PubMed]
20. Levine MJ, Herzberg MC, Levine MS, Ellison SA, Stinson MW, Li HC, van Dyke T. 1978. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect Immun 19:107–115. [PubMed]
21. McBride BC, Gisslow MT. 1977. Role of sialic acid in saliva-induced aggregation of Streptococcus sanguis. Infect Immun 18:35–40. [PubMed]
22. Murray PA, Levine MJ, Reddy MS, Tabak LA, Bergey EJ. 1986. Preparation of a sialic acid-binding protein from Streptococcus mitis KS32AR. Infect Immun 53:359–365. [PubMed]
23. Murray PA, Levine MJ, Tabak LA, Reddy MS. 1982. Specificity of salivary-bacterial interactions. II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAc alpha 2, 3Ga1 beta 1, 3Ga1NAc sequence. Biochem Biophys Res Commun 106:390–396. http://dx.doi.org/10.1016/0006-291X(82)91122-6
24. Ellen RP, Fillery ED, Chan KH, Grove DA. 1980. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infect Immun 27:335–343. [PubMed]
25. Gibbons RJ, Hay DI, Childs WC III, Davis G. 1990. Role of cryptic receptors (cryptitopes) in bacterial adhesion to oral surfaces. Arch Oral Biol 35(Suppl) :107S–114S. http://dx.doi.org/10.1016/0003-9969(90)90139-2
26. Loimaranta V, Jakubovics NS, Hytönen J, Finne J, Jenkinson HF, Strömberg N. 2005. Fluid- or surface-phase human salivary scavenger protein gp340 exposes different bacterial recognition properties. Infect Immun 73:2245–2252. http://dx.doi.org/10.1128/IAI.73.4.2245-2252.2005 [PubMed]
27. Jakubovics NS, Kerrigan SW, Nobbs AH, Strömberg N, van Dolleweerd CJ, Cox DM, Kelly CG, Jenkinson HF. 2005. Functions of cell surface-anchored antigen I/II family and Hsa polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun 73:6629–6638. http://dx.doi.org/10.1128/IAI.73.10.6629-6638.2005 [PubMed]
28. Jenkinson HF, Lamont RJ. 1997. Streptococcal adhesion and colonization. Crit Rev Oral Biol Med 8:175–200. http://dx.doi.org/10.1177/10454411970080020601
29. Busscher HJ, van de Belt-Gritter B, Dijkstra RJ, Norde W, Petersen FC, Scheie AA, van der Mei HC. 2007. Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films. J Bacteriol 189:2988–2995. http://dx.doi.org/10.1128/JB.01731-06 [PubMed]
30. Love RM, McMillan MD, Jenkinson HF. 1997. Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect Immun 65:5157–5164. [PubMed]
31. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol 8:471–480. http://dx.doi.org/10.1038/nrmicro2381 [PubMed]
32. Gibbons RJ, Nygaard M. 1970. Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15:1397–1400. http://dx.doi.org/10.1016/0003-9969(70)90031-2 [PubMed]
33. Cisar JO, Kolenbrander PE, McIntire FC. 1979. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun 24:742–752. [PubMed]
34. Kolenbrander PE, Andersen RN, Holdeman LV. 1985. Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Infect Immun 48:741–746. [PubMed]
35. Kolenbrander PE, Andersen RN, Moore LV. 1989. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun 57:3194–3203. [PubMed]
36. Jenkinson HF, Lala HC, Shepherd MG. 1990. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect Immun 58:1429–1436. [PubMed]
37. Listgarten MA. 1976. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J Periodontol 47:1–18. http://dx.doi.org/10.1902/jop.1976.47.1.1 [PubMed]
38. Ozok AR, Persoon IF, Huse SM, Keijser BJ, Wesselink PR, Crielaard W, Zaura E. 2012. Ecology of the microbiome of the infected root canal system: a comparison between apical and coronal root segments. Int Endod J 45:530–541. http://dx.doi.org/10.1111/j.1365-2591.2011.02006.x [PubMed]
39. Bradshaw DJ, Homer KA, Marsh PD, Beighton D. 1994. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412. http://dx.doi.org/10.1099/13500872-140-12-3407 [PubMed]
40. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. 2007. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670. http://dx.doi.org/10.1128/MMBR.00024-07 [PubMed]
41. Grenier D, Mayrand D. 1986. Nutritional relationships between oral bacteria. Infect Immun 53:616–620. [PubMed]
42. Grenier D. 1992. Nutritional interactions between two suspected periodontopathogens, Treponema denticola and Porphyromonas gingivalis. Infect Immun 60:5298–5301. [PubMed]
43. Chikindas ML, Novák J, Driessen AJ, Konings WN, Schilling KM, Caufield PW. 1995. Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother 39:2656–2660. http://dx.doi.org/10.1128/AAC.39.12.2656 [PubMed]
44. Donoghue HD, Tyler JE. 1975. Antagonisms amongst streptococci isolated from the human oral cavity. Arch Oral Biol 20:381–387. http://dx.doi.org/10.1016/0003-9969(75)90031-X
45. Grenier D. 1996. Antagonistic effect of oral bacteria towards Treponema denticola. J Clin Microbiol 34:1249–1252. [PubMed]
46. Kaewsrichan J, Douglas CW, Nissen-Meyer J, Fimland G, Teanpaisan R. 2004. Characterization of a bacteriocin produced by Prevotella nigrescens ATCC 25261. Lett Appl Microbiol 39:451–458. http://dx.doi.org/10.1111/j.1472-765X.2004.01608.x [PubMed]
47. Kreth J, Merritt J, Shi W, Qi F. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203. http://dx.doi.org/10.1128/JB.187.21.7193-7203.2005 [PubMed]
48. Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ. 2011. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci USA 108:2668–2673. http://dx.doi.org/10.1073/pnas.1018391108 [PubMed]
49. Greer A, Zenobia C, Darveau RP. 2013. Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000 63:67–79. http://dx.doi.org/10.1111/prd.12028 [PubMed]
50. Huynh AH, Veith PD, McGregor NR, Adams GG, Chen D, Reynolds EC, Ngo LH, Darby IB. 2015. Gingival crevicular fluid proteomes in health, gingivitis and chronic periodontitis. J Periodontal Res 50:637–649. http://dx.doi.org/10.1111/jre.12244 [PubMed]
51. van ’t Hof W, Veerman EC, Nieuw Amerongen AV, Ligtenberg AJ. 2014. Antimicrobial defense systems in saliva. Monogr Oral Sci 24:40–51. http://dx.doi.org/10.1159/000358783 [PubMed]
52. Marsh PD, Do T, Beighton D, Devine DA. 2016. Influence of saliva on the oral microbiota. Periodontol 2000 70:80–92. http://dx.doi.org/10.1111/prd.12098 [PubMed]
53. Mathews M, Jia HP, Guthmiller JM, Losh G, Graham S, Johnson GK, Tack BF, McCray PB Jr. 1999. Production of beta-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect Immun 67:2740–2745. [PubMed]
54. Blankenvoorde MF, van’t Hof W, Walgreen-Weterings E, van Steenbergen TJ, Brand HS, Veerman EC, Nieuw Amerongen AV. 1998. Cystatin and cystatin-derived peptides have antibacterial activity against the pathogen Porphyromonas gingivalis. Biol Chem 379:1371–1375. [PubMed]
55. den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG, Veerman EC, Nieuw Amerongen AV. 2005. Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695. http://dx.doi.org/10.1042/BJ20042099 [PubMed]
56. MacKay BJ, Denepitiya L, Iacono VJ, Krost SB, Pollock JJ. 1984. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans. Infect Immun 44:695–701. [PubMed]
