No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    389.07 Kb
  • PDF
    1.84 MB
  • HTML
    366.01 Kb
  • Authors: Melinda A. Engevik1, James Versalovic2
  • Editors: Robert Allen Britton3, Patrice D. Cani4
    Affiliations: 1: Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children’s Hospital, Houston, TX 77030; 2: Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 and Department of Pathology, Texas Children’s Hospital, Houston, TX 77030; 3: Baylor College of Medicine, Houston, TX 77030; 4: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0012-2016
  • Received 22 August 2016 Accepted 08 June 2017 Published 06 October 2017
  • James Versalovic, [email protected]
image of Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology
    Preview this microbiology spectrum article:
    Zoom in

    Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/5/BAD-0012-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/5/BAD-0012-2016-2.gif
  • Abstract:

    Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.

  • Citation: Engevik M, Versalovic J. 2017. Biochemical Features of Beneficial Microbes: Foundations for Therapeutic Microbiology. Microbiol Spectrum 5(5):BAD-0012-2016. doi:10.1128/microbiolspec.BAD-0012-2016.


1. Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533 http://dx.doi.org/10.1371/journal.pbio.1002533. [PubMed]
2. Huttenhower C, et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214 http://dx.doi.org/10.1038/nature11234. [PubMed]
3. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118 http://dx.doi.org/10.1016/j.cell.2005.05.007. [PubMed]
4. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. 2011. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139 http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x. [PubMed]
5. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. 2010. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188 http://dx.doi.org/10.1016/j.neuroscience.2010.08.005. [PubMed]
6. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230 http://dx.doi.org/10.1038/nature11550. [PubMed]
7. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227.
8. Johnson CL, Versalovic J. 2012. The human microbiome and its potential importance to pediatrics. Pediatrics 129:950–960 http://dx.doi.org/10.1542/peds.2011-2736. [PubMed]
9. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, Raza S, Doddapaneni HV, Metcalf GA, Muzny DM, Gibbs RA, Petrosino JF, Shulman RJ, Versalovic J. 2015. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3:36 http://dx.doi.org/10.1186/s40168-015-0101-x. [PubMed]
10. Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C, Brigidi P. 2013. Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacol Res 69:11–20 http://dx.doi.org/10.1016/j.phrs.2012.10.005. [PubMed]
11. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, De Vos W. 2010. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667 http://dx.doi.org/10.1371/journal.pone.0010667. (Erratum, doi:10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d.) [PubMed]
12. Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, Bermúdez-Humarán LG. 2013. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact 12:71 http://dx.doi.org/10.1186/1475-2859-12-71. [PubMed]
13. Foligne B, Nutten S, Grangette C, Dennin V, Goudercourt D, Poiret S, Dewulf J, Brassart D, Mercenier A, Pot B. 2007. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World J Gastroenterol 13:236–243 http://dx.doi.org/10.3748/wjg.v13.i2.236. [PubMed]
14. Marteau P, Lémann M, Seksik P, Laharie D, Colombel JF, Bouhnik Y, Cadiot G, Soulé JC, Bourreille A, Metman E, Lerebours E, Carbonnel F, Dupas JL, Veyrac M, Coffin B, Moreau J, Abitbol V, Blum-Sperisen S, Mary JY. 2006. Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn’s disease: a randomised, double blind, placebo controlled GETAID trial. Gut 55:842–847 http://dx.doi.org/10.1136/gut.2005.076604. [PubMed]
15. Maassen CB, van Holten-Neelen C, Balk F, Heijne den Bak-Glashouwer MJ, Leer RJ, Laman JD, Boersma WJ, Claassen E. 2000. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18:2613–2623 http://dx.doi.org/10.1016/S0264-410X(99)00378-3.
16. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Louise Thomas E, Bell JD. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611 http://dx.doi.org/10.1038/ncomms4611. [PubMed]
17. Schrijver IA, van Meurs M, Melief MJ, Wim Ang C, Buljevac D, Ravid R, Hazenberg MP, Laman JD. 2001. Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 124:1544–1554 http://dx.doi.org/10.1093/brain/124.8.1544. [PubMed]
18. Bäumlisberger M, Moellecken U, König H, Claus H. 2015. The potential of the yeast Debaryomyces hansenii H525 to degrade biogenic amines in food. Microorganisms 3:839–850 http://dx.doi.org/10.3390/microorganisms3040839. [PubMed]
19. Pessione A, Lamberti C, Pessione E. 2010. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Mol Biosyst 6:1419–1430 http://dx.doi.org/10.1039/c001948h. [PubMed]
20. Bouchereau A, Guénot P, Larher F. 2000. Analysis of amines in plant materials. J Chromatogr B Biomed Sci Appl 747:49–67 http://dx.doi.org/10.1016/S0378-4347(00)00286-3. [PubMed]
21. Suzzi G, Gardini F. 2003. Biogenic amines in dry fermented sausages: a review. Int J Food Microbiol 88:41–54 http://dx.doi.org/10.1016/S0168-1605(03)00080-1. [PubMed]
22. Tabanelli G, Torriani S, Rossi F, Rizzotti L, Gardini F. 2012. Effect of chemico-physical parameters on the histidine decarboxylase (HdcA) enzymatic activity in Streptococcus thermophilus PRI60. J Food Sci 77:M231–M237 http://dx.doi.org/10.1111/j.1750-3841.2012.02628.x. [PubMed]
23. Molenaar D, Bosscher JS, ten Brink B, Driessen AJ, Konings WN. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175:2864–2870 http://dx.doi.org/10.1128/jb.175.10.2864-2870.1993. [PubMed]
24. Rodwell AW. 1953. The histidine decarboxylase of a species of Lactobacillus; apparent dispensability of pyridoxal phosphate as coenzyme. J Gen Microbiol 8:233–237 http://dx.doi.org/10.1099/00221287-8-2-233. [PubMed]
25. Rossi F, Gardini F, Rizzotti L, La Gioia F, Tabanelli G, Torriani S. 2011. Quantitative analysis of histidine decarboxylase gene ( hdcA) transcription and histamine production by Streptococcus thermophilus PRI60 under conditions relevant to cheese making. Appl Environ Microbiol 77:2817–2822 http://dx.doi.org/10.1128/AEM.02531-10. [PubMed]
26. Hemarajata P, Gao C, Pflughoeft KJ, Thomas CM, Saulnier DM, Spinler JK, Versalovic J. 2013. Lactobacillus reuteri-specific immunoregulatory gene rsiR modulates histamine production and immunomodulation by Lactobacillus reuteri. J Bacteriol 195:5567–5576 http://dx.doi.org/10.1128/JB.00261-13. [PubMed]
27. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. 2012. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One 7:e31951 http://dx.doi.org/10.1371/journal.pone.0031951. [PubMed]
28. Pessione E, Mazzoli R, Giuffrida MG, Lamberti C, Garcia-Moruno E, Barello C, Conti A, Giunta C. 2005. A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5:687–698 http://dx.doi.org/10.1002/pmic.200401116. [PubMed]
29. Lucas PM, Claisse O, Lonvaud-Funel A. 2008. High frequency of histamine-producing bacteria in the enological environment and instability of the histidine decarboxylase production phenotype. Appl Environ Microbiol 74:811–817 http://dx.doi.org/10.1128/AEM.01496-07. [PubMed]
30. Izquierdo Cañas PM, Gómez Alonso S, Ruiz Pérez P, Seseña Prieto S, García Romero E, Palop Herreros ML. 2009. Biogenic amine production by Oenococcus oeni isolates from malolactic fermentation of Tempranillo wine. J Food Prot 72:907–910 http://dx.doi.org/10.4315/0362-028X-72.4.907. [PubMed]
31. Gao C, Major A, Rendon D, Lugo M, Jackson V, Shi Z, Mori-Akiyama Y, Versalovic J. 2015. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. MBio 6:e01358-15 http://dx.doi.org/10.1128/mBio.01358-15. [PubMed]
32. Ferstl R, Frei R, Schiavi E, Konieczna P, Barcik W, Ziegler M, Lauener RP, Chassard C, Lacroix C, Akdis CA, O’Mahony L. 2014. Histamine receptor 2 is a key influence in immune responses to intestinal histamine-secreting microbes. J Allergy Clin Immunol 134:744–746.e3. [PubMed]
33. Frei R, Ferstl R, Konieczna P, Ziegler M, Simon T, Rugeles TM, Mailand S, Watanabe T, Lauener R, Akdis CA, O’Mahony L. 2013. Histamine receptor 2 modifies dendritic cell responses to microbial ligands. J Allergy Clin Immunol 132:194–204.e12 http://dx.doi.org/10.1016/j.jaci.2013.01.013. [PubMed]
34. Dhakal R, Bajpai VK, Baek KH. 2012. Production of gaba (γ- aminobutyric acid) by microorganisms: a review. Braz J Microbiol 43:1230–1241 http://dx.doi.org/10.1590/S1517-83822012000400001. [PubMed]
35. Lu X, Chen Z, Gu Z, Han Y. 2008. Isolation of γ-aminobutyric acid-producing bacteria and optimization of fermentative medium. Biochem Eng J 41:48–52.
36. Smith DK, Kassam T, Singh B, Elliott JF. 1992. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J Bacteriol 174:5820–5826 http://dx.doi.org/10.1128/jb.174.18.5820-5826.1992. [PubMed]
37. Kono I, Himeno K. 2000. Changes in gamma-aminobutyric acid content during beni-koji making. Biosci Biotechnol Biochem 64:617–619 http://dx.doi.org/10.1271/bbb.64.617. [PubMed]
38. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. 2012. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417 http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x. [PubMed]
39. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. 2005. Production of y-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504 http://dx.doi.org/10.1016/j.fm.2005.01.002.
40. Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M. 2007. Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290 http://dx.doi.org/10.1128/AEM.01064-07. [PubMed]
41. Pokusaeva K, Johnson C, Luk B, Uribe G7, Fu Y, Oezguen N, Matsunami RK, Lugo M, Major A, Mori-Akiyama Y, Hollister EB, Dann SM, Shi XZ, Engler DA, Savidge T, Versalovic J. 2017. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil. [Epub ahead of print. doi:10.1111/nmo.12904.\] [PubMed]
42. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y. 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br J Nutr 92:411–417 http://dx.doi.org/10.1079/BJN20041221. [PubMed]
43. Kimura M, Hayakawa K, Sansawa H. 2002. Involvement of gamma-aminobutyric acid (GABA) B receptors in the hypotensive effect of systemically administered GABA in spontaneously hypertensive rats. Jpn J Pharmacol 89:388–394 http://dx.doi.org/10.1254/jjp.89.388. [PubMed]
44. Izquierdo E, Marchioni E, Aoude-Werner D, Hasselmann C, Ennahar S. 2009. Smearing of soft cheese with Enterococcus faecium WHE 81, a multi-bacteriocin producer, against Listeria monocytogenes. Food Microbiol 26:16–20 http://dx.doi.org/10.1016/j.fm.2008.08.002. [PubMed]
45. Adeghate E, Ponery AS. 2002. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell 34:1–6 http://dx.doi.org/10.1054/tice.2002.0217. [PubMed]
46. Capitani G, De Biase D, Aurizi C, Gut H, Bossa F, Grütter MG. 2003. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J 22:4027–4037 http://dx.doi.org/10.1093/emboj/cdg403. [PubMed]
47. Hagiwara H, Seki T, Ariga T. 2004. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 68:444–447 http://dx.doi.org/10.1271/bbb.68.444. [PubMed]
48. Cho YR, Chang JY, Chang HC. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17:104–109. [PubMed]
49. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. 2011. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055 http://dx.doi.org/10.1073/pnas.1102999108. [PubMed]
50. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM. 2011. Assessment of psychotropic-like properties of a probiotic formulation ( Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764 http://dx.doi.org/10.1017/S0007114510004319. [PubMed]
51. Okada T, Sugishita T, Murakami T, Murai H, Saikusa T, Horino T, Onoda A, Kajimoto O, Takahashi R, Takahashi T. 2000. Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. Nippon Shokuhin Kagaku Kogaku Kaishi 47:596–603 http://dx.doi.org/10.3136/nskkk.47.596.
52. Shah P, Swiatlo E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16 http://dx.doi.org/10.1111/j.1365-2958.2008.06126.x. [PubMed]
53. Pegg AE, McCann PP. 1982. Polyamine metabolism and function. Am J Physiol 243:C212–C221. [PubMed]
54. Milovic V. 2001. Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol 13:1021–1025 http://dx.doi.org/10.1097/00042737-200109000-00004. [PubMed]
55. Noack J, Dongowski G, Hartmann L, Blaut M. 2000. The human gut bacteria Bacteroides thetaiotaomicron and Fusobacterium varium produce putrescine and spermidine in cecum of pectin-fed gnotobiotic rats. J Nutr 130:1225–1231. [PubMed]
56. Noack J, Kleessen B, Proll J, Dongowski G, Blaut M. 1998. Dietary guar gum and pectin stimulate intestinal microbial polyamine synthesis in rats. J Nutr 128:1385–1391. [PubMed]
57. Cohen SS. 1997. A Guide to the Polyamines. Oxford University Press, New York, NY.
58. Zhang M, Caragine T, Wang H, Cohen PS, Botchkina G, Soda K, Bianchi M, Ulrich P, Cerami A, Sherry B, Tracey KJ. 1997. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med 185:1759–1768 http://dx.doi.org/10.1084/jem.185.10.1759. [PubMed]
59. Li L, Rao JN, Bass BL, Wang JY. 2001. NF-kappaB activation and susceptibility to apoptosis after polyamine depletion in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 280:G992–G1004. [PubMed]
60. Rhee HJ, Kim EJ, Lee JK. 2007. Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703 http://dx.doi.org/10.1111/j.1582-4934.2007.00077.x. [PubMed]
61. Pillai SP, Shankel DM. 1997. Polyamines and their potential to be antimutagens. Mutat Res 377:217–224 http://dx.doi.org/10.1016/S0027-5107(97)00075-4.
62. Shah N, Thomas T, Shirahata A, Sigal LH, Thomas TJ. 1999. Activation of nuclear factor kappaB by polyamines in breast cancer cells. Biochemistry 38:14763–14774 http://dx.doi.org/10.1021/bi991291v. [PubMed]
63. Soda K, Kano Y, Nakamura T, Kasono K, Kawakami M, Konishi F. 2005. Spermine, a natural polyamine, suppresses LFA-1 expression on human lymphocyte. J Immunol 175:237–245 http://dx.doi.org/10.4049/jimmunol.175.1.237. [PubMed]
64. Penrose HM, Marchelletta RR, Krishnan M, McCole DF. 2013. Spermidine stimulates T cell protein-tyrosine phosphatase-mediated protection of intestinal epithelial barrier function. J Biol Chem 288:32651–32662 http://dx.doi.org/10.1074/jbc.M113.475962. [PubMed]
65. Das R, Kanungo MS. 1982. Activity and modulation of ornithine decarboxylase and concentrations of polyamines in various tissues of rats as a function of age. Exp Gerontol 17:95–103 http://dx.doi.org/10.1016/0531-5565(82)90042-0. [PubMed]
66. Matsumoto M, Benno Y. 2007. The relationship between microbiota and polyamine concentration in the human intestine: a pilot study. Microbiol Immunol 51:25–35 http://dx.doi.org/10.1111/j.1348-0421.2007.tb03887.x. [PubMed]
67. Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y. 2011. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One 6:e23652 http://dx.doi.org/10.1371/journal.pone.0023652. [PubMed]
68. Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, Kakeyama M, Benno Y, Matsumoto M. 2014. Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548 http://dx.doi.org/10.1038/srep04548. [PubMed]
69. Matsumoto M, Aranami A, Ishige A, Watanabe K, Benno Y. 2007. LKM512 yogurt consumption improves the intestinal environment and induces the T-helper type 1 cytokine in adult patients with intractable atopic dermatitis. Clin Exp Allergy 37:358–370 http://dx.doi.org/10.1111/j.1365-2222.2007.02642.x. [PubMed]
70. Matsumoto M, Ohishi H, Benno Y. 2001. Impact of LKM512 yogurt on improvement of intestinal environment of the elderly. FEMS Immunol Med Microbiol 31:181–186 http://dx.doi.org/10.1111/j.1574-695X.2001.tb00518.x. [PubMed]
71. Rider JE, Hacker A, Mackintosh CA, Pegg AE, Woster PM, Casero RA Jr. 2007. Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240 http://dx.doi.org/10.1007/s00726-007-0513-4. [PubMed]
72. Clarke CH, Shankel DM. 1988. Antimutagens against spontaneous and induced reversion of a lacZ frameshift mutation in E. coli K-12 strain ND-160. Mutat Res 202:19–23 http://dx.doi.org/10.1016/0027-5107(88)90158-3. [PubMed]
73. Clarke CH, Shankel DM. 1989. Antimutagenic specificity against spontaneous and nitrofurazone-induced mutations in Escherichia coli K12ND160. Mutagenesis 4:31–34 http://dx.doi.org/10.1093/mutage/4.1.31. [PubMed]
74. Nestmann ER. 1977. Antimutagenic effects of spermine and guanosine in continuous cultures of Escherichia coli mutator strain mutH. Mol Gen Genet 152:109–110 http://dx.doi.org/10.1007/BF00264947. [PubMed]
75. Lahue RS, Au KG, Modrich P. 1989. DNA mismatch correction in a defined system. Science 245:160–164 http://dx.doi.org/10.1126/science.2665076. [PubMed]
76. Gómez-Gallego C, Collado MC, Pérez G, Ilo T, Jaakkola UM, Bernal MJ, Periago MJ, Frias R, Ros G, Salminen S. 2014. Resembling breast milk: influence of polyamine-supplemented formula on neonatal BALB/cOlaHsd mouse microbiota. Br J Nutr 111:1050–1058 http://dx.doi.org/10.1017/S0007114513003565. [PubMed]
77. Maurelli AT, Fernández RE, Bloch CA, Rode CK, Fasano A. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc Natl Acad Sci USA 95:3943–3948 http://dx.doi.org/10.1073/pnas.95.7.3943. [PubMed]
78. Goldman ME, Cregar L, Nguyen D, Simo O, O’Malley S, Humphreys T. 2006. Cationic polyamines inhibit anthrax lethal factor protease. BMC Pharmacol 6:8 http://dx.doi.org/10.1186/1471-2210-6-8. [PubMed]
79. Fernandez IM, Silva M, Schuch R, Walker WA, Siber AM, Maurelli AT, McCormick BA. 2001. Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J Infect Dis 184:743–753 http://dx.doi.org/10.1086/323035. [PubMed]
80. Torres AG, Vazquez-Juarez RC, Tutt CB, Garcia-Gallegos JG. 2005. Pathoadaptive mutation that mediates adherence of shiga toxin-producing Escherichia coli O111. Infect Immun 73:4766–4776 http://dx.doi.org/10.1128/IAI.73.8.4766-4776.2005. [PubMed]
81. Casero RA Jr, Marton LJ. 2007. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat Rev Drug Discov 6:373–390 http://dx.doi.org/10.1038/nrd2243. [PubMed]
82. Gerner EW, Meyskens FL Jr. 2004. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792 http://dx.doi.org/10.1038/nrc1454. [PubMed]
83. Alam K, Arlow FL, Ma CK, Schubert TT. 1994. Decrease in ornithine decarboxylase activity after eradication of Helicobacter pylori. Am J Gastroenterol 89:888–893. [PubMed]
84. Patchett SE, Katelaris PH, Zhang ZW, Alstead EM, Domizio P, Farthing MJ. 1996. Ornithine decarboxylase activity is a marker of premalignancy in longstanding Helicobacter pylori infection. Gut 39:807–810 http://dx.doi.org/10.1136/gut.39.6.807. [PubMed]
85. Fu S, Ramanujam KS, Wong A, Fantry GT, Drachenberg CB, James SP, Meltzer SJ, Wilson KT. 1999. Increased expression and cellular localization of inducible nitric oxide synthase and cyclooxygenase 2 in Helicobacter pylori gastritis. Gastroenterology 116:1319–1329 http://dx.doi.org/10.1016/S0016-5085(99)70496-8.
86. Keszthelyi D, Troost FJ, Masclee AA. 2009. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 21:1239–1249 http://dx.doi.org/10.1111/j.1365-2982.2009.01370.x. [PubMed]
87. Yanofsky C, Horn V, Gollnick P. 1991. Physiological studies of tryptophan transport and tryptophanase operon induction in Escherichia coli. J Bacteriol 173:6009–6017 http://dx.doi.org/10.1128/jb.173.19.6009-6017.1991. [PubMed]
88. Aragozzini F, Ferrari A, Pacini N, Gualandris R. 1979. Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl Environ Microbiol 38:544–546. [PubMed]
89. Smith EA, Macfarlane GT. 1997. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb Ecol 33:180–188 http://dx.doi.org/10.1007/s002489900020. [PubMed]
90. Bansal T, Alaniz RC, Wood TK, Jayaraman A. 2010. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA 107:228–233 http://dx.doi.org/10.1073/pnas.0906112107. [PubMed]
91. Bommarius B, Anyanful A, Izrayelit Y, Bhatt S, Cartwright E, Wang W, Swimm AI, Benian GM, Schroeder FC, Kalman D. 2013. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli. PLoS One 8:e54456 http://dx.doi.org/10.1371/journal.pone.0054456. [PubMed]
92. Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H, Takeda K. 2013. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One 8:e80604 http://dx.doi.org/10.1371/journal.pone.0080604. [PubMed]
93. Li YH, Tian X. 2012. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 12:2519–2538 http://dx.doi.org/10.3390/s120302519. [PubMed]
94. Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 http://dx.doi.org/10.1128/MMBR.64.4.847-867.2000. [PubMed]
95. Watnick P, Kolter R. 2000. Biofilm, city of microbes. J Bacteriol 182:2675–2679 http://dx.doi.org/10.1128/JB.182.10.2675-2679.2000. [PubMed]
96. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 http://dx.doi.org/10.1146/annurev.micro.55.1.165. [PubMed]
97. Parsek MR, Greenberg EP. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33 http://dx.doi.org/10.1016/j.tim.2004.11.007. [PubMed]
98. Thompson JA, Oliveira RA, Xavier KB. 2016. Chemical conversations in the gut microbiota. Gut Microbes 7:163–170 http://dx.doi.org/10.1080/19490976.2016.1145374. [PubMed]
99. Waters CM, Bassler BL. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346 http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131001. [PubMed]
100. Cvitkovitch DG, Li YH, Ellen RP. 2003. Quorum sensing and biofilm formation in streptococcal infections. J Clin Invest 112:1626–1632 http://dx.doi.org/10.1172/JCI200320430. [PubMed]
101. Federle MJ, Bassler BL. 2003. Interspecies communication in bacteria. J Clin Invest 112:1291–1299 http://dx.doi.org/10.1172/JCI20195. [PubMed]
102. Schauder S, Bassler BL. 2001. The languages of bacteria. Genes Dev 15:1468–1480 http://dx.doi.org/10.1101/gad.899601. [PubMed]
103. Fuqua C, Greenberg EP. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695 http://dx.doi.org/10.1038/nrm907. [PubMed]
104. Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci USA 96:4360–4365 http://dx.doi.org/10.1073/pnas.96.8.4360. [PubMed]
105. de Kievit TR, Iglewski BH. 2000. Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 http://dx.doi.org/10.1128/IAI.68.9.4839-4849.2000. [PubMed]
106. Dunny GM, Leonard BA. 1997. Cell-cell communication in Gram-positive bacteria. Annu Rev Microbiol 51:527–564 http://dx.doi.org/10.1146/annurev.micro.51.1.527. [PubMed]
107. Novick RP. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449 http://dx.doi.org/10.1046/j.1365-2958.2003.03526.x. [PubMed]
108. Claverys JP, Prudhomme M, Martin B. 2006. Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu Rev Microbiol 60:451–475 http://dx.doi.org/10.1146/annurev.micro.60.080805.142139. [PubMed]
109. Mashburn-Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606 http://dx.doi.org/10.1111/j.1365-2958.2010.07361.x. [PubMed]
110. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Hols P, Leblond-Bourget N, Monnet V, Gardan R. 2011. Rgg proteins associated with internalized small hydrophobic peptides: a new quorum-sensing mechanism in streptococci. Mol Microbiol 80:1102–1119 http://dx.doi.org/10.1111/j.1365-2958.2011.07633.x. [PubMed]
111. Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, Boyaval P, Hols P. 2010. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454 http://dx.doi.org/10.1128/JB.01251-09. [PubMed]
112. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549 http://dx.doi.org/10.1038/415545a. [PubMed]
113. Rezzonico F, Smits TH, Duffy B. 2012. Detection of AI-2 receptors in genomes of Enterobacteriaceae suggests a role of type-2 quorum sensing in closed ecosystems. Sensors (Basel) 12:6645–6665 http://dx.doi.org/10.3390/s120506645. [PubMed]
114. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G. 2003. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477 http://dx.doi.org/10.1172/JCI200320365. [PubMed]
115. von Rosenvinge EC, O’May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. 2013. Microbial biofilms and gastrointestinal diseases. Pathog Dis 67:25–38 http://dx.doi.org/10.1111/2049-632X.12020. [PubMed]
116. Johansson ME, Larsson JM, Hansson GC. 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108(Suppl 1) :4659–4665 http://dx.doi.org/10.1073/pnas.1006451107. [PubMed]
117. Pullan RD, Thomas GA, Rhodes M, Newcombe RG, Williams GT, Allen A, Rhodes J. 1994. Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut 35:353–359 http://dx.doi.org/10.1136/gut.35.3.353. [PubMed]
118. Macfarlane S, Woodmansey EJ, Macfarlane GT. 2005. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 71:7483–7492 http://dx.doi.org/10.1128/AEM.71.11.7483-7492.2005. [PubMed]
119. Holmén Larsson JM, Karlsson H, Sjövall H, Hansson GC. 2009. A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19:756–766 http://dx.doi.org/10.1093/glycob/cwp048. [PubMed]
120. Engevik MA, Aihara E, Montrose MH, Shull GE, Hassett DJ, Worrell RT. 2013. Loss of NHE3 alters gut microbiota composition and influences Bacteroides thetaiotaomicron growth. Am J Physiol Gastrointest Liver Physiol 305:G697–G711 http://dx.doi.org/10.1152/ajpgi.00184.2013. [PubMed]
121. Engevik MA, Hickerson A, Shull GE, Worrell RT. 2013. Acidic conditions in the NHE2(-/-) mouse intestine result in an altered mucosa-associated bacterial population with changes in mucus oligosaccharides. Cell Physiol Biochem 32:111–128 http://dx.doi.org/10.1159/000356632. [PubMed]
122. Engevik MA, Yacyshyn MB, Engevik KA, Wang J, Darien B, Hassett DJ, Yacyshyn BR, Worrell RT. 2015. Human Clostridium difficile infection: altered mucus production and composition. Am J Physiol Gastrointest Liver Physiol 308:G510–G524 http://dx.doi.org/10.1152/ajpgi.00091.2014. [PubMed]
123. Marcobal A, Southwick AM, Earle KA, Sonnenburg JL. 2013. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology 23:1038–1046 http://dx.doi.org/10.1093/glycob/cwt040. [PubMed]
124. Ahmed FE. 2003. Genetically modified probiotics in foods. Trends Biotechnol 21:491–497 http://dx.doi.org/10.1016/j.tibtech.2003.09.006. [PubMed]
125. Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. 2004. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis 38:1690–1699 http://dx.doi.org/10.1086/420823. [PubMed]
126. Lebeer S, Verhoeven TL, Claes IJ, De Hertogh G, Vermeire S, Buyse J, Van Immerseel F, Vanderleyden J, De Keersmaecker SC. 2011. FISH analysis of Lactobacillus biofilms in the gastrointestinal tract of different hosts. Lett Appl Microbiol 52:220–226 http://dx.doi.org/10.1111/j.1472-765X.2010.02994.x. [PubMed]
127. Macfarlane S, Bahrami B, Macfarlane GT. 2011. Mucosal biofilm communities in the human intestinal tract. Adv Appl Microbiol 75:111–143 http://dx.doi.org/10.1016/B978-0-12-387046-9.00005-0. [PubMed]
128. Nadell CD, Xavier JB, Foster KR. 2009. The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224 http://dx.doi.org/10.1111/j.1574-6976.2008.00150.x. [PubMed]
129. Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE. 2006. Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol 60:1446–1456 http://dx.doi.org/10.1111/j.1365-2958.2006.05202.x. [PubMed]
130. Merritt J, Qi F, Goodman SD, Anderson MH, Shi W. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect Immun 71:1972–1979 http://dx.doi.org/10.1128/IAI.71.4.1972-1979.2003. [PubMed]
131. Trappetti C, Potter AJ, Paton AW, Oggioni MR, Paton JC. 2011. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect Immun 79:4550–4558 http://dx.doi.org/10.1128/IAI.05644-11. [PubMed]
132. Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP. 2011. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun 79:4050–4060 http://dx.doi.org/10.1128/IAI.05186-11. [PubMed]
133. Tannock GW, Ghazally S, Walter J, Loach D, Brooks H, Cook G, Surette M, Simmers C, Bremer P, Dal Bello F, Hertel C. 2005. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol 71:8419–8425 http://dx.doi.org/10.1128/AEM.71.12.8419-8425.2005. [PubMed]
134. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P, Lobley GE, Flint HJ. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599 http://dx.doi.org/10.1128/AEM.72.5.3593-3599.2006. [PubMed]
135. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. 2004. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106 http://dx.doi.org/10.1128/JB.186.7.2099-2106.2004. [PubMed]
136. Macfarlane GT, Macfarlane S. 2012. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60 http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane. [PubMed]
137. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. 2016. Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185 http://dx.doi.org/10.3389/fmicb.2016.00185. [PubMed]
138. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227 http://dx.doi.org/10.1136/gut.28.10.1221. [PubMed]
139. Kim CH, Park J, Kim M. 2014. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw 14:277–288 http://dx.doi.org/10.4110/in.2014.14.6.277. [PubMed]
140. Annison G, Illman RJ, Topping DL. 2003. Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133:3523–3528. [PubMed]
141. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT, Ye J. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517 http://dx.doi.org/10.2337/db08-1637. [PubMed]
142. Cherrington CA, Hinton M, Chopra I. 1990. Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J Appl Bacteriol 68:69–74 http://dx.doi.org/10.1111/j.1365-2672.1990.tb02550.x. [PubMed]
143. Prohászka L, Jayarao BM, Fábián A, Kovács S. 1990. The role of intestinal volatile fatty acids in the Salmonella shedding of pigs. Zentralbl Veterinarmed B 37:570–574.
144. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. 2002. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190 http://dx.doi.org/10.1128/AEM.68.10.5186-5190.2002. [PubMed]
145. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. 2004. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923 http://dx.doi.org/10.1079/BJN20041150. [PubMed]
146. den Besten G, Bleeker A, Gerding A, van Eunen K, Havinga R, van Dijk TH, Oosterveer MH, Jonker JW, Groen AK, Reijngoud DJ, Bakker BM. 2015. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 64:2398–2408 http://dx.doi.org/10.2337/db14-1213. [PubMed]
147. Yanase H, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T. 2008. Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney. Histochem Cell Biol 130:957–966 http://dx.doi.org/10.1007/s00418-008-0490-z. [PubMed]
148. Miyauchi S, Gopal E, Babu E, Srinivas SR, Kubo Y, Umapathy NS, Thakkar SV, Ganapathy V, Prasad PD. 2010. Sodium-coupled electrogenic transport of pyroglutamate (5-oxoproline) via SLC5A8, a monocarboxylate transporter. Biochim Biophys Acta 1798:1164–1171 http://dx.doi.org/10.1016/j.bbamem.2010.03.002. [PubMed]
149. Halestrap AP, Wilson MC. 2012. The monocarboxylate transporter family: role and regulation. IUBMB Life 64:109–119 http://dx.doi.org/10.1002/iub.572. [PubMed]
150. Karaki S, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A. 2006. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res 324:353–360 http://dx.doi.org/10.1007/s00441-005-0140-x. [PubMed]
151. Sleeth ML, Thompson EL, Ford HE, Zac-Varghese SE, Frost G. 2010. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr Res Rev 23:135–145 http://dx.doi.org/10.1017/S0954422410000089. [PubMed]
152. Eberle JA, Widmayer P, Breer H. 2014. Receptors for short-chain fatty acids in brush cells at the “gastric groove”. Front Physiol 5:152 http://dx.doi.org/10.3389/fphys.2014.00152. [PubMed]
153. Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2) :251–262. [PubMed]
154. Nøhr MK, Pedersen MH, Gille A, Egerod KL, Engelstoft MS, Husted AS, Sichlau RM, Grunddal KV, Poulsen SS, Han S, Jones RM, Offermanns S, Schwartz TW. 2013. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 154:3552–3564 http://dx.doi.org/10.1210/en.2013-1142. [PubMed]
155. Xiong Y, Miyamoto N, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M. 2004. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050 http://dx.doi.org/10.1073/pnas.2637002100. [PubMed]
156. Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR. 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 584:2381–2386 http://dx.doi.org/10.1016/j.febslet.2010.04.027. [PubMed]
157. Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F, Raabe B, Chalaris A, Scheller J, Rehmann A, Franke A, Ott S, Häsler R, Nikolaus S, Fölsch UR, Rose-John S, Jiang HP, Li J, Schreiber S, Rosenstiel P. 2009. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183:7514–7522 http://dx.doi.org/10.4049/jimmunol.0900063. [PubMed]
158. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. 2003. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319 http://dx.doi.org/10.1074/jbc.M211609200. [PubMed]
159. Voltolini C, Battersby S, Etherington SL, Petraglia F, Norman JE, Jabbour HN. 2012. A novel antiinflammatory role for the short-chain fatty acids in human labor. Endocrinology 153:395–403 http://dx.doi.org/10.1210/en.2011-1457. [PubMed]
160. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450 http://dx.doi.org/10.1038/nature12721. [PubMed]
161. Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D. 2012. Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol 20:467–476 http://dx.doi.org/10.1016/j.tim.2012.07.002. [PubMed]
162. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermanns S, Ganapathy V. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139 http://dx.doi.org/10.1016/j.immuni.2013.12.007. [PubMed]
163. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547 http://dx.doi.org/10.1038/nature09646. [PubMed]
164. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573 http://dx.doi.org/10.1126/science.1241165. [PubMed]
165. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–455 http://dx.doi.org/10.1038/nature12726. [PubMed]
166. Arpaia N, Rudensky AY. 2014. Microbial metabolites control gut inflammatory responses. Proc Natl Acad Sci USA 111:2058–2059 http://dx.doi.org/10.1073/pnas.1323183111. [PubMed]
167. Ishiguro K, Ando T, Maeda O, Watanabe O, Goto H. 2011. Cutting edge: tubulin α functions as an adaptor in NFAT-importin β interaction. J Immunol 186:2710–2713 http://dx.doi.org/10.4049/jimmunol.1003322. [PubMed]
168. Wrzosek L, Miquel S, Noordine ML, Bouet S, Joncquel Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. 2013. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61 http://dx.doi.org/10.1186/1741-7007-11-61. [PubMed]
169. Levison ME. 1973. Effect of colon flora and short-chain fatty acids on growth in vitro of Pseudomonas aeruginsoa and Enterobacteriaceae. Infect Immun 8:30–35. [PubMed]