57. Pollock JJ, Denepitiya L, MacKay BJ, Iacono VJ. 1984. Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides on Candida albicans. Infect Immun 44:702–707. [PubMed]
58. Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. 2013. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 25:65–72. http://dx.doi.org/10.1016/j.smim.2013.04.004 [PubMed]
59. Carpenter GH. 2013. The secretion, components, and properties of saliva. Annu Rev Food Sci Technol 4:267–276. http://dx.doi.org/10.1146/annurev-food-030212-182700 [PubMed]
60. Ngo LH, Veith PD, Chen YY, Chen D, Darby IB, Reynolds EC. 2010. Mass spectrometric analyses of peptides and proteins in human gingival crevicular fluid. J Proteome Res 9:1683–1693. http://dx.doi.org/10.1021/pr900775s [PubMed]
61. ter Steeg PF, van der Hoeven JS, de Jong MH, van Munster PJJ, Jansen MJH. 1988. Modelling the gingival pocket by enrichment of subgingival microflora in human serum in chemostats. Microb Ecol Health Dis 1:73–84. http://dx.doi.org/10.3109/08910608809140185
62. ter Steeg PF, van der Hoeven JS, Bakkeren JAJM. 1989. Immunoglobulin G cleaving species in serum-degrading consortia of periodontal bacteria. Microb Ecol Health Dis 2:163–169. http://dx.doi.org/10.3109/08910608909140214
63. Glenister DA, Salamon KE, Smith K, Beighton D, Keevil CW. 1988. Enhanced growth of complex communities of dental plaque bacteria in mucin-limited continuous culture. Microb Ecol Health Dis 1:31–38. http://dx.doi.org/10.3109/08910608809140176
64. ter Steeg PF, Van der Hoeven JS, de Jong MH, van Munster PJ, Jansen MJ. 1987. Enrichment of subgingival microflora on human serum leading to accumulation of Bacteroides species, peptostreptococci and Fusobacteria. Antonie van Leeuwenhoek 53:261–272. http://dx.doi.org/10.1007/BF00393933 [PubMed]
65. Grenier D, Imbeault S, Plamondon P, Grenier G, Nakayama K, Mayrand D. 2001. Role of gingipains in growth of Porphyromonas gingivalis in the presence of human serum albumin. Infect Immun 69:5166–5172. http://dx.doi.org/10.1128/IAI.69.8.5166-5172.2001 [PubMed]
66. Grenier D, Mayrand D, McBride BC. 1989. Further studies on the degradation of immunoglobulins by black-pigmented Bacteroides. Oral Microbiol Immunol 4:12–18. http://dx.doi.org/10.1111/j.1399-302X.1989.tb00400.x [PubMed]
67. Bradshaw DJ, Marsh PD. 1998. Analysis of pH-driven disruption of oral microbial communities in vitro. Caries Res 32:456–462. http://dx.doi.org/10.1159/000016487 [PubMed]
68. Bradshaw DJ, McKee AS, Marsh PD. 1989. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res 68:1298–1302. http://dx.doi.org/10.1177/00220345890680090101 [PubMed]
69. Gibbons RJ, Houte JV. 1975. Bacterial adherence in oral microbial ecology. Annu Rev Microbiol 29:19–44. http://dx.doi.org/10.1146/annurev.mi.29.100175.000315 [PubMed]
70. Mettraux GR, Gusberti FA, Graf H. 1984. Oxygen tension (pO2) in untreated human periodontal pockets. J Periodontol 55:516–521. http://dx.doi.org/10.1902/jop.1984.55.9.516 [PubMed]
71. Kenney EB, Ash MM Jr. 1969. Oxidation reduction potential of developing plaque, periodontal pockets and gingival sulci. J Periodontol 40:630–633. http://dx.doi.org/10.1902/jop.1969.40.11.630 [PubMed]
72. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. 2003. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30:644–654. http://dx.doi.org/10.1034/j.1600-051X.2003.00376.x [PubMed]
73. Selwitz RH, Ismail AI, Pitts NB. 2007. Dental caries. Lancet 369:51–59. http://dx.doi.org/10.1016/S0140-6736(07)60031-2
74. Fontana M, Young DA, Wolff MS, Pitts NB, Longbottom C. 2010. Defining dental caries for 2010 and beyond. Dent Clin North Am 54:423–440. http://dx.doi.org/10.1016/j.cden.2010.03.007 [PubMed]
75. van Houte J. 1994. Role of micro-organisms in caries etiology. J Dent Res 73:672–681. [PubMed]
76. Marsh PD. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149:279–294. http://dx.doi.org/10.1099/mic.0.26082-0 [PubMed]
77. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. 2002. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009. http://dx.doi.org/10.1128/JCM.40.3.1001-1009.2002 [PubMed]
78. Loesche WJ, Rowan J, Straffon LH, Loos PJ. 1975. Association of Streptococcus mutants with human dental decay. Infect Immun 11:1252–1260. [PubMed]
79. Marchant S, Brailsford SR, Twomey AC, Roberts GJ, Beighton D. 2001. The predominant microflora of nursing caries lesions. Caries Res 35:397–406. http://dx.doi.org/10.1159/000047482 [PubMed]
80. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ. 2008. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417. http://dx.doi.org/10.1128/JCM.01410-07 [PubMed]
81. Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simón-Soro A, Pignatelli M, Mira A. 2012. The oral metagenome in health and disease. ISME J 6:46–56. http://dx.doi.org/10.1038/ismej.2011.85 [PubMed]
82. Kanasi E, Dewhirst FE, Chalmers NI, Kent R Jr, Moore A, Hughes CV, Pradhan N, Loo CY, Tanner AC. 2010. Clonal analysis of the microbiota of severe early childhood caries. Caries Res 44:485–497. http://dx.doi.org/10.1159/000320158 [PubMed]
83. Loesche WJ, Eklund S, Earnest R, Burt B. 1984. Longitudinal investigation of bacteriology of human fissure decay: epidemiological studies in molars shortly after eruption. Infect Immun 46:765–772. [PubMed]
84. Munson MA, Banerjee A, Watson TF, Wade WG. 2004. Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029. http://dx.doi.org/10.1128/JCM.42.7.3023-3029.2004 [PubMed]
85. Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ. 2008. Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46:2015–2021. http://dx.doi.org/10.1128/JCM.02411-07 [PubMed]
86. Tanner AC, Kent RL Jr, Holgerson PL, Hughes CV, Loo CY, Kanasi E, Chalmers NI, Johansson I. 2011. Microbiota of severe early childhood caries before and after therapy. J Dent Res 90:1298–1305. http://dx.doi.org/10.1177/0022034511421201 [PubMed]
87. van Ruyven FO, Lingström P, van Houte J, Kent R. 2000. Relationship among mutans streptococci, “low-pH” bacteria, and lodophilic polysaccharide-producing bacteria in dental plaque and early enamel caries in humans. J Dent Res 79:778–784. http://dx.doi.org/10.1177/00220345000790021201 [PubMed]
88. Lamont RJ, Hajishengallis G. 2015. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med 21:172–183. http://dx.doi.org/10.1016/j.molmed.2014.11.004 [PubMed]
89. Armitage GC, Cullinan MP. 2010. Comparison of the clinical features of chronic and aggressive periodontitis. Periodontol 2000 53:12–27. http://dx.doi.org/10.1111/j.1600-0757.2010.00353.x [PubMed]
90. Lang N, Bartold PM, Cullinan M, Jeffcoat M, Mombelli A, Murakami S, Page R, Papapanou P, Tonetti M, Van Dyke T. 1999. Consensus report: aggressive periodontitis. Ann Periodontol 4:53.