170. Shin R, Suzuki M, Morishita Y. 2002. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J Med Microbiol 51:201–206 http://dx.doi.org/10.1099/0022-1317-51-3-201. [PubMed]
171. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286 http://dx.doi.org/10.1038/nature08530. [PubMed]
172. De Vuyst L, Leroy F. 2011. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol 149:73–80 http://dx.doi.org/10.1016/j.ijfoodmicro.2011.03.003. [PubMed]
173. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335 http://dx.doi.org/10.1038/ismej.2014.14. [PubMed]
174. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM, Montijn RC, Roeselers G. 2014. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. MBio 5:e01438-14 http://dx.doi.org/10.1128/mBio.01438-14. [PubMed]
175. Hung CC, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD, Frye JG, McClelland M, Ahmer BM, Altier C. 2013. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol Microbiol 87:1045–1060 http://dx.doi.org/10.1111/mmi.12149. [PubMed]
176. Lawhon SD, Maurer R, Suyemoto M, Altier C. 2002. Intestinal short-chain fatty acids alter Salmonella Typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 46:1451–1464 http://dx.doi.org/10.1046/j.1365-2958.2002.03268.x. [PubMed]
177. Garner CD, Antonopoulos DA, Wagner B, Duhamel GE, Keresztes I, Ross DA, Young VB, Altier C. 2009. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar Typhimurium murine model of infection. Infect Immun 77:2691–2702 http://dx.doi.org/10.1128/IAI.01570-08. [PubMed]
178. Durant JA, Corrier DE, Ricke SC. 2000. Short-chain volatile fatty acids modulate the expression of the hilA and invF genes of Salmonella Typhimurium. J Food Prot 63:573–578 http://dx.doi.org/10.4315/0362-028X-63.5.573. [PubMed]
179. Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly-Y M, Stephens L, Hawkins PT, Curi R. 2011. SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6:e21205 http://dx.doi.org/10.1371/journal.pone.0021205. [PubMed]
180. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. 2011. Regulation of inflammation by short chain fatty acids. Nutrients 3:858–876 http://dx.doi.org/10.3390/nu3100858. [PubMed]
181. Anini Y, Fu-Cheng X, Cuber JC, Kervran A, Chariot J, Roz C. 1999. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers Arch 438:299–306 http://dx.doi.org/10.1007/s004240050913. [PubMed]
182. Cherbut C, Ferrier L, Rozé C, Anini Y, Blottière H, Lecannu G, Galmiche JP. 1998. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Physiol 275:G1415–G1422. [PubMed]
183. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61:364–371 http://dx.doi.org/10.2337/db11-1019. [PubMed]
184. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS, Blundell JE, Bell JD, Thomas EL, Mt-Isa S, Ashby D, Gibson GR, Kolida S, Dhillo WS, Bloom SR, Morley W, Clegg S, Frost G. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–1754 http://dx.doi.org/10.1136/gutjnl-2014-307913. [PubMed]
185. Murphy KG, Bloom SR. 2006. Gut hormones and the regulation of energy homeostasis. Nature 444:854–859 http://dx.doi.org/10.1038/nature05484. [PubMed]
186. Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672 http://dx.doi.org/10.1038/nrmicro3344. [PubMed]
187. Louis P, Scott KP, Duncan SH, Flint HJ. 2007. Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102:1197–1208 http://dx.doi.org/10.1111/j.1365-2672.2007.03322.x. [PubMed]
188. Flint HJ, Duncan SH, Scott KP, Louis P. 2007. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111 http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x. [PubMed]
189. Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V. 2009. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69:2826–2832 http://dx.doi.org/10.1158/0008-5472.CAN-08-4466. [PubMed]
190. Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. 2013. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol 13:869–874 http://dx.doi.org/10.1016/j.coph.2013.08.006. [PubMed]
191. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL. 2012. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108:820–831 http://dx.doi.org/10.1017/S0007114512001948. [PubMed]
192. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. 2008. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119 http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x. [PubMed]
193. Buda A, Qualtrough D, Jepson MA, Martines D, Paraskeva C, Pignatelli M. 2003. Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut 52:729–734 http://dx.doi.org/10.1136/gut.52.5.729. [PubMed]
194. Clarke JM, Topping DL, Bird AR, Young GP, Cobiac L. 2008. Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis 29:2190–2194 http://dx.doi.org/10.1093/carcin/bgn192. [PubMed]
195. Chang PV, Hao L, Offermanns S, Medzhitov R. 2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111:2247–2252 http://dx.doi.org/10.1073/pnas.1322269111. [PubMed]
196. Wilson AJ, Chueh AC, Tögel L, Corner GA, Ahmed N, Goel S, Byun DS, Nasser S, Houston MA, Jhawer M, Smartt HJ, Murray LB, Nicholas C, Heerdt BG, Arango D, Augenlicht LH, Mariadason JM. 2010. Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res 70:609–620 http://dx.doi.org/10.1158/0008-5472.CAN-09-2327. [PubMed]
197. Shapiro H, Thaiss CA, Levy M, Elinav E. 2014. The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol 30:54–62 http://dx.doi.org/10.1016/j.coi.2014.07.003. [PubMed]
198. Devillard E, McIntosh FM, Duncan SH, Wallace RJ. 2007. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189:2566–2570 http://dx.doi.org/10.1128/JB.01359-06. [PubMed]
199. McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ. 2009. Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology 155:285–294 http://dx.doi.org/10.1099/mic.0.022921-0. [PubMed]
200. Gorissen L, Raes K, Weckx S, Dannenberger D, Leroy F, De Vuyst L, De Smet S. 2010. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl Microbiol Biotechnol 87:2257–2266 http://dx.doi.org/10.1007/s00253-010-2713-1. [PubMed]
201. Kishino S, Takeuchi M, Park SB, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R, Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J. 2013. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci USA 110:17808–17813 http://dx.doi.org/10.1073/pnas.1312937110. [PubMed]
202. Wall R, Ross RP, Shanahan F, O’Mahony L, O’Mahony C, Coakley M, Hart O, Lawlor P, Quigley EM, Kiely B, Fitzgerald GF, Stanton C. 2009. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401 http://dx.doi.org/10.3945/ajcn.2008.27023. [PubMed]
203. Gudbrandsen OA, Rodríguez E, Wergedahl H, Mørk S, Reseland JE, Skorve J, Palou A, Berge RK. 2009. Trans-10, cis-12-conjugated linoleic acid reduces the hepatic triacylglycerol content and the leptin mRNA level in adipose tissue in obese Zucker fa/fa rats. Br J Nutr 102:803–815 http://dx.doi.org/10.1017/S0007114509297200. [PubMed]
204. Toomey S, Harhen B, Roche HM, Fitzgerald D, Belton O. 2006. Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis 187:40–49 http://dx.doi.org/10.1016/j.atherosclerosis.2005.08.024. [PubMed]
205. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, Pettersson S, Conway S. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat Immunol 5:104–112 http://dx.doi.org/10.1038/ni1018. [PubMed]
206. Are A, Aronsson L, Wang S, Greicius G, Lee YK, Gustafsson JA, Pettersson S, Arulampalam V. 2008. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci USA 105:1943–1948 http://dx.doi.org/10.1073/pnas.0711734105. [PubMed]
207. Moya-Camarena SY, Vanden Heuvel JP, Blanchard SG, Leesnitzer LA, Belury MA. 1999. Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARalpha. J Lipid Res 40:1426–1433. [PubMed]
208. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. 2008. Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat Struct Mol Biol 15:924–931 http://dx.doi.org/10.1038/nsmb.1474. [PubMed]
209. Chen P, Torralba M, Tan J, Embree M, Zengler K, Starkel P, van Pijkeren JP, DePew J, Loomba R, Ho SB, Bajaj JS, Mutlu EA, Keshavarzian A, Tsukamoto H, Nelson KE, Fouts DE, Schnabl B. 2015. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148:203–214.e216. [PubMed]
210. Hill MJ. 1997. Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6(Suppl 1) :S43–S45 http://dx.doi.org/10.1097/00008469-199703001-00009. [PubMed]
211. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359 http://dx.doi.org/10.1126/science.1124234. [PubMed]
212. Brestoff JR, Artis D. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684 http://dx.doi.org/10.1038/ni.2640. [PubMed]
213. Said HM, Mohammed ZM. 2006. Intestinal absorption of water-soluble vitamins: an update. Curr Opin Gastroenterol 22:140–146 http://dx.doi.org/10.1097/01.mog.0000203870.22706.52. [PubMed]
214. Ichihashi T, Takagishi Y, Uchida K, Yamada H. 1992. Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr 122:506–512. [PubMed]
215. Bhaskaram P. 2002. Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev 60(suppl 5) :S40–S45 http://dx.doi.org/10.1301/00296640260130722. [PubMed]
216. Cheng CH, Chang SJ, Lee BJ, Lin KL, Huang YC. 2006. Vitamin B 6 supplementation increases immune responses in critically ill patients. Eur J Clin Nutr 60:1207–1213 http://dx.doi.org/10.1038/sj.ejcn.1602439. [PubMed]
217. Meydani SN, Meydani M, Blumberg JB, Leka LS, Siber G, Loszewski R, Thompson C, Pedrosa MC, Diamond RD, Stollar BD. 1997. Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA 277:1380–1386 http://dx.doi.org/10.1001/jama.1997.03540410058031. [PubMed]
218. Tamura J, Kubota K, Murakami H, Sawamura M, Matsushima T, Tamura T, Saitoh T, Kurabayshi H, Naruse T. 1999. Immunomodulation by vitamin B 12: augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B 12-deficient patients by methyl-B12 treatment. Clin Exp Immunol 116:28–32 http://dx.doi.org/10.1046/j.1365-2249.1999.00870.x. [PubMed]
219. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F. 2011. B-group vitamin production by lactic acid bacteria: current knowledge and potential applications. J Appl Microbiol 111:1297–1309 http://dx.doi.org/10.1111/j.1365-2672.2011.05157.x. [PubMed]
220. Bacher A, Eberhardt S, Fischer M, Kis K, Richter G. 2000. Biosynthesis of vitamin B 2 (riboflavin). Annu Rev Nutr 20:153–167 http://dx.doi.org/10.1146/annurev.nutr.20.1.153. [PubMed]
221. Bacher A, Fischer M, Kis K, Kugelbrey K, Mörtl S, Scheuring J, Weinkauf S, Eberhardt S, Schmidt-Bäse K, Huber R, Ritsert K, Cushman M, Ladenstein R. 1996. Biosynthesis of riboflavin: structure and mechanism of lumazine synthase. Biochem Soc Trans 24:89–94 http://dx.doi.org/10.1042/bst0240089. [PubMed]
222. Capozzi V, Menga V, Digesu AM, De Vita P, van Sinderen D, Cattivelli L, Fares C, Spano G. 2011. Biotechnological production of vitamin B 2-enriched bread and pasta. J Agric Food Chem 59:8013–8020 http://dx.doi.org/10.1021/jf201519h. [PubMed]
223. LeBlanc JG, Burgess C, Sesma F, de Giori GS, van Sinderen D. 2005. Lactococcus lactis is capable of improving the riboflavin status in deficient rats. Br J Nutr 94:262–267 http://dx.doi.org/10.1079/BJN20051473. [PubMed]
224. LeBlanc JG, Burgess C, Sesma F, Savoy de Giori G, van Sinderen D. 2005. Ingestion of milk fermented by genetically modified Lactococcus lactis improves the riboflavin status of deficient rats. J Dairy Sci 88:3435–3442 http://dx.doi.org/10.3168/jds.S0022-0302(05)73027-7.
225. Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D. 2004. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777 http://dx.doi.org/10.1128/AEM.70.10.5769-5777.2004. [PubMed]
226. Sydenstricker VP. 1941. Clinical manifestations of ariboflavinosis. Am J Public Health Nations Health 31:344–350 http://dx.doi.org/10.2105/AJPH.31.4.344. [PubMed]
227. Fabian E, Majchrzak D, Dieminger B, Meyer E, Elmadfa I. 2008. Influence of probiotic and conventional yoghurt on the status of vitamins B 1, B 2 and B 6 in young healthy women. Ann Nutr Metab 52:29–36 http://dx.doi.org/10.1159/000114408. [PubMed]
228. LeBlanc JG, Sybesma W, Starrenburg M, Sesma F, de Vos WM, de Giori GS, Hugenholtz J. 2010. Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26:835–841 http://dx.doi.org/10.1016/j.nut.2009.06.023. [PubMed]
229. LeBlanc JG, Aubry C, Cortes-Perez NG, de Moreno de LeBlanc A, Vergnolle N, Langella P, Azevedo V, Chatel JM, Miyoshi A, Bermúdez-Humarán LG. 2013. Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update. FEMS Microbiol Lett 344:1–9 http://dx.doi.org/10.1111/1574-6968.12159. [PubMed]
230. Kim TH, Yang J, Darling PB, O’Connor DL. 2004. A large pool of available folate exists in the large intestine of human infants and piglets. J Nutr 134:1389–1394. [PubMed]
231. Thomas CM, Saulnier DM, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm A, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J. 2016. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. MicrobiologyOpen 5:802–818 http://dx.doi.org/10.1002/mbo3.371. [PubMed]
232. Crittenden RG, Martinez NR, Playne MJ. 2003. Synthesis and utilisation of folate by yoghurt starter cultures and probiotic bacteria. Int J Food Microbiol 80:217–222 http://dx.doi.org/10.1016/S0168-1605(02)00170-8. [PubMed]
233. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J. 2003. Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076 http://dx.doi.org/10.1128/AEM.69.6.3069-3076.2003. [PubMed]
234. Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MH, Hugenholtz J. 2003. Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69:4542–4548 http://dx.doi.org/10.1128/AEM.69.8.4542-4548.2003. [PubMed]
235. Sybesma W, Van Den Born E, Starrenburg M, Mierau I, Kleerebezem M, De Vos WM, Hugenholtz J. 2003. Controlled modulation of folate polyglutamyl tail length by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:7101–7107 http://dx.doi.org/10.1128/AEM.69.12.7101-7107.2003. [PubMed]
236. Wegkamp A, Starrenburg M, de Vos WM, Hugenholtz J, Sybesma W. 2004. Transformation of folate-consuming Lactobacillus gasseri into a folate producer. Appl Environ Microbiol 70:3146–3148 http://dx.doi.org/10.1128/AEM.70.5.3146-3148.2004. [PubMed]
237. Santos F, Wegkamp A, de Vos WM, Smid EJ, Hugenholtz J. 2008. High-level folate production in fermented foods by the B 12 producer Lactobacillus reuteri JCM1112. Appl Environ Microbiol 74:3291–3294 http://dx.doi.org/10.1128/AEM.02719-07. [PubMed]
238. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeño-Tárraga AM, Parkhill J, Flynn S, O’Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O’Toole PW. 2006. Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci USA 103:6718–6723 http://dx.doi.org/10.1073/pnas.0511060103. [PubMed]
239. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessières P, Weissenbach J, Ehrlich SD, Maguin E. 2006. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci USA 103:9274–9279 http://dx.doi.org/10.1073/pnas.0603024103. [PubMed]
240. Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. 2007. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179–185 http://dx.doi.org/10.1128/AEM.01763-06. [PubMed]
241. Rossi M, Amaretti A, Raimondi S. 2011. Folate production by probiotic bacteria. Nutrients 3:118–134 http://dx.doi.org/10.3390/nu3010118. [PubMed]
242. Wegkamp A, van Oorschot W, de Vos WM, Smid EJ. 2007. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Appl Environ Microbiol 73:2673–2681 http://dx.doi.org/10.1128/AEM.02174-06. [PubMed]
243. Quesada-Chanto A, Afschar AS, Wagner F. 1994. Microbial production of propionic acid and vitamin B 12 using molasses or sugar. Appl Microbiol Biotechnol 41:378–383.
244. Roth LA, Keenan D. 1971. Acid injury of Escherichia coli. Can J Microbiol 17:1005–1008 http://dx.doi.org/10.1139/m71-160. [PubMed]
245. Martens J-H, Barg H, Warren M, Jahn D. 2002. Microbial production of vitamin B 12. Appl Microbiol Biotechnol 58:275–285 http://dx.doi.org/10.1007/s00253-001-0902-7. [PubMed]
246. Smith AD. 2007. Folic acid fortification: the good, the bad, and the puzzle of vitamin B-12. Am J Clin Nutr 85:3–5. [PubMed]
247. Roth JR, Lawrence JG, Bobik TA. 1996. Cobalamin (coenzyme B 12): synthesis and biological significance. Annu Rev Microbiol 50:137–181 http://dx.doi.org/10.1146/annurev.micro.50.1.137. [PubMed]
248. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2003. Comparative genomics of the vitamin B 12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159 http://dx.doi.org/10.1074/jbc.M305837200. [PubMed]
249. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F. 2003. Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185:5643–5647 http://dx.doi.org/10.1128/JB.185.18.5643-5647.2003. [PubMed]
250. Vannini V, de Valdez G, Taranto MFS. 2008. Identification of new lactobacilli able to produce cobalamin (vitamin B 12). Biocell 32:72.
251. Martin R, Olivares M, Marin ML, Fernandez L, Xaus J, Rodriguez JM. 2005. Probiotic potential of 3 lactobacilli strains isolated from breast milk. J Hum Lact 21:8–17; quiz 18–21, 41.
252. Santos F, Vera JL, Lamosa P, de Valdez GF, de Vos WM, Santos H, Sesma F, Hugenholtz J. 2007. Pseudovitamin B(12) is the corrinoid produced by Lactobacillus reuteri CRL1098 under anaerobic conditions. FEBS Lett 581:4865–4870 http://dx.doi.org/10.1016/j.febslet.2007.09.012. [PubMed]
253. Hüfner E, Britton RA, Roos S, Jonsson H, Hertel C. 2008. Global transcriptional response of Lactobacillus reuteri to the sourdough environment. Syst Appl Microbiol 31:323–338 http://dx.doi.org/10.1016/j.syapm.2008.06.005. [PubMed]
254. Hunt A, Harrington D, Robinson S. 2014. Vitamin B 12 deficiency. BMJ 349(sep04 1) :g5226 http://dx.doi.org/10.1136/bmj.g5226.
255. Molina VC, Médici M, Taranto MP, Font de Valdez G. 2009. Lactobacillus reuteri CRL 1098 prevents side effects produced by a nutritional vitamin B deficiency. J Appl Microbiol 106:467–473 http://dx.doi.org/10.1111/j.1365-2672.2008.04014.x. [PubMed]
256. Olson RE. 1984. The function and metabolism of vitamin K. Annu Rev Nutr 4:281–337 http://dx.doi.org/10.1146/annurev.nu.04.070184.001433. [PubMed]
257. Lippi G, Franchini M. 2011. Vitamin K in neonates: facts and myths. Blood Transfus 9:4–9. [PubMed]
258. Conly JM, Stein K. 1992. Quantitative and qualitative measurements of K vitamins in human intestinal contents. Am J Gastroenterol 87:311–316. [PubMed]
259. Cooke G, Behan J, Costello M. 2006. Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microb Ecol Health Dis 18:133–138 http://dx.doi.org/10.1080/08910600601048894.
260. Morishita T, Tamura N, Makino T, Kudo S. 1999. Production of menaquinones by lactic acid bacteria. J Dairy Sci 82:1897–1903 http://dx.doi.org/10.3168/jds.S0022-0302(99)75424-X. [PubMed]
261. Olsen I, Amano A. 2015. Outer membrane vesicles: offensive weapons or good Samaritans? J Oral Microbiol 7:27468 http://dx.doi.org/10.3402/jom.v7.27468. [PubMed]
262. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim J, Lee YC, Seol SY, Cho DT, Kim SI, Lee JC. 2011. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 6:e27958 http://dx.doi.org/10.1371/journal.pone.0027958. [PubMed]
263. Berleman J, Auer M. 2013. The role of bacterial outer membrane vesicles for intra- and interspecies delivery. Environ Microbiol 15:347–354 http://dx.doi.org/10.1111/1462-2920.12048. [PubMed]
264. Mayrand D, Grenier D. 1989. Biological activities of outer membrane vesicles. Can J Microbiol 35:607–613 http://dx.doi.org/10.1139/m89-097. [PubMed]
265. Kadurugamuwa JL, Beveridge TJ. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008 http://dx.doi.org/10.1128/jb.177.14.3998-4008.1995. [PubMed]
266. Furuta N, Takeuchi H, Amano A. 2009. Entry of Porphyromonas gingivalis outer membrane vesicles into epithelial cells causes cellular functional impairment. Infect Immun 77:4761–4770 http://dx.doi.org/10.1128/IAI.00841-09. [PubMed]
267. Lee YK, Mazmanian SK. 2010. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773 http://dx.doi.org/10.1126/science.1195568. [PubMed]
268. Shen Y, Giardino Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. 2012. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12:509–520 http://dx.doi.org/10.1016/j.chom.2012.08.004. [PubMed]
269. Mazmanian SK, Round JL, Kasper DL. 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625 http://dx.doi.org/10.1038/nature07008. [PubMed]
270. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. 2011. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 108(Suppl 1) :4615–4622 http://dx.doi.org/10.1073/pnas.1000082107. [PubMed]
271. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH. 2010. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol 185:4101–4108 http://dx.doi.org/10.4049/jimmunol.1001443. [PubMed]
272. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463 http://dx.doi.org/10.1016/j.cell.2013.11.024. [PubMed]
273. Rühlmann A, Kukla D, Schwager P, Bartels K, Huber R. 1973. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor: crystal structure determination and stereochemistry of the contact region. J Mol Biol 77:417–436 http://dx.doi.org/10.1016/0022-2836(73)90448-8.
274. Potempa J, Korzus E, Travis J. 1994. The serpin superfamily of proteinase inhibitors: structure, function, and regulation. J Biol Chem 269:15957–15960. [PubMed]
275. Turroni F, Foroni E, O’Connell Motherway M, Bottacini F, Giubellini V, Zomer A, Ferrarini A, Delledonne M, Zhang Z, van Sinderen D, Ventura M. 2010. Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl Environ Microbiol 76:3206–3219 http://dx.doi.org/10.1128/AEM.02938-09. [PubMed]
276. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99:14422–14427 http://dx.doi.org/10.1073/pnas.212527599. [PubMed]
277. Ivanov D, Emonet C, Foata F, Affolter M, Delley M, Fisseha M, Blum-Sperisen S, Kochhar S, Arigoni F. 2006. A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem 281:17246–17252 http://dx.doi.org/10.1074/jbc.M601678200. [PubMed]
278. Haandrikman AJ, Kok J, Laan H, Soemitro S, Ledeboer AM, Konings WN, Venema G. 1989. Identification of a gene required for maturation of an extracellular lactococcal serine proteinase. J Bacteriol 171:2789–2794 http://dx.doi.org/10.1128/jb.171.5.2789-2794.1989. [PubMed]
279. Haandrikman AJ, Kok J, Venema G. 1991. Lactococcal proteinase maturation protein PrtM is a lipoprotein. J Bacteriol 173:4517–4525 http://dx.doi.org/10.1128/jb.173.14.4517-4525.1991. [PubMed]
280. Holck A, Axelsson L, Birkeland SE, Aukrust T, Blom H. 1992. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol 138:2715–2720 http://dx.doi.org/10.1099/00221287-138-12-2715. [PubMed]
281. Hoermannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, Blaut M, Hölzlwimmer G, Laschinger M, Haller D. 2009. Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One 4:e4365 http://dx.doi.org/10.1371/journal.pone.0004365. [PubMed]
282. von Schillde MA, Hörmannsperger G, Weiher M, Alpert CA, Hahne H, Bäuerl C, van Huynegem K, Steidler L, Hrncir T, Pérez-Martínez G, Kuster B, Haller D. 2012. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11:387–396 http://dx.doi.org/10.1016/j.chom.2012.02.006. [PubMed]
283. Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. 2007. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575 http://dx.doi.org/10.1053/j.gastro.2006.11.022. [PubMed]
284. Bäuerl C, Pérez-Martínez G, Yan F, Polk DB, Monedero V. 2010. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J Mol Microbiol Biotechnol 19:231–241 http://dx.doi.org/10.1159/000322233. [PubMed]
285. Yan F, Liu L, Dempsey PJ, Tsai YH, Raines EW, Wilson CL, Cao H, Cao Z, Liu L, Polk DB. 2013. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 288:30742–30751 http://dx.doi.org/10.1074/jbc.M113.492397. [PubMed]
286. Ganesh BP, Klopfleisch R, Loh G, Blaut M. 2013. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8:e74963 http://dx.doi.org/10.1371/journal.pone.0074963. [PubMed]
287. Millet YA, Alvarez D, Ringgaard S, von Andrian UH, Davis BM, Waldor MK. 2014. Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria. PLoS Pathog 10:e1004405 http://dx.doi.org/10.1371/journal.ppat.1004405. [PubMed]
288. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA. 2010. Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog 6:e1000902 http://dx.doi.org/10.1371/journal.ppat.1000902. [PubMed]
289. Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermúdez-Humarán LG, Pigneur B, Lequin O, Kharrat P, Thomas G, Rainteau D, Aubry C, Breyner N, Afonso C, Lavielle S, Grill JP, Chassaing G, Chatel JM, Trugnan G, Xavier R, Langella P, Sokol H, Seksik P. 2016. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425 http://dx.doi.org/10.1136/gutjnl-2014-307649. [PubMed]
290. Quévrain E, Maubert MA, Sokol H, Devreese B, Seksik P. 2016. The presence of the anti-inflammatory protein MAM, from Faecalibacterium prausnitzii, in the intestinal ecosystem. Gut 65:882 http://dx.doi.org/10.1136/gutjnl-2015-311094. [PubMed]
291. Devi M, Rebecca LJ, Sumathy S. 2013. Bactericidal activity of the lactic acid bacteria Lactobacillus delbreukii. J Chem Pharm Res 5:176–180.
292. Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656 http://dx.doi.org/10.1128/MMBR.67.4.593-656.2003. [PubMed]
293. Alakomi HL, Skyttä E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005 http://dx.doi.org/10.1128/AEM.66.5.2001-2005.2000. [PubMed]
294. Ray B, Sandine WE. 1992. Acetic, Propionic, and Lactic Acids of Starter Culture Bacteria as Biopreservatives. CRC Press, Boca Raton, FL.
295. Kong Y-J, Park B-K, Oh D-H. 2001. Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Korean J Food Sci Technol 33:178–183.
296. Mani-Lópeza E, Garcíaa HS, López-Malo A. 2012. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res Int 45:713–721 http://dx.doi.org/10.1016/j.foodres.2011.04.043.
297. Östling CE, Lindgren SE. 1993. Inhibition of enterobacteria and Listeria growth by lactic, acetic and formic acids. J Appl Bacteriol 75:18–24 http://dx.doi.org/10.1111/j.1365-2672.1993.tb03402.x. [PubMed]
298. Michetti P, Dorta G, Wiesel PH, Brassart D, Verdu E, Herranz M, Felley C, Porta N, Rouvet M, Blum AL, Corthésy-Theulaz I. 1999. Effect of whey-based culture supernatant of Lactobacillus acidophilus (johnsonii) La1 on Helicobacter pylori infection in humans. Digestion 60:203–209 http://dx.doi.org/10.1159/000007660. [PubMed]
299. Stanojević-Nikolić S, Dimić G, Mojović L, Pejin J, Djukić-Vuković A, Kocić-Tanackov S. 2016. Antimicrobial activity of lactic acid against pathogen and spoilage microorganisms. J Food Process Preserv 40:990–998.
300. De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I. 2006. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259:89–96 http://dx.doi.org/10.1111/j.1574-6968.2006.00250.x. [PubMed]
301. Aiba Y, Suzuki N, Kabir AM, Takagi A, Koga Y. 1998. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol 93:2097–2101 http://dx.doi.org/10.1111/j.1572-0241.1998.00600.x. [PubMed]
302. Lin WH, Lin CK, Sheu SJ, Hwang CF, Ye WT, Hwang WZ, Tsen HY. 2009. Antagonistic activity of spent culture supernatants of lactic acid bacteria against Helicobacter pylori growth and infection in human gastric epithelial AGS cells. J Food Sci 74:M225–M230 http://dx.doi.org/10.1111/j.1750-3841.2009.01194.x. [PubMed]
303. Fayol-Messaoudi D, Berger CN, Coconnier-Polter MH, Liévin-Le Moal V, Servin AL. 2005. pH-, lactic acid-, and non-lactic acid-dependent activities of probiotic lactobacilli against Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 71:6008–6013 http://dx.doi.org/10.1128/AEM.71.10.6008-6013.2005. [PubMed]
304. Adeniyi BA, Adetoye A, Ayeni FA. 2015. Antibacterial activities of lactic acid bacteria isolated from cow faeces against potential enteric pathogens. Afr Health Sci 15:888–895 http://dx.doi.org/10.4314/ahs.v15i3.24. [PubMed]
305. Zheng W, Zhang Y, Lu HM, Li DT, Zhang ZL, Tang ZX, Shi LE. 2015. Antimicrobial activity and safety evaluation of Enterococcus faecium KQ 2.6 isolated from peacock feces. BMC Biotechnol 15:30 http://dx.doi.org/10.1186/s12896-015-0151-y. [PubMed]
306. Fujimura S, Watanabe A, Kimura K, Kaji M. 2012. Probiotic mechanism of Lactobacillus gasseri OLL2716 strain against Helicobacter pylori. J Clin Microbiol 50:1134–1136 http://dx.doi.org/10.1128/JCM.06262-11. [PubMed]
307. Lau AS, Liong MT. 2014. Lactic acid bacteria and bifidobacteria-inhibited Staphylococcus epidermidis. Wounds 26:121–131. [PubMed]
308. Watanabe T, Nishio H, Tanigawa T, Yamagami H, Okazaki H, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N, Asahara T, Nomoto K, Higuchi K, Takeuchi K, Arakawa T. 2009. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol 297:G506–G513 http://dx.doi.org/10.1152/ajpgi.90553.2008. [PubMed]
309. Engevik MA, Engevik KA, Yacyshyn MB, Wang J, Hassett DJ, Darien B, Yacyshyn BR, Worrell RT. 2015. Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile. Am J Physiol Gastrointest Liver Physiol 308:G497–G509 http://dx.doi.org/10.1152/ajpgi.00090.2014. [PubMed]
310. Niku-Paavola ML, Laitila A, Mattila-Sandholm T, Haikara A. 1999. New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86:29–35 http://dx.doi.org/10.1046/j.1365-2672.1999.00632.x. [PubMed]
311. Ananthaswamy HN, Eisenstark A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J Bacteriol 130:187–191. [PubMed]
312. Freese EB, Gerson J, Taber H, Rhaese HJ, Freese E. 1967. Inactivating DNA alterations induced by peroxides and peroxide-producing agents. Mutat Res 4:517–531 http://dx.doi.org/10.1016/0027-5107(67)90038-3.
313. Di Mascio P, Wefers H, Do-Thi HP, Lafleur MV, Sies H. 1989. Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. Biochim Biophys Acta 1007:151–157 http://dx.doi.org/10.1016/0167-4781(89)90033-X.
314. Florence TM. 1986. The production of hydroxyl radical from the reaction between hydrogen peroxide and NADH. J Inorg Biochem 28:33–37 http://dx.doi.org/10.1016/0162-0134(86)80021-6.
315. Dahl TA, Midden WR, Hartman PE. 1989. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J Bacteriol 171:2188–2194 http://dx.doi.org/10.1128/jb.171.4.2188-2194.1989. [PubMed]
316. Servin AL. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440 http://dx.doi.org/10.1016/j.femsre.2004.01.003. [PubMed]
317. Pridmore RD, Pittet AC, Praplan F, Cavadini C. 2008. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti- Salmonella activity. FEMS Microbiol Lett 283:210–215 http://dx.doi.org/10.1111/j.1574-6968.2008.01176.x. [PubMed]
318. Ito A, Sato Y, Kudo S, Sato S, Nakajima H, Toba T. 2003. The screening of hydrogen peroxide-producing lactic acid bacteria and their application to inactivating psychrotrophic food-borne pathogens. Curr Microbiol 47:231–236 http://dx.doi.org/10.1007/s00284-002-3993-1. [PubMed]
319. Siragusa GR, Johnson MG. 1989. Inhibition of Listeria monocytogenes growth by the lactoperoxidase-thiocyanate-H2O2 antimicrobial system. Appl Environ Microbiol 55:2802–2805. [PubMed]
320. Dahiya RS, Speck ML. 1968. Hydrogen peroxide formation by lactobacilli and its effect on Staphylococcus aureus. J Dairy Sci 51:1568–1572 http://dx.doi.org/10.3168/jds.S0022-0302(68)87232-7. [PubMed]
321. Watson JA, Schubert J. 1969. Action of hydrogen peroxide on growth inhibition of Salmonella typhimurium. J Gen Microbiol 57:25–34 http://dx.doi.org/10.1099/00221287-57-1-25. [PubMed]
322. Atassi F, Brassart D, Grob P, Graf F, Servin AL. 2006. In vitro antibacterial activity of Lactobacillus helveticus strain KS300 against diarrhoeagenic, uropathogenic and vaginosis-associated bacteria. J Appl Microbiol 101:647–654 http://dx.doi.org/10.1111/j.1365-2672.2006.02933.x. [PubMed]
323. Atassi F, Servin AL. 2010. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens. FEMS Microbiol Lett 304:29–38 http://dx.doi.org/10.1111/j.1574-6968.2009.01887.x. [PubMed]
324. Dubreuil D, Bisaillon JG, Beaudet R. 1984. Inhibition of Neisseria gonorrhoeae growth due to hydrogen peroxide production by urogenital streptococci. Microbios 39:159–167. [PubMed]
325. Holmberg K, Hallander HO. 1973. Production of bactericidal concentrations of hydrogen peroxide by Streptococcus sanguis. Arch Oral Biol 18:423–434 http://dx.doi.org/10.1016/0003-9969(73)90167-2.
326. Hillman JD, Socransky SS, Shivers M. 1985. The relationships between streptococcal species and periodontopathic bacteria in human dental plaque. Arch Oral Biol 30:791–795 http://dx.doi.org/10.1016/0003-9969(85)90133-5.
327. Barnard JP, Stinson MW. 1996. The alpha-hemolysin of Streptococcus gordonii is hydrogen peroxide. Infect Immun 64:3853–3857. [PubMed]
328. Barnard JP, Stinson MW. 1999. Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii. Infect Immun 67:6558–6564. [PubMed]
329. Pericone CD, Overweg K, Hermans PW, Weiser JN. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68:3990–3997 http://dx.doi.org/10.1128/IAI.68.7.3990-3997.2000. [PubMed]
330. Regev-Yochay G, Trzcinski K, Thompson CM, Malley R, Lipsitch M. 2006. Interference between Streptococcus pneumoniae and Staphylococcus aureus: in vitro hydrogen peroxide-mediated killing by Streptococcus pneumoniae. J Bacteriol 188:4996–5001 http://dx.doi.org/10.1128/JB.00317-06. [PubMed]
331. Klaenhammer TR. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85 http://dx.doi.org/10.1111/j.1574-6976.1993.tb00012.x. [PubMed]
332. Klaenhammer TR. 1988. Bacteriocins of lactic acid bacteria. Biochimie 70:337–349 http://dx.doi.org/10.1016/0300-9084(88)90206-4. [PubMed]
333. Dobson A, Cotter PD, Ross RP, Hill C. 2012. Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78:1–6 http://dx.doi.org/10.1128/AEM.05576-11. [PubMed]
334. Czárán TL, Hoekstra RF, Pagie L. 2002. Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790 http://dx.doi.org/10.1073/pnas.012399899. [PubMed]
335. Di Cagno R, De Angelis M, Limitone A, Minervini F, Simonetti MC, Buchin S, Gobbetti M. 2007. Cell-cell communication in sourdough lactic acid bacteria: a proteomic study in Lactobacillus sanfranciscensis CB1. Proteomics 7:2430–2446 http://dx.doi.org/10.1002/pmic.200700143. [PubMed]
336. Gobbetti M, De Angelis M, Di Cagno R, Minervini F, Limitone A. 2007. Cell-cell communication in food related bacteria. Int J Food Microbiol 120:34–45 http://dx.doi.org/10.1016/j.ijfoodmicro.2007.06.012. [PubMed]
337. Majeed H, Gillor O, Kerr B, Riley MA. 2011. Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 5:71–81 http://dx.doi.org/10.1038/ismej.2010.90. [PubMed]
338. Riley MA, Wertz JE. 2002. Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364 http://dx.doi.org/10.1016/S0300-9084(02)01421-9. [PubMed]
339. Dawid S, Roche AM, Weiser JN. 2007. The blp bacteriocins of Streptococcus pneumoniae mediate intraspecies competition both in vitro and in vivo. Infect Immun 75:443–451 http://dx.doi.org/10.1128/IAI.01775-05. [PubMed]
340. Chen Y, Ludescher RD, Montville TJ. 1997. Electrostatic interactions, but not the YGNGV consensus motif, govern the binding of pediocin PA-1 and its fragments to phospholipid vesicles. Appl Environ Microbiol 63:4770–4777. [PubMed]
341. Gut IM, Blanke SR, van der Donk WA. 2011. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6:744–752 http://dx.doi.org/10.1021/cb1004178. [PubMed]
342. Li J, Aroutcheva AA, Faro S, Chikindas ML. 2005. Mode of action of lactocin 160, a bacteriocin from vaginal Lactobacillus rhamnosus. Infect Dis Obstet Gynecol 13:135–140 http://dx.doi.org/10.1080/10647440500148156. [PubMed]
343. Moll GN, Konings WN, Driessen AJ. 1999. Bacteriocins: mechanism of membrane insertion and pore formation. Antonie van Leeuwenhoek 76:185–198 http://dx.doi.org/10.1023/A:1002002718501. [PubMed]
344. van Kraaij C, de Vos WM, Siezen RJ, Kuipers OP, van Kraaij C, de Vos WM, Siezen RJ. 1999. Lantibiotics: biosynthesis, mode of action and applications. Nat Prod Rep 16:575–587 http://dx.doi.org/10.1039/a804531c. [PubMed]
345. Guder A, Wiedemann I, Sahl HG. 2000. Posttranslationally modified bacteriocins: the lantibiotics. Biopolymers 55:62–73 http://dx.doi.org/10.1002/1097-0282(2000)55:1<62::AID-BIP60>3.0.CO;2-Y. [PubMed]
346. Beuchat LR, Clavero MR, Jaquette CB. 1997. Effects of nisin and temperature on survival, growth, and enterotoxin production characteristics of psychrotrophic Bacillus cereus in beef gravy. Appl Environ Microbiol 63:1953–1958. [PubMed]
347. Ryan MP, Rea MC, Hill C, Ross RP. 1996. An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Appl Environ Microbiol 62:612–619. [PubMed]
348. Thomas LV, Wimpenny JW. 1996. Investigation of the effect of combined variations in temperature, pH, and NaCl concentration on nisin inhibition of Listeria monocytogenes and Staphylococcus aureus. Appl Environ Microbiol 62:2006–2012. [PubMed]
349. Zapico P, Medina M, Gaya P, Nuñez M. 1998. Synergistic effect of nisin and the lactoperoxidase system on Listeria monocytogenes in skim milk. Int J Food Microbiol 40:35–42 http://dx.doi.org/10.1016/S0168-1605(98)00008-7. [PubMed]
350. Taylor LY, Cann DD, Welch BJ. 1990. Antibotulinal properties of nisin in fresh fish packaged in an atmosphere of carbon dioxide. J Food Prot 53:953–957 http://dx.doi.org/10.4315/0362-028X-53.11.953.
351. Taylor SL, Somers EB, Krueger LA. 1985. Antibotulinal effectiveness of nisin-nitrite combinations in culture medium and chicken frankfurter emulsions. J Food Prot 48:234–239 http://dx.doi.org/10.4315/0362-028X-48.3.234.
352. Wijnker JJ, Weerts EA, Breukink EJ, Houben JH, Lipman LJ. 2011. Reduction of Clostridium sporogenes spore outgrowth in natural sausage casings using nisin. Food Microbiol 28:974–979 http://dx.doi.org/10.1016/j.fm.2011.01.009. [PubMed]
353. Vessoni Penna TC, Moraes DA, Fajardo DN. 2002. The effect of nisin on growth kinetics from activated Bacillus cereus spores in cooked rice and in milk. J Food Prot 65:419–422 http://dx.doi.org/10.4315/0362-028X-65.2.419. [PubMed]
354. Beasley SS, Saris PE. 2004. Nisin-producing Lactococcus lactis strains isolated from human milk. Appl Environ Microbiol 70:5051–5053 http://dx.doi.org/10.1128/AEM.70.8.5051-5053.2004. [PubMed]
355. Ruhr E, Sahl HG. 1985. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27:841–845 http://dx.doi.org/10.1128/AAC.27.5.841. [PubMed]
356. Gao FH, Abee T, Konings WN. 1991. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol 57:2164–2170. [PubMed]
357. McAuliffe O, Ryan MP, Ross RP, Hill C, Breeuwer P, Abee T. 1998. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64:439–445. [PubMed]
358. Piard JC, Kuipers OP, Rollema HS, Desmazeaud MJ, de Vos WM. 1993. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J Biol Chem 268:16361–16368. [PubMed]
359. Mørtvedt CI, Nissen-Meyer J, Sletten K, Nes IF. 1991. Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45. Appl Environ Microbiol 57:1829–1834. [PubMed]
360. Allgaier H, Jung G, Werner RG, Schneider U, Zähner H. 1986. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. Eur J Biochem 160:9–22 http://dx.doi.org/10.1111/j.1432-1033.1986.tb09933.x. [PubMed]
361. Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian KD, Götz F. 1988. Gallidermin: a new lanthionine-containing polypeptide antibiotic. Eur J Biochem 177:53–59 http://dx.doi.org/10.1111/j.1432-1033.1988.tb14344.x. [PubMed]
362. Choung SY, Kobayashi T, Inoue J, Takemoto K, Ishitsuka H, Inoue K. 1988. Hemolytic activity of a cyclic peptide Ro09-0198 isolated from Streptoverticillium. Biochim Biophys Acta 940:171–179 http://dx.doi.org/10.1016/0005-2736(88)90192-7.
363. McAuliffe O, Ross RP, Hill C. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308 http://dx.doi.org/10.1111/j.1574-6976.2001.tb00579.x. [PubMed]
364. Dunkley EA Jr, Clejan S, Guffanti AA, Krulwich TA. 1988. Large decreases in membrane phosphatidylethanolamine and diphosphatidylglycerol upon mutation to duramycin resistance do not change the protonophore resistance of Bacillus subtilis. Biochim Biophys Acta 943:13–18 http://dx.doi.org/10.1016/0005-2736(88)90341-0. [PubMed]
365. Sahl HG, Jack RW, Bierbaum G. 1995. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem 230:827–853 http://dx.doi.org/10.1111/j.1432-1033.1995.tb20627.x. [PubMed]
366. Fredenhagen A, Fendrich G, Märki F, Märki W, Gruner J, Raschdorf F, Peter HH. 1990. Duramycins B and C, two new lanthionine containing antibiotics as inhibitors of phospholipase A2. Structural revision of duramycin and cinnamycin. J Antibiot (Tokyo) 43:1403–1412 http://dx.doi.org/10.7164/antibiotics.43.1403.
367. Ennahar S, Deschamps N, Richard J. 2000. Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 41:1–4 http://dx.doi.org/10.1007/s002840010081. [PubMed]
368. Ennahar S, Sashihara T, Sonomoto K, Ishizaki A. 2000. Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106 http://dx.doi.org/10.1111/j.1574-6976.2000.tb00534.x. [PubMed]
369. Rodríguez JM, Martínez MI, Horn N, Dodd HM. 2003. Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116 http://dx.doi.org/10.1016/S0168-1605(02)00153-8. [PubMed]
370. Tichaczek PS, Nissen-Meyer J, Nes IF, Vogel RF, Hammes WP. 1992. Characterization of the bacteriocins curvacin A from Lactobacillus curvatus LTH1174 and sakacin P from L. sake LTH673. Syst Appl Microbiol 15:460–468 http://dx.doi.org/10.1016/S0723-2020(11)80223-7.
371. Henderson JT, Chopko AL, van Wassenaar PD. 1992. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys 295:5–12 http://dx.doi.org/10.1016/0003-9861(92)90480-K.
372. Motlagh AM, Bhunia AK, Szostek F, Hansen TR, Johnson MC, Ray B. 1992. Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H. Lett Appl Microbiol 15:45–48 http://dx.doi.org/10.1111/j.1472-765X.1992.tb00721.x. [PubMed]
373. Hastings JW, Sailer M, Johnson K, Roy KL, Vederas JC, Stiles ME. 1991. Characterization of leucocin A-UAL 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J Bacteriol 173:7491–7500 http://dx.doi.org/10.1128/jb.173.23.7491-7500.1991. [PubMed]
374. Héchard Y, Dérijard B, Letellier F, Cenatiempo Y. 1992. Characterization and purification of mesentericin Y105, an anti- Listeria bacteriocin from Leuconostoc mesenteroides. J Gen Microbiol 138:2725–2731 http://dx.doi.org/10.1099/00221287-138-12-2725. [PubMed]
375. Métivier A, Pilet MF, Dousset X, Sorokine O, Anglade P, Zagorec M, Piard JC, Marlon D, Cenatiempo Y, Fremaux C. 1998. Divercin V41, a new bacteriocin with two disulphide bonds produced by Carnobacterium divergens V41: primary structure and genomic organization. Microbiology 144:2837–2844 http://dx.doi.org/10.1099/00221287-144-10-2837. [PubMed]
376. Aymerich T, Holo H, Håvarstein LS, Hugas M, Garriga M, Nes IF. 1996. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682. [PubMed]
377. Ferchichi M, Frère J, Mabrouk K, Manai M. 2001. Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiol Lett 205:49–55 http://dx.doi.org/10.1111/j.1574-6968.2001.tb10924.x. [PubMed]
378. Yildirim Z, Winters DK, Johnson MG. 1999. Purification, amino acid sequence and mode of action of bifidocin B produced by Bifidobacterium bifidum NCFB 1454. J Appl Microbiol 86:45–54 http://dx.doi.org/10.1046/j.1365-2672.1999.00629.x. [PubMed]
379. Shin MS, Han SK, Ryu JS, Kim KS, Lee WK. 2008. Isolation and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from kimchi. J Appl Microbiol 105:331–339 http://dx.doi.org/10.1111/j.1365-2672.2008.03770.x. [PubMed]
380. Balla E, Dicks LM, Du Toit M, Van Der Merwe MJ, Holzapfel WH. 2000. Characterization and cloning of the genes encoding enterocin 1071A and enterocin 1071B, two antimicrobial peptides produced by Enterococcus faecalis BFE 1071. Appl Environ Microbiol 66:1298–1304 http://dx.doi.org/10.1128/AEM.66.4.1298-1304.2000. [PubMed]
381. Nissen-Meyer J, Håvarstein LS, Holo H, Sletten K, Nes IF. 1993. Association of the lactococcin A immunity factor with the cell membrane: purification and characterization of the immunity factor. J Gen Microbiol 139:1503–1509 http://dx.doi.org/10.1099/00221287-139-7-1503. [PubMed]
382. van Belkum MJ, Kok J, Venema G, Holo H, Nes IF, Konings WN, Abee T. 1991. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol 173:7934–7941 http://dx.doi.org/10.1128/jb.173.24.7934-7941.1991. [PubMed]
383. Allison GE, Fremaux C, Klaenhammer TR. 1994. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J Bacteriol 176:2235–2241 http://dx.doi.org/10.1128/jb.176.8.2235-2241.1994. [PubMed]
384. Jiménez-Díaz R, Ruiz-Barba JL, Cathcart DP, Holo H, Nes IF, Sletten KH, Warner PJ. 1995. Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol 61:4459–4463. [PubMed]
385. Anderssen EL, Diep DB, Nes IF, Eijsink VG, Nissen-Meyer J. 1998. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64:2269–2272. [PubMed]
386. Davey GP, Richardson BC. 1981. Purification and some properties of diplococcin from Streptococcus cremoris 346. Appl Environ Microbiol 41:84–89. [PubMed]
387. Herranz C, Chen Y, Chung HJ, Cintas LM, Hernández PE, Montville TJ, Chikindas ML. 2001. Enterocin P selectively dissipates the membrane potential of Enterococcus faecium T136. Appl Environ Microbiol 67:1689–1692 http://dx.doi.org/10.1128/AEM.67.4.1689-1692.2001. [PubMed]
388. Moll G, Ubbink-Kok T, Hildeng-Hauge H, Nissen-Meyer J, Nes IF, Konings WN, Driessen AJ. 1996. Lactococcin G is a potassium ion-conducting, two-component bacteriocin. J Bacteriol 178:600–605 http://dx.doi.org/10.1128/jb.178.3.600-605.1996. [PubMed]
389. González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M. 2000. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA 97:11221–11226 http://dx.doi.org/10.1073/pnas.210301097. [PubMed]
390. Leer RJ, van der Vossen JM, van Giezen M, van Noort JM, Pouwels PH. 1995. Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141:1629–1635 http://dx.doi.org/10.1099/13500872-141-7-1629. [PubMed]
391. Worobo RW, Henkel T, Sailer M, Roy KL, Vederas JC, Stiles ME. 1994. Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology 140:517–526 http://dx.doi.org/10.1099/00221287-140-3-517. [PubMed]
392. Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF. 1997. Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330. [PubMed]
393. Nes IF, Diep DB, Håvarstein LS, Brurberg MB, Eijsink V, Holo H. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek 70:113–128 http://dx.doi.org/10.1007/BF00395929. [PubMed]
394. Holo H, Nilssen O, Nes IF. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173:3879–3887 http://dx.doi.org/10.1128/jb.173.12.3879-3887.1991. [PubMed]
395. Sandiford S, Upton M. 2012. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrob Agents Chemother 56:1539–1547 http://dx.doi.org/10.1128/AAC.05397-11. [PubMed]
396. de Lorenzo V. 1985. Factors affecting microcin E492 production. J Antibiot (Tokyo) 38:340–345 http://dx.doi.org/10.7164/antibiotics.38.340.