91. Diaz PI, Hoare A, Hong BY. 2016. Subgingival microbiome shifts and community dynamics in periodontal diseases. J Calif Dent Assoc 44:421–435. [PubMed]
92. Kistler JO, Booth V, Bradshaw DJ, Wade WG. 2013. Bacterial community development in experimental gingivitis. PLoS One 8:e71227. http://dx.doi.org/10.1371/journal.pone.0071227 [PubMed]
93. Huang S, Li R, Zeng X, He T, Zhao H, Chang A, Bo C, Chen J, Yang F, Knight R, Liu J, Davis C, Xu J. 2014. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J 8:1768–1780. http://dx.doi.org/10.1038/ismej.2014.32 [PubMed]
94. Loe H, Theilade E, Jensen SB. 1965. Experimental gingivitis in man. J Periodontol 36:177–187. http://dx.doi.org/10.1902/jop.1965.36.3.177 [PubMed]
95. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. 2012. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185. http://dx.doi.org/10.1038/ismej.2011.191 [PubMed]
96. Hong BY, Furtado Araujo MV, Strausbaugh LD, Terzi E, Ioannidou E, Diaz PI. 2015. Microbiome profiles in periodontitis in relation to host and disease characteristics. PLoS One 10:e0127077. http://dx.doi.org/10.1371/journal.pone.0127077 [PubMed]
97. Kirst ME, Li EC, Alfant B, Chi YY, Walker C, Magnusson I, Wang GP. 2015. Dysbiosis and alterations in predicted functions of the subgingival microbiome in chronic periodontitis. Appl Environ Microbiol 81:783–793. http://dx.doi.org/10.1128/AEM.02712-14 [PubMed]
98. Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. 2006. How we got attached to Actinobacillus actinomycetemcomitans: a model for infectious diseases. Periodontol 2000 42:114–157. http://dx.doi.org/10.1111/j.1600-0757.2006.00189.x [PubMed]
99. Kamma JJ, Nakou M, Gmür R, Baehni PC. 2004. Microbiological profile of early onset/aggressive periodontitis patients. Oral Microbiol Immunol 19:314–321. http://dx.doi.org/10.1111/j.1399-302x.2004.00161.x [PubMed]
100. Lourenço TG, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo AP. 2014. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol 41:1027–1036. http://dx.doi.org/10.1111/jcpe.12302 [PubMed]
101. Oliveira RR, Fermiano D, Feres M, Figueiredo LC, Teles FR, Soares GM, Faveri M. 2016. Levels of candidate periodontal pathogens in subgingival biofilm. J Dent Res 95:711–718. http://dx.doi.org/10.1177/0022034516634619 [PubMed]
102. Haubek D, Ennibi OK, Poulsen K, Vaeth M, Poulsen S, Kilian M. 2008. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of Aggregatibacter ( Actinobacillus) actinomycetemcomitans in Morocco: a prospective longitudinal cohort study. Lancet 371:237–242. http://dx.doi.org/10.1016/S0140-6736(08)60135-X
103. Hajishengallis G, Lamont RJ. 2012. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 27:409–419. http://dx.doi.org/10.1111/j.2041-1014.2012.00663.x [PubMed]
104. Jauregui CE, Wang Q, Wright CJ, Takeuchi H, Uriarte SM, Lamont RJ. 2013. Suppression of T-cell chemokines by Porphyromonas gingivalis. Infect Immun 81:2288–2295. http://dx.doi.org/10.1128/IAI.00264-13 [PubMed]
105. Takeuchi H, Hirano T, Whitmore SE, Morisaki I, Amano A, Lamont RJ. 2013. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65. PLoS Pathog 9:e1003326. http://dx.doi.org/10.1371/journal.ppat.1003326 [PubMed]
106. Popadiak K, Potempa J, Riesbeck K, Blom AM. 2007. Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 178:7242–7250. http://dx.doi.org/10.4049/jimmunol.178.11.7242 [PubMed]
107. Jusko M, Potempa J, Karim AY, Ksiazek M, Riesbeck K, Garred P, Eick S, Blom AM. 2012. A metalloproteinase karilysin present in the majority of Tannerella forsythia isolates inhibits all pathways of the complement system. J Immunol 188:2338–2349. http://dx.doi.org/10.4049/jimmunol.1101240 [PubMed]
108. Potempa M, Potempa J, Kantyka T, Nguyen KA, Wawrzonek K, Manandhar SP, Popadiak K, Riesbeck K, Eick S, Blom AM. 2009. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3. PLoS Pathog 5:e1000316. http://dx.doi.org/10.1371/journal.ppat.1000316 [PubMed]
109. Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, Hashim A, Hoch S, Curtis MA, Nussbaum G, Lambris JD, Hajishengallis G. 2014. Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 15:768–778. http://dx.doi.org/10.1016/j.chom.2014.05.012 [PubMed]
110. Maekawa T, Abe T, Hajishengallis E, Hosur KB, DeAngelis RA, Ricklin D, Lambris JD, Hajishengallis G. 2014. Genetic and intervention studies implicating complement C3 as a major target for the treatment of periodontitis. J Immunol 192:6020–6027. http://dx.doi.org/10.4049/jimmunol.1400569 [PubMed]
111. Lalla RV, Patton LL, Dongari-Bagtzoglou A. 2013. Oral candidiasis: pathogenesis, clinical presentation, diagnosis and treatment strategies. J Calif Dent Assoc 41:263–268. [PubMed]
112. Williams D, Lewis M. 2011. Pathogenesis and treatment of oral candidosis. J Oral Microbiol 3. http://dx.doi.org/10.3402/jom.v3i0.5771 [PubMed]
113. Muadcheingka T, Tantivitayakul P. 2015. Distribution of Candida albicans and non- albicans Candida species in oral candidiasis patients: correlation between cell surface hydrophobicity and biofilm forming activities. Arch Oral Biol 60:894–901. http://dx.doi.org/10.1016/j.archoralbio.2015.03.002 [PubMed]
114. Salvatori O, Puri S, Tati S, Edgerton M. 2016. Innate immunity and saliva in Candida albicans-mediated oral diseases. J Dent Res 95:365–371. http://dx.doi.org/10.1177/0022034515625222 [PubMed]
115. Diaz PI, Xie Z, Sobue T, Thompson A, Biyikoglu B, Ricker A, Ikonomou L, Dongari-Bagtzoglou A. 2012. Synergistic interaction between Candida albicans and commensal oral streptococci in a novel in vitro mucosal model. Infect Immun 80:620–632. http://dx.doi.org/10.1128/IAI.05896-11 [PubMed]
116. Xu H, Sobue T, Thompson A, Xie Z, Poon K, Ricker A, Cervantes J, Diaz PI, Dongari-Bagtzoglou A. 2014. Streptococcal co-infection augments Candida pathogenicity by amplifying the mucosal inflammatory response. Cell Microbiol 16:214–231. http://dx.doi.org/10.1111/cmi.12216 [PubMed]
117. Bamford CV, d’Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704. http://dx.doi.org/10.1128/IAI.00438-09 [PubMed]
118. FAO/WHO J. 2002. Report of a Joint FAO/WHO Expert Consultation on Guidelines for the Evaluation of Probiotics in Food. World Health Organization and Food and Agriculture Organization of the United Nations, Ontario, Canada.
119. Bron PA, van Baarlen P, Kleerebezem M. 2011. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10:66–78.
120. Lebeer S, Vanderleyden J, De Keersmaecker SC. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. http://dx.doi.org/10.1128/MMBR.00017-08 [PubMed]
121. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. 2007. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575. http://dx.doi.org/10.1053/j.gastro.2006.11.022 [PubMed]
122. Gao C, Major A, Rendon D, Lugo M, Jackson V, Shi Z, Mori-Akiyama Y, Versalovic J. 2015. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. MBio 6:e01358-15. http://dx.doi.org/10.1128/mBio.01358-15 [PubMed]
123. Li J, Sung CY, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H. 2016. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA 113:E1306–E1315. http://dx.doi.org/10.1073/pnas.1518189113 [PubMed]
124. Everard A, Matamoros S, Geurts L, Delzenne NM, Cani PD. 2014. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio 5:e01011-4. http://dx.doi.org/10.1128/mBio.01011-14 [PubMed]
125. Jahn HU, Ullrich R, Schneider T, Liehr RM, Schieferdecker HL, Holst H, Zeitz M. 1996. Immunological and trophical effects of Saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 57:95–104. http://dx.doi.org/10.1159/000201320 [PubMed]
126. Martins FS, Vieira AT, Elian SD, Arantes RM, Tiago FC, Sousa LP, Araújo HR, Pimenta PF, Bonjardim CA, Nicoli JR, Teixeira MM. 2013. Inhibition of tissue inflammation and bacterial translocation as one of the protective mechanisms of Saccharomyces boulardii against Salmonella infection in mice. Microbes Infect 15:270–279. http://dx.doi.org/10.1016/j.micinf.2012.12.007 [PubMed]
127. Justino PF, Melo LF, Nogueira AF, Costa JV, Silva LM, Santos CM, Mendes WO, Costa MR, Franco AX, Lima AA, Ribeiro RA, Souza MH, Soares PM. 2014. Treatment with Saccharomyces boulardii reduces the inflammation and dysfunction of the gastrointestinal tract in 5-fluorouracil-induced intestinal mucositis in mice. Br J Nutr 111:1611–1621. http://dx.doi.org/10.1017/S0007114513004248 [PubMed]
128. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109:2108–2113. http://dx.doi.org/10.1073/pnas.1115621109 [PubMed]
129. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y. 2004. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247. http://dx.doi.org/10.1128/IAI.72.4.2240-2247.2004 [PubMed]
130. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337–349. http://dx.doi.org/10.1016/0300-9084(88)90206-4
131. Lee YK, Lim CY, Teng WL, Ouwehand AC, Tuomola EM, Salminen S. 2000. Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol 66:3692–3697. http://dx.doi.org/10.1128/AEM.66.9.3692-3697.2000 [PubMed]
132. Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827–833. http://dx.doi.org/10.1136/gut.52.6.827 [PubMed]
133. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G, Chervaux C, Knights D, Lozupone CA, Knight R, Duncan AE, Bain JR, Muehlbauer MJ, Newgard CB, Heath AC, Gordon JI. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3:106ra106. http://dx.doi.org/10.1126/scitranslmed.3002701 [PubMed]
134. Floch MH, Walker WA, Madsen K, Sanders ME, Macfarlane GT, Flint HJ, Dieleman LA, Ringel Y, Guandalini S, Kelly CP, Brandt LJ. 2011. Recommendations for probiotic use-2011 update. J Clin Gastroenterol 45(Suppl) :S168–S171. http://dx.doi.org/10.1097/MCG.0b013e318230928b [PubMed]
135. Floch MH. 2014. Recommendations for probiotic use in humans-a 2014 update. Pharmaceuticals (Basel) 7:999–1007. http://dx.doi.org/10.3390/ph7100999 [PubMed]
136. Floch MH, Walker WA, Sanders ME, Nieuwdorp M, Kim AS, Brenner DA, Qamar AA, Miloh TA, Guarino A, Guslandi M, Dieleman LA, Ringel Y, Quigley EM, Brandt LJ. 2015. Recommendations for probiotic use—2015 update: proceedings and consensus opinion. J Clin Gastroenterol 49(Suppl 1) :S69–S73. http://dx.doi.org/10.1097/MCG.0000000000000420 [PubMed]
137. Allaker RP, Douglas CW. 2009. Novel anti-microbial therapies for dental plaque-related diseases. Int J Antimicrob Agents 33:8–13. http://dx.doi.org/10.1016/j.ijantimicag.2008.07.014 [PubMed]
138. Tagg JR, Dierksen KP. 2003. Bacterial replacement therapy: adapting ‘germ warfare’ to infection prevention. Trends Biotechnol 21:217–223. http://dx.doi.org/10.1016/S0167-7799(03)00085-4
139. Hillman JD, Brooks TA, Michalek SM, Harmon CC, Snoep JL, van Der Weijden CC. 2000. Construction and characterization of an effector strain of Streptococcus mutans for replacement therapy of dental caries. Infect Immun 68:543–549. http://dx.doi.org/10.1128/IAI.68.2.543-549.2000 [PubMed]
140. Tanzer JM, Fisher J, Freedman ML. 1982. Preemption of Streptococcus mutans 10449S colonization by its mutant 805. Infect Immun 35:138–142. [PubMed]
141. Roos K, Håkansson EG, Holm S. 2001. Effect of recolonisation with “interfering” alpha streptococci on recurrences of acute and secretory otitis media in children: randomised placebo controlled trial. BMJ 322:210–212. http://dx.doi.org/10.1136/bmj.322.7280.210 [PubMed]
142. Pamer EG. 2016. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352:535–538. http://dx.doi.org/10.1126/science.aad9382 [PubMed]
143. Petrof EO, Claud EC, Gloor GB, Allen-Vercoe E. 2013. Microbial ecosystems therapeutics: a new paradigm in medicine? Benef Microbes 4:53–65. http://dx.doi.org/10.3920/BM2012.0039 [PubMed]
144. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. http://dx.doi.org/10.1056/NEJMoa1205037 [PubMed]
145. Shahinas D, Silverman M, Sittler T, Chiu C, Kim P, Allen-Vercoe E, Weese S, Wong A, Low DE, Pillai DR. 2012. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. MBio 3:e00338-12. http://dx.doi.org/10.1128/mBio.00338-12 [PubMed]
146. Al-Dasooqi N, Sonis ST, Bowen JM, Bateman E, Blijlevens N, Gibson RJ, Logan RM, Nair RG, Stringer AM, Yazbeck R, Elad S, Lalla RV, Mucositis Study Group of Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO). 2013. Emerging evidence on the pathobiology of mucositis. Support Care Cancer 21:2075–2083. http://dx.doi.org/10.1007/s00520-013-1810-y [PubMed]
147. Borody TJ, Warren EF, Leis S, Surace R, Ashman O. 2003. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 37:42–47. http://dx.doi.org/10.1097/00004836-200307000-00012 [PubMed]
148. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee CH. 2015. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149:102–109.e6. [PubMed]
149. Pinn DM, Aroniadis OC, Brandt LJ. 2014. Is fecal microbiota transplantation the answer for irritable bowel syndrome? A single-center experience. Am J Gastroenterol 109:1831–1832. http://dx.doi.org/10.1038/ajg.2014.295 [PubMed]
150. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e7. [PubMed]
151. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. 2013. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 500:232–236. http://dx.doi.org/10.1038/nature12331 [PubMed]
152. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MR, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208. http://dx.doi.org/10.1038/nature13828 [PubMed]
153. Martin MO. 2002. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477. [PubMed]
154. Sockett RE, Lambert C. 2004. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2:669–675. http://dx.doi.org/10.1038/nrmicro959 [PubMed]
155. Dwidar M, Monnappa AK, Mitchell RJ. 2012. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep 45:71–78. http://dx.doi.org/10.5483/BMBRep.2012.45.2.71 [PubMed]
156. Markelova NI. 2010. Interaction of Bdellovibrio bacteriovorus with Campylobacter jejuni and Helicobacter pylori. Mikrobiologiia 79:779–781. (In Russian.)
157. Shanks RM, Davra VR, Romanowski EG, Brothers KM, Stella NA, Godboley D, Kadouri DE. 2013. An eye to a kill: using predatory bacteria to control Gram-negative pathogens associated with ocular infections. PLoS One 8:e66723. http://dx.doi.org/10.1371/journal.pone.0066723 [PubMed]
158. Dashiff A, Kadouri DE. 2011. Predation of oral pathogens by Bdellovibrio bacteriovorus 109J. Mol Oral Microbiol 26:19–34. http://dx.doi.org/10.1111/j.2041-1014.2010.00592.x [PubMed]
159. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, Teughels W. 2011. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol 26:52–61. http://dx.doi.org/10.1111/j.2041-1014.2010.00595.x [PubMed]
160. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, Fenton AK, Barrow P, Sockett RE. 2011. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 77:5794–5803. http://dx.doi.org/10.1128/AEM.00426-11 [PubMed]
161. Guttman B, Raya R, Kutter E.2005. Basic phage biology, p 29–66. In Kutter E, Sulakvelidze A (ed), Bacteriophages: Biology and Applications. CRC Press LLC, Boca Raton, FL.
162. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human infections. Bacteriophage 1:66–85. http://dx.doi.org/10.4161/bact.1.2.15845 [PubMed]
163. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 54:397–404. http://dx.doi.org/10.1128/AAC.00669-09 [PubMed]
164. Hall AR, De Vos D, Friman VP, Pirnay JP, Buckling A. 2012. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652. http://dx.doi.org/10.1128/AEM.00757-12 [PubMed]
165. Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME. 2014. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 9:e106628. http://dx.doi.org/10.1371/journal.pone.0106628 [PubMed]
166. Wright A, Hawkins CH, Anggård EE, Harper DR. 2009. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357. http://dx.doi.org/10.1111/j.1749-4486.2009.01973.x [PubMed]
167. Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, Jennes S, Zizi M, Pirnay JP. 2014. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma 4:66–73. [PubMed]
168. Armitage GC, Robertson PB. 2009. The biology, prevention, diagnosis and treatment of periodontal diseases: scientific advances in the United States. J Am Dent Assoc 140(Suppl 1) :36S–43S. http://dx.doi.org/10.14219/jada.archive.2009.0356 [PubMed]
169. Weyant RJ, Tracy SL, Anselmo TT, Beltrán-Aguilar ED, Donly KJ, Frese WA, Hujoel PP, Iafolla T, Kohn W, Kumar J, Levy SM, Tinanoff N, Wright JT, Zero D, Aravamudhan K, Frantsve-Hawley J, Meyer DM, American Dental Association Council on Scientific Affairs Expert Panel on Topical Fluoride Caries Preventive Agents. 2013. Topical fluoride for caries prevention: executive summary of the updated clinical recommendations and supporting systematic review. J Am Dent Assoc 144:1279–1291. http://dx.doi.org/10.14219/jada.archive.2013.0057 [PubMed]
170. Sharma G, Puranik MP, K R S. 2015. Approaches to arresting dental caries: an update. J Clin Diagn Res 9:ZE08–ZE11. [PubMed]
171. Haffajee AD, Uzel NG, Arguello EI, Torresyap G, Guerrero DM, Socransky SS. 2004. Clinical and microbiological changes associated with the use of combined antimicrobial therapies to treat “refractory” periodontitis. J Clin Periodontol 31:869–877. http://dx.doi.org/10.1111/j.1600-051X.2004.00573.x [PubMed]
172. Bizzarro S, Laine ML, Buijs MJ, Brandt BW, Crielaard W, Loos BG, Zaura E. 2016. Microbial profiles at baseline and not the use of antibiotics determine the clinical outcome of the treatment of chronic periodontitis. Sci Rep 6:20205. http://dx.doi.org/10.1038/srep20205 [PubMed]
173. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, Delorey T, Li BY, White TC, Cuomo C, Rao RP, Berman J, Thompson DA, Regev A. 2015. The evolution of drug resistance in clinical isolates of Candida albicans. eLife 4:e00662. http://dx.doi.org/10.7554/eLife.00662 [PubMed]
174. Kalantar E, Marashi SM, Pormazaheri H, Mahmoudi E, Hatami S, Barari MA, Naseh MH, Asadi M. 2015. First experience of Candida non- albicans isolates with high antibiotic resistance pattern caused oropharyngeal candidiasis among cancer patients. J Cancer Res Ther 11:388–390. http://dx.doi.org/10.4103/0973-1482.157307 [PubMed]
175. Tanzer JM, Kurasz AB, Clive J. 1985. Competitive displacement of mutans streptococci and inhibition of tooth decay by Streptococcus salivarius TOVE-R. Infect Immun 48:44–50. [PubMed]
176. Hillman JD. 1978. Lactate dehydrogenase mutants of Streptococcus mutans: isolation and preliminary characterization. Infect Immun 21:206–212. [PubMed]
177. Hillman JD, Dzuback AL, Andrews SW. 1987. Colonization of the human oral cavity by a Streptococcus mutans mutant producing increased bacteriocin. J Dent Res 66:1092–1094. http://dx.doi.org/10.1177/00220345870660060101 [PubMed]
178. Hillman JD, Mo J, McDonell E, Cvitkovitch D, Hillman CH. 2007. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J Appl Microbiol 102:1209–1219. http://dx.doi.org/10.1111/j.1365-2672.2007.03316.x
179. Tanzer JM, Kurasz AB, Clive J. 1985. Inhibition of ecological emergence of mutans streptococci naturally transmitted between rats and consequent caries inhibition by Streptococcus salivarius TOVE-R infection. Infect Immun 49:76–83. [PubMed]
180. Kurasz AB, Tanzer JM, Bazer L, Savoldi E. 1986. In vitro studies of growth and competition between S. salivarius TOVE-R and mutans streptococci. J Dent Res 65:1149–1153. http://dx.doi.org/10.1177/00220345860650090701 [PubMed]
181. Hillman JD, Johnson KP, Yaphe BI. 1984. Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect Immun 44:141–144. [PubMed]
182. Hillman JD, Yaphe BI, Johnson KP. 1985. Colonization of the human oral cavity by a strain of Streptococcus mutans. J Dent Res 64:1272–1274. http://dx.doi.org/10.1177/00220345850640110301 [PubMed]
183. Stensson M, Koch G, Coric S, Abrahamsson TR, Jenmalm MC, Birkhed D, Wendt LK. 2014. Oral administration of Lactobacillus reuteri during the first year of life reduces caries prevalence in the primary dentition at 9 years of age. Caries Res 48:111–117. http://dx.doi.org/10.1159/000354412 [PubMed]
184. Ahola AJ, Yli-Knuuttila H, Suomalainen T, Poussa T, Ahlström A, Meurman JH, Korpela R. 2002. Short-term consumption of probiotic-containing cheese and its effect on dental caries risk factors. Arch Oral Biol 47:799–804. http://dx.doi.org/10.1016/S0003-9969(02)00112-7 [PubMed]
185. Bhalla M, Ingle NA, Kaur N, Yadav P. 2015. Mutans streptococci estimation in saliva before and after consumption of probiotic curd among school children. J Int Soc Prev Community Dent 5:31–34. http://dx.doi.org/10.4103/2231-0762.151970 [PubMed]
186. Caglar E, Sandalli N, Twetman S, Kavaloglu S, Ergeneli S, Selvi S. 2005. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand 63:317–320. http://dx.doi.org/10.1080/00016350510020070 [PubMed]
187. Caglar E, Cildir SK, Ergeneli S, Sandalli N, Twetman S. 2006. Salivary mutans streptococci and lactobacilli levels after ingestion of the probiotic bacterium Lactobacillus reuteri ATCC 55730 by straws or tablets. Acta Odontol Scand 64:314–318. http://dx.doi.org/10.1080/00016350600801709 [PubMed]
188. Caglar E, Kavaloglu SC, Kuscu OO, Sandalli N, Holgerson PL, Twetman S. 2007. Effect of chewing gums containing xylitol or probiotic bacteria on salivary mutans streptococci and lactobacilli. Clin Oral Investig 11:425–429. http://dx.doi.org/10.1007/s00784-007-0129-9 [PubMed]
189. Caglar E, Kuscu OO, Selvi Kuvvetli S, Kavaloglu Cildir S, Sandalli N, Twetman S. 2008. Short-term effect of ice-cream containing Bifidobacterium lactis Bb-12 on the number of salivary mutans streptococci and lactobacilli. Acta Odontol Scand 66:154–158. http://dx.doi.org/10.1080/00016350802089467 [PubMed]
190. Campus G, Cocco F, Carta G, Cagetti MG, Simark-Mattson C, Strohmenger L, Lingström P. 2014. Effect of a daily dose of Lactobacillus brevis CD2 lozenges in high caries risk schoolchildren. Clin Oral Investig 18:555–561. http://dx.doi.org/10.1007/s00784-013-0980-9 [PubMed]
191. Chuang LC, Huang CS, Ou-Yang LW, Lin SY. 2011. Probiotic Lactobacillus paracasei effect on cariogenic bacterial flora. Clin Oral Investig 15:471–476. http://dx.doi.org/10.1007/s00784-010-0423-9 [PubMed]
192. Cildir SK, Germec D, Sandalli N, Ozdemir FI, Arun T, Twetman S, Caglar E. 2009. Reduction of salivary mutans streptococci in orthodontic patients during daily consumption of yoghurt containing probiotic bacteria. Eur J Orthod 31:407–411. http://dx.doi.org/10.1093/ejo/cjn108 [PubMed]
193. Jindal G, Pandey RK, Agarwal J, Singh M. 2011. A comparative evaluation of probiotics on salivary mutans streptococci counts in Indian children. Eur Arch Paediatr Dent 12:211–215. http://dx.doi.org/10.1007/BF03262809 [PubMed]
194. Juneja A, Kakade A. 2012. Evaluating the effect of probiotic containing milk on salivary mutans streptococci levels. J Clin Pediatr Dent 37:9–14. http://dx.doi.org/10.17796/jcpd.37.1.tq91178m7w876644 [PubMed]
195. Nikawa H, Makihira S, Fukushima H, Nishimura H, Ozaki Y, Ishida K, Darmawan S, Hamada T, Hara K, Matsumoto A, Takemoto T, Aimi R. 2004. Lactobacillus reuteri in bovine milk fermented decreases the oral carriage of mutans streptococci. Int J Food Microbiol 95:219–223. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.006 [PubMed]
196. Singh RP, Damle SG, Chawla A. 2011. Salivary mutans streptococci and lactobacilli modulations in young children on consumption of probiotic ice-cream containing Bifidobacterium lactis Bb12 and Lactobacillus acidophilus La5. Acta Odontol Scand 69:389–394. http://dx.doi.org/10.3109/00016357.2011.572289 [PubMed]
197. Srivastava S, Saha S, Kumari M, Mohd S. 2016. Effect of probiotic curd on salivary pH and Streptococcus mutans: a double blind parallel randomized controlled trial. J Clin Diagn Res 10:ZC13–ZC16.