397. de Lorenzo V, Pugsley AP. 1985. Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother 27:666–669 http://dx.doi.org/10.1128/AAC.27.4.666. [PubMed]
398. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. 2003. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407–3414 http://dx.doi.org/10.1128/AAC.47.11.3407-3414.2003. [PubMed]
399. Gründling A, Missiakas DM, Schneewind O. 2006. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 188:6286–6297 http://dx.doi.org/10.1128/JB.00457-06. [PubMed]
400. Bastos MD, Coutinho BG, Coelho MLV. 2010. Lysostaphin: a staphylococcal bacteriolysin with potential clinical applications. Pharmaceuticals (Basel) 3:1139–1161 http://dx.doi.org/10.3390/ph3041139. [PubMed]
401. Nilsen T, Nes IF, Holo H. 2003. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl Environ Microbiol 69:2975–2984 http://dx.doi.org/10.1128/AEM.69.5.2975-2984.2003. [PubMed]
402. Vaughan EE, Daly C, Fitzgerald GF. 1992. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. J Appl Bacteriol 73:299–308 http://dx.doi.org/10.1111/j.1365-2672.1992.tb04981.x. [PubMed]
403. Ross RP, Morgan S, Hill C. 2002. Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16 http://dx.doi.org/10.1016/S0168-1605(02)00174-5. [PubMed]
404. Müller E, Radler F. 1993. Caseicin, a bacteriocin from Lactobacillus casei. Folia Microbiol (Praha) 38:441–446 http://dx.doi.org/10.1007/BF02814392. [PubMed]
405. Oman TJ, Boettcher JM, Wang H, Okalibe XN, van der Donk WA. 2011. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat Chem Biol 7:78–80 http://dx.doi.org/10.1038/nchembio.509. [PubMed]
406. Stepper J, Shastri S, Loo TS, Preston JC, Novak P, Man P, Moore CH, Havlíček V, Patchett ML, Norris GE. 2011. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett 585:645–650 http://dx.doi.org/10.1016/j.febslet.2011.01.023. [PubMed]
407. Maqueda M, Gálvez A, Bueno MM, Sanchez-Barrena MJ, González C, Albert A, Rico M, Valdivia E. 2004. Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Protein Pept Sci 5:399–416 http://dx.doi.org/10.2174/1389203043379567. [PubMed]
408. Maky MA, Ishibashi N, Zendo T, Perez RH, Doud JR, Karmi M, Sonomoto K. 2015. Enterocin F4-9, a novel O-linked glycosylated bacteriocin. Appl Environ Microbiol 81:4819–4826 http://dx.doi.org/10.1128/AEM.00940-15. [PubMed]
409. Paik SH, Chakicherla A, Hansen JN. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273:23134–23142 http://dx.doi.org/10.1074/jbc.273.36.23134. [PubMed]
410. Kelly W, Asmundson R, Huang C. 1996. Characterization of plantaricin KW30, a bacteriocin produced by Lactobacillus plantarum. J Appl Microbiol 81:657–662 http://dx.doi.org/10.1111/j.1365-2672.1996.tb01968.x.
411. Rebuffat S. 2012. Microcins in action: amazing defence strategies of Enterobacteria. Biochem Soc Trans 40:1456–1462 http://dx.doi.org/10.1042/BST20120183. [PubMed]
412. Yang SC, Lin CH, Sung CT, Fang JY. 2014. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol 5:241. [PubMed]
413. Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S. 2004. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J Biol Chem 279:28233–28242 http://dx.doi.org/10.1074/jbc.M400228200. [PubMed]
414. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. 2007. Low-molecular-weight post-translationally modified microcins. Mol Microbiol 65:1380–1394 http://dx.doi.org/10.1111/j.1365-2958.2007.05874.x. [PubMed]
415. van den Elzen PJ, Walters HH, Veltkamp E, Nijkamp HJ. 1983. Molecular structure and function of the bacteriocin gene and bacteriocin protein of plasmid Clo DF13. Nucleic Acids Res 11:2465–2477 http://dx.doi.org/10.1093/nar/11.8.2465. [PubMed]
416. Kleanthous C. 2010. Swimming against the tide: progress and challenges in our understanding of colicin translocation. Nat Rev Microbiol 8:843–848 http://dx.doi.org/10.1038/nrmicro2454. [PubMed]
417. Cascales E, Buchanan SK, Duché D, Kleanthous C, Lloubès R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158–229 http://dx.doi.org/10.1128/MMBR.00036-06. [PubMed]
418. Gillor O, Giladi I, Riley MA. 2009. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 9:165 http://dx.doi.org/10.1186/1471-2180-9-165. [PubMed]
419. Goldstein BP, Wei J, Greenberg K, Novick R. 1998. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother 42:277–278 http://dx.doi.org/10.1093/jac/42.2.277. [PubMed]
420. van Staden AD, Brand AM, Dicks LM. 2012. Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureusin vivo. J Appl Microbiol 112:831–840 http://dx.doi.org/10.1111/j.1365-2672.2012.05241.x. [PubMed]
421. Brand AM, de Kwaadsteniet M, Dicks LM. 2010. The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in mice. Lett Appl Microbiol 51:645–649 http://dx.doi.org/10.1111/j.1472-765X.2010.02948.x. [PubMed]
422. De Kwaadsteniet M, Doeschate KT, Dicks LM. 2009. Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48:65–70 http://dx.doi.org/10.1111/j.1472-765X.2008.02488.x. [PubMed]
423. Campion A, Casey PG, Field D, Cotter PD, Hill C, Ross RP. 2013. In vivo activity of nisin A and nisin V against Listeria monocytogenes in mice. BMC Microbiol 13:23 http://dx.doi.org/10.1186/1471-2180-13-23. [PubMed]
424. Mota-Meira M, Morency H, Lavoie MC. 2005. In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56:869–871 http://dx.doi.org/10.1093/jac/dki295. [PubMed]
425. Castiglione F, Cavaletti L, Losi D, Lazzarini A, Carrano L, Feroggio M, Ciciliato I, Corti E, Candiani G, Marinelli F, Selva E. 2007. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46:5884–5895 http://dx.doi.org/10.1021/bi700131x. [PubMed]
426. Rihakova J, Cappelier JM, Hue I, Demnerova K, Fédérighi M, Prévost H, Drider D. 2010. In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob Agents Chemother 54:563–564 http://dx.doi.org/10.1128/AAC.00765-09. [PubMed]
427. Salvucci E, Saavedra L, Hebert EM, Haro C, Sesma F. 2012. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis 9:68–74 http://dx.doi.org/10.1089/fpd.2011.0972. [PubMed]
428. Sosunov V, Mischenko V, Eruslanov B, Svetoch E, Shakina Y, Stern N, Majorov K, Sorokoumova G, Selishcheva A, Apt A. 2007. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J Antimicrob Chemother 59:919–925 http://dx.doi.org/10.1093/jac/dkm053. [PubMed]
429. Lopez FE, Vincent PA, Zenoff AM, Salomón RA, Farías RN. 2007. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J Antimicrob Chemother 59:676–680 http://dx.doi.org/10.1093/jac/dkm009. [PubMed]
430. Wang WL, Liu J, Huo YB, Ling JQ. 2013. Bacteriocin immunity proteins play a role in quorum-sensing system regulated antimicrobial sensitivity of Streptococcus mutans UA159. Arch Oral Biol 58:384–390 http://dx.doi.org/10.1016/j.archoralbio.2012.09.001. [PubMed]
431. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104:7617–7621 http://dx.doi.org/10.1073/pnas.0700440104. [PubMed]
432. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21 http://dx.doi.org/10.1016/S0168-1656(98)00100-X.
433. Kleerebezem M. 2004. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 25:1405–1414 http://dx.doi.org/10.1016/j.peptides.2003.10.021. [PubMed]
434. Kleerebezem M, Kuipers OP, de Vos WM, Stiles ME, Quadri LE. 2001. A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter. Peptides 22:1597–1601 http://dx.doi.org/10.1016/S0196-9781(01)00494-6.
435. Kleerebezem M, Quadri LE. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596 http://dx.doi.org/10.1016/S0196-9781(01)00493-4.
436. O’Keeffe T, Hill C, Ross RP. 1999. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 65:1506–1515. [PubMed]
437. Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788 http://dx.doi.org/10.1038/nrmicro1273. [PubMed]
438. van der Ploeg JR. 2005. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol 187:3980–3989 http://dx.doi.org/10.1128/JB.187.12.3980-3989.2005. [PubMed]
439. Kreth J, Merritt J, Shi W, Qi F. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203 http://dx.doi.org/10.1128/JB.187.21.7193-7203.2005. [PubMed]
440. Li YH, Hanna MN, Svensäter G, Ellen RP, Cvitkovitch DG. 2001. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol 183:6875–6884 http://dx.doi.org/10.1128/JB.183.23.6875-6884.2001. [PubMed]
441. Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908 http://dx.doi.org/10.1128/JB.183.3.897-908.2001. [PubMed]
442. Li YH, Tian XL, Layton G, Norgaard C, Sisson G. 2008. Additive attenuation of virulence and cariogenic potential of Streptococcus mutans by simultaneous inactivation of the ComCDE quorum-sensing system and HK/RR11 two-component regulatory system. Microbiology 154:3256–3265 http://dx.doi.org/10.1099/mic.0.2008/019455-0. [PubMed]
443. Dufour D, Cordova M, Cvitkovitch DG, Lévesque CM. 2011. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J Bacteriol 193:6552–6559 http://dx.doi.org/10.1128/JB.05968-11. [PubMed]
444. Perry JA, Jones MB, Peterson SN