198. Teanpaisan R, Piwat S. 2014. Lactobacillus paracasei SD1, a novel probiotic, reduces mutans streptococci in human volunteers: a randomized placebo-controlled trial. Clin Oral Investig 18:857–862. http://dx.doi.org/10.1007/s00784-013-1057-5 [PubMed]
199. Nishihara T, Suzuki N, Yoneda M, Hirofuji T. 2014. Effects of Lactobacillus salivarius-containing tablets on caries risk factors: a randomized open-label clinical trial. BMC Oral Health 14:110. http://dx.doi.org/10.1186/1472-6831-14-110 [PubMed]
200. Aminabadi NA, Erfanparast L, Ebrahimi A, Oskouei SG. 2011. Effect of chlorhexidine pretreatment on the stability of salivary lactobacilli probiotic in six- to twelve-year-old children: a randomized controlled trial. Caries Res 45:148–154. http://dx.doi.org/10.1159/000325741 [PubMed]
201. Keller MK, Twetman S. 2012. Acid production in dental plaque after exposure to probiotic bacteria. BMC Oral Health 12:44. http://dx.doi.org/10.1186/1472-6831-12-44 [PubMed]
202. Marttinen A, Haukioja A, Karjalainen S, Nylund L, Satokari R, Öhman C, Holgerson P, Twetman S, Söderling E. 2012. Short-term consumption of probiotic lactobacilli has no effect on acid production of supragingival plaque. Clin Oral Investig 16:797–803. http://dx.doi.org/10.1007/s00784-011-0584-1 [PubMed]
203. Nozari A, Motamedifar M, Seifi N, Hatamizargaran Z, Ranjbar MA. 2015. The effect of Iranian customary used probiotic yogurt on the children’s salivary cariogenic microflora. J Dent (Shiraz) 16:81–86.
204. Pinto GS, Cenci MS, Azevedo MS, Epifanio M, Jones MH. 2014. Effect of yogurt containing Bifidobacterium animalis subsp. lactis DN-173010 probiotic on dental plaque and saliva in orthodontic patients. Caries Res 48:63–68. http://dx.doi.org/10.1159/000353467 [PubMed]
205. Rodríguez G, Ruiz B, Faleiros S, Vistoso A, Marró ML, Sánchez J, Urzúa I, Cabello R. 2016. Probiotic compared with standard milk for high-caries children: a cluster randomized trial. J Dent Res 95:402–407. http://dx.doi.org/10.1177/0022034515623935 [PubMed]
206. Näse L, Hatakka K, Savilahti E, Saxelin M, Pönkä A, Poussa T, Korpela R, Meurman JH. 2001. Effect of long-term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res 35:412–420. http://dx.doi.org/10.1159/000047484 [PubMed]
207. Hasslöf P, West CE, Videhult FK, Brandelius C, Stecksén-Blicks C. 2013. Early intervention with probiotic Lactobacillus paracasei F19 has no long-term effect on caries experience. Caries Res 47:559–565. http://dx.doi.org/10.1159/000350524 [PubMed]
208. Taipale T, Pienihäkkinen K, Alanen P, Jokela J, Söderling E. 2013. Administration of Bifidobacterium animalis subsp. lactis BB-12 in early childhood: a post-trial effect on caries occurrence at four years of age. Caries Res 47:364–372. http://dx.doi.org/10.1159/000348424 [PubMed]
209. Bosch M, Nart J, Audivert S, Bonachera MA, Alemany AS, Fuentes MC, Cuñé J. 2012. Isolation and characterization of probiotic strains for improving oral health. Arch Oral Biol 57:539–549. http://dx.doi.org/10.1016/j.archoralbio.2011.10.006 [PubMed]
210. Terai T, Okumura T, Imai S, Nakao M, Yamaji K, Ito M, Nagata T, Kaneko K, Miyazaki K, Okada A, Nomura Y, Hanada N. 2015. Screening of probiotic candidates in human oral bacteria for the prevention of dental disease. PLoS One 10:e0128657. http://dx.doi.org/10.1371/journal.pone.0128657 [PubMed]
211. Burton JP, Drummond BK, Chilcott CN, Tagg JR, Thomson WM, Hale JD, Wescombe PA. 2013. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol 62:875–884. http://dx.doi.org/10.1099/jmm.0.056663-0 [PubMed]
212. Zahradnik RT, Magnusson I, Walker C, McDonell E, Hillman CH, Hillman JD. 2009. Preliminary assessment of safety and effectiveness in humans of ProBiora3, a probiotic mouthwash. J Appl Microbiol 107:682–690. http://dx.doi.org/10.1111/j.1365-2672.2009.04243.x [PubMed]
213. Gruner D, Paris S, Schwendicke F. 2016. Probiotics for managing caries and periodontitis: systematic review and meta-analysis. J Dent 48:16–25. http://dx.doi.org/10.1016/j.jdent.2016.03.002 [PubMed]
214. Nascimento MM, Liu Y, Kalra R, Perry S, Adewumi A, Xu X, Primosch RE, Burne RA. 2013. Oral arginine metabolism may decrease the risk for dental caries in children. J Dent Res 92:604–608. http://dx.doi.org/10.1177/0022034513487907 [PubMed]
215. do Nascimento C, Ferreira de Albuquerque Junior R, Issa JP, Ito IY, Lovato da Silva CH, de Freitas Oliveira Paranhos H, de Souza RF. 2009. Use of the DNA Checkerboard hybridization method for detection and quantitation of Candida species in oral microbiota. Can J Microbiol 55:622–626. http://dx.doi.org/10.1139/W08-160 [PubMed]
216. Huang X, Schulte RM, Burne RA, Nascimento MM. 2015. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res 49:165–176. http://dx.doi.org/10.1159/000365296 [PubMed]
217. Huang X, Palmer SR, Ahn SJ, Richards VP, Williams ML, Nascimento MM, Burne RA. 2016. A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans. Appl Environ Microbiol 82:2187–2201. http://dx.doi.org/10.1128/AEM.03887-15 [PubMed]
218. Nascimento MM, Browngardt C, Xiaohui X, Klepac-Ceraj V, Paster BJ, Burne RA. 2014. The effect of arginine on oral biofilm communities. Mol Oral Microbiol 29:45–54. http://dx.doi.org/10.1111/omi.12044 [PubMed]
219. Roberts FA, Darveau RP. 2002. Beneficial bacteria of the periodontium. Periodontol 2000 30:40–50. http://dx.doi.org/10.1034/j.1600-0757.2002.03004.x [PubMed]
220. Teughels W, Loozen G, Quirynen M. 2011. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? J Clin Periodontol 38(Suppl 11) :159–177. http://dx.doi.org/10.1111/j.1600-051X.2010.01665.x [PubMed]
221. Cosseau C, Devine DA, Dullaghan E, Gardy JL, Chikatamarla A, Gellatly S, Yu LL, Pistolic J, Falsafi R, Tagg J, Hancock RE. 2008. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun 76:4163–4175. http://dx.doi.org/10.1128/IAI.00188-08 [PubMed]
222. Zhang G, Chen R, Rudney JD. 2008. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced interleukin-8 expression in oral epithelial cells. J Periodontal Res 43:408–416. http://dx.doi.org/10.1111/j.1600-0765.2007.01057.x [PubMed]
223. Zhang G, Rudney JD. 2011. Streptococcus cristatus attenuates Fusobacterium nucleatum-induced cytokine expression by influencing pathways converging on nuclear factor-κB. Mol Oral Microbiol 26:150–163. http://dx.doi.org/10.1111/j.2041-1014.2010.00600.x [PubMed]
224. Riccia DN, Bizzini F, Perilli MG, Polimeni A, Trinchieri V, Amicosante G, Cifone MG. 2007. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis 13:376–385. http://dx.doi.org/10.1111/j.1601-0825.2006.01291.x [PubMed]
225. Maekawa T, Hajishengallis G. 2014. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res 49:785–791. http://dx.doi.org/10.1111/jre.12164 [PubMed]
226. Hillman JD, Shivers M. 1988. Interaction between wild-type, mutant and revertant forms of the bacterium Streptococcus sanguis and the bacterium Actinobacillus actinomycetemcomitans in vitro and in the gnotobiotic rat. Arch Oral Biol 33:395–401. http://dx.doi.org/10.1016/0003-9969(88)90196-3 [PubMed]
227. Sliepen I, Van Essche M, Loozen G, Van Eldere J, Quirynen M, Teughels W. 2009. Interference with Aggregatibacter actinomycetemcomitans: colonization of epithelial cells under hydrodynamic conditions. Oral Microbiol Immunol 24:390–395. http://dx.doi.org/10.1111/j.1399-302X.2009.00531.x [PubMed]
228. Teughels W, Kinder Haake S, Sliepen I, Pauwels M, Van Eldere J, Cassiman JJ, Quirynen M. 2007. Bacteria interfere with A. actinomycetemcomitans colonization. J Dent Res 86:611–617. http://dx.doi.org/10.1177/154405910708600706 [PubMed]
229. Van Hoogmoed CG, Geertsema-Doornbusch GI, Teughels W, Quirynen M, Busscher HJ, Van der Mei HC. 2008. Reduction of periodontal pathogens adhesion by antagonistic strains. Oral Microbiol Immunol 23:43–48. http://dx.doi.org/10.1111/j.1399-302X.2007.00388.x [PubMed]
230. Hojo K, Nagaoka S, Murata S, Taketomo N, Ohshima T, Maeda N. 2007. Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis. J Appl Microbiol 103:1969–1974. http://dx.doi.org/10.1111/j.1365-2672.2007.03436.x [PubMed]
231. Vicario M, Santos A, Violant D, Nart J, Giner L. 2013. Clinical changes in periodontal subjects with the probiotic Lactobacillus reuteri Prodentis: a preliminary randomized clinical trial. Acta Odontol Scand 71:813–819. http://dx.doi.org/10.3109/00016357.2012.734404 [PubMed]
232. Vivekananda MR, Vandana KL, Bhat KG. 2010. Effect of the probiotic Lactobacilli reuteri (Prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol 2:5344. http://dx.doi.org/10.3402/jom.v2i0.5344 [PubMed]
233. Morales A, Carvajal P, Silva N, Hernandez M, Godoy C, Rodriguez G, Cabello R, Garcia-Sesnich J, Hoare A, Diaz PI, Gamonal J. 2016. Clinical effects of Lactobacillus rhamnosus in non-surgical treatment of chronic periodontitis: a randomized placebo-controlled trial with 1-year follow-up. J Periodontol 87:944–952. http://dx.doi.org/10.1902/jop.2016.150665 [PubMed]
234. Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC. 2013. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol 40:1025–1035. http://dx.doi.org/10.1111/jcpe.12155 [PubMed]
235. Laleman I, Yilmaz E, Ozcelik O, Haytac C, Pauwels M, Herrero ER, Slomka V, Quirynen M, Alkaya B, Teughels W. 2015. The effect of a streptococci containing probiotic in periodontal therapy: a randomized controlled trial. J Clin Periodontol 42:1032–1041. http://dx.doi.org/10.1111/jcpe.12464 [PubMed]
236. Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. 2006. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30:55–60. [PubMed]
237. Twetman S, Derawi B, Keller M, Ekstrand K, Yucel-Lindberg T, Stecksen-Blicks C. 2009. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 67:19–24. http://dx.doi.org/10.1080/00016350802516170 [PubMed]
238. Slawik S, Staufenbiel I, Schilke R, Nicksch S, Weinspach K, Stiesch M, Eberhard J. 2011. Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. Eur J Clin Nutr 65:857–863. http://dx.doi.org/10.1038/ejcn.2011.45 [PubMed]
239. Iniesta M, Herrera D, Montero E, Zurbriggen M, Matos AR, Marín MJ, Sánchez-Beltrán MC, Llama-Palacio A, Sanz M. 2012. Probiotic effects of orally administered Lactobacillus reuteri-containing tablets on the subgingival and salivary microbiota in patients with gingivitis. A randomized clinical trial. J Clin Periodontol 39:736–744. http://dx.doi.org/10.1111/j.1600-051X.2012.01914.x [PubMed]
240. Karuppaiah RM, Shankar S, Raj SK, Ramesh K, Prakash R, Kruthika M. 2013. Evaluation of the efficacy of probiotics in plaque reduction and gingival health maintenance among school children—a randomized control trial. J Int Oral Health 5:33–37. [PubMed]
241. Mayanagi G, Kimura M, Nakaya S, Hirata H, Sakamoto M, Benno Y, Shimauchi H. 2009. Probiotic effects of orally administered Lactobacillus salivarius WB21-containing tablets on periodontopathic bacteria: a double-blinded, placebo-controlled, randomized clinical trial. J Clin Periodontol 36:506–513. http://dx.doi.org/10.1111/j.1600-051X.2009.01392.x [PubMed]
242. Staab B, Eick S, Knöfler G, Jentsch H. 2009. The influence of a probiotic milk drink on the development of gingivitis: a pilot study. J Clin Periodontol 36:850–856. http://dx.doi.org/10.1111/j.1600-051X.2009.01459.x [PubMed]
243. Shimauchi H, Mayanagi G, Nakaya S, Minamibuchi M, Ito Y, Yamaki K, Hirata H. 2008. Improvement of periodontal condition by probiotics with Lactobacillus salivarius WB21: a randomized, double-blind, placebo-controlled study. J Clin Periodontol 35:897–905. http://dx.doi.org/10.1111/j.1600-051X.2008.01306.x [PubMed]
244. Teughels W, Newman MG, Coucke W, Haffajee AD, Van Der Mei HC, Haake SK, Schepers E, Cassiman JJ, Van Eldere J, van Steenberghe D, Quirynen M. 2007. Guiding periodontal pocket recolonization: a proof of concept. J Dent Res 86:1078–1082. http://dx.doi.org/10.1177/154405910708601111 [PubMed]
245. Nackaerts O, Jacobs R, Quirynen M, Rober M, Sun Y, Teughels W. 2008. Replacement therapy for periodontitis: pilot radiographic evaluation in a dog model. J Clin Periodontol 35:1048–1052. http://dx.doi.org/10.1111/j.1600-051X.2008.01333.x [PubMed]
246. Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, Buckley CM, Davis IJ, Bennett ML, Marshall-Jones ZV. 2012. The canine oral microbiome. PLoS One 7:e36067. http://dx.doi.org/10.1371/journal.pone.0036067 [PubMed]
247. Sturgeon A, Stull JW, Costa MC, Weese JS. 2013. Metagenomic analysis of the canine oral cavity as revealed by high-throughput pyrosequencing of the 16S rRNA gene. Vet Microbiol 162:891–898. http://dx.doi.org/10.1016/j.vetmic.2012.11.018 [PubMed]
248. Pozhitkov AE, Leroux BG, Randolph TW, Beikler T, Flemmig TF, Noble PA. 2015. Towards microbiome transplant as a therapy for periodontitis: an exploratory study of periodontitis microbial signature contrasted by oral health, caries and edentulism. BMC Oral Health 15:125. http://dx.doi.org/10.1186/s12903-015-0109-4 [PubMed]
249. Van Essche M, Quirynen M, Sliepen I, Van Eldere J, Teughels W. 2009. Bdellovibrio bacteriovorus attacks Aggregatibacter actinomycetemcomitans. J Dent Res 88:182–186. http://dx.doi.org/10.1177/0022034508329693 [PubMed]
250. Loozen G, Boon N, Pauwels M, Slomka V, Rodrigues Herrero E, Quirynen M, Teughels W. 2015. Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe 35(Pt A) :45–53. http://dx.doi.org/10.1016/j.anaerobe.2014.09.011
251. Schoeffield AJ, Williams HN, Turng B, Fackler WA Jr. 1996. A comparison of the survival of intraperiplasmic and attack phase Bdellovibrios with reduced oxygen. Microb Ecol 32:35–46. http://dx.doi.org/10.1007/BF00170105 [PubMed]
252. Abeles SR, Pride DT. 2014. Molecular bases and role of viruses in the human microbiome. J Mol Biol 426:3892–3906. http://dx.doi.org/10.1016/j.jmb.2014.07.002 [PubMed]
253. Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT. 2015. Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol 7:27423. http://dx.doi.org/10.3402/jom.v7.27423 [PubMed]
254. Pride DT, Salzman J, Haynes M, Rohwer F, Davis-Long C, White RA III, Loomer P, Armitage GC, Relman DA. 2012. Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome. ISME J 6:915–926. http://dx.doi.org/10.1038/ismej.2011.169 [PubMed]
255. Hitch G, Pratten J, Taylor PW. 2004. Isolation of bacteriophages from the oral cavity. Lett Appl Microbiol 39:215–219. http://dx.doi.org/10.1111/j.1472-765X.2004.01565.x [PubMed]
256. Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT. 2014. Altered oral viral ecology in association with periodontal disease. MBio 5:e01133-14. http://dx.doi.org/10.1128/mBio.01133-14 [PubMed]
257. Machuca P, Daille L, Vinés E, Berrocal L, Bittner M. 2010. Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl Environ Microbiol 76:7243–7250. http://dx.doi.org/10.1128/AEM.01135-10 [PubMed]
258. Castillo-Ruiz M, Vinés ED, Montt C, Fernández J, Delgado JM, Hormazábal JC, Bittner M. 2011. Isolation of a novel Aggregatibacter actinomycetemcomitans serotype b bacteriophage capable of lysing bacteria within a biofilm. Appl Environ Microbiol 77:3157–3159. http://dx.doi.org/10.1128/AEM.02115-10 [PubMed]
259. Ishijima SA, Hayama K, Burton JP, Reid G, Okada M, Matsushita Y, Abe S. 2012. Effect of Streptococcus salivarius K12 on the in vitro growth of Candida albicans and its protective effect in an oral candidiasis model. Appl Environ Microbiol 78:2190–2199. http://dx.doi.org/10.1128/AEM.07055-11 [PubMed]
260. Matsubara VH, Wang Y, Bandara HM, Mayer MP, Samaranayake LP. 2016. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol 100:6415–6426. http://dx.doi.org/10.1007/s00253-016-7527-3 [PubMed]
261. James KM, MacDonald KW, Chanyi RM, Cadieux PA, Burton JP. 2016. Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant. J Med Microbiol 65:328–336. http://dx.doi.org/10.1099/jmm.0.000226 [PubMed]
262. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, Jorge AO, Junqueira JC. 2015. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6:29–39. http://dx.doi.org/10.4161/21505594.2014.981486 [PubMed]
263. Zhao C, Lv X, Fu J, He C, Hua H, Yan Z. 2016. In vitro inhibitory activity of probiotic products against oral Candida species. J Appl Microbiol 121:254–262. http://dx.doi.org/10.1111/jam.13138 [PubMed]
264. Matsubara VH, Silva EG, Paula CR, Ishikawa KH, Nakamae AE. 2012. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis 18:260–264. http://dx.doi.org/10.1111/j.1601-0825.2011.01868.x [PubMed]
265. Elahi S, Pang G, Ashman R, Clancy R. 2005. Enhanced clearance of Candida albicans from the oral cavities of mice following oral administration of Lactobacillus acidophilus. Clin Exp Immunol 141:29–36. http://dx.doi.org/10.1111/j.1365-2249.2005.02811.x [PubMed]
266. Ishijima SA, Hayama K, Ninomiya K, Iwasa M, Yamazaki M, Abe S. 2014. Protection of mice from oral candidiasis by heat-killed Enterococcus faecalis, possibly through its direct binding to Candida albicans. Med Mycol J 55:E9–E19. http://dx.doi.org/10.3314/mmj.55.E9 [PubMed]
267. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R. 2007. Probiotics reduce the prevalence of oral Candida in the elderly--a randomized controlled trial. J Dent Res 86:125–130. http://dx.doi.org/10.1177/154405910708600204 [PubMed]
268. Kraft-Bodi E, Jørgensen MR, Keller MK, Kragelund C, Twetman S. 2015. Effect of probiotic bacteria on oral Candida in frail elderly. J Dent Res 94(Suppl) :181S–186S. http://dx.doi.org/10.1177/0022034515595950 [PubMed]
269. Mendonça FH, Santos SS, Faria IS, Gonçalves e Silva CR, Jorge AO, Leão MV. 2012. Effects of probiotic bacteria on Candida presence and IgA anti- Candida in the oral cavity of elderly. Braz Dent J 23:534–538. http://dx.doi.org/10.1590/S0103-64402012000500011 [PubMed]
270. Li D, Li Q, Liu C, Lin M, Li X, Xiao X, Zhu Z, Gong Q, Zhou H. 2014. Efficacy and safety of probiotics in the treatment of Candida-associated stomatitis. Mycoses 57:141–146. http://dx.doi.org/10.1111/myc.12116 [PubMed]
271. Ishikawa KH, Mayer MP, Miyazima TY, Matsubara VH, Silva EG, Paula CR, Campos TT, Nakamae AE. 2015. A multispecies probiotic reduces oral Candida colonization in denture wearers. J Prosthodont 24:194–199. http://dx.doi.org/10.1111/jopr.12198 [PubMed]
272. Xie H, Lin X, Wang BY, Wu J, Lamont RJ. 2007. Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology 153:3228–3234. http://dx.doi.org/10.1099/mic.0.2007/009050-0 [PubMed]
273. Christopher AB, Arndt A, Cugini C, Davey ME. 2010. A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development. Microbiology 156:3469–3477. http://dx.doi.org/10.1099/mic.0.042671-0 [PubMed]
274. Wang BY, Wu J, Lamont RJ, Lin X, Xie H. 2009. Negative correlation of distributions of Streptococcus cristatus and Porphyromonas gingivalis in subgingival plaque. J Clin Microbiol 47:3902–3906. http://dx.doi.org/10.1128/JCM.00072-09 [PubMed]
275. Borenstein E. 2012. Computational systems biology and in silico modeling of the human microbiome. Brief Bioinform 13:769–780. http://dx.doi.org/10.1093/bib/bbs022 [PubMed]
276. Takahashi N. 2015. Oral microbiome metabolism: from “who are they?” to “what are they doing?”. J Dent Res 94:1628–1637. http://dx.doi.org/10.1177/0022034515606045 [PubMed]
277. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. 2014. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J 8:1659–1672. http://dx.doi.org/10.1038/ismej.2014.23 [PubMed]
278. Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. 2014. Metatranscriptomics of the human oral microbiome during health and disease. MBio 5:e01012-14. http://dx.doi.org/10.1128/mBio.01012-14 [PubMed]
279. Hasturk H, Kantarci A, Goguet-Surmenian E, Blackwood A, Andry C, Serhan CN, Van Dyke TE. 2007. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol 179:7021–7029. http://dx.doi.org/10.4049/jimmunol.179.10.7021 [PubMed]

Article metrics loading...



The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Dsybiotic changes associated with oral diseases. Oral diseases are associated with changes in microbiome community structure. Examples of microbiome community shifts and the main factors promoting the establishment of the dysbiotic microbiota are depicted for caries, periodontal diseases, and oral candidiasis.

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Potential beneficial effects of microbial therapies in the management of oral diseases. The desirable effects of the introduction of effector species/communities together with complementary therapies are shown for caries, periodontal diseases, and oral candidiasis.

Source: microbiolspec August 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.BAD-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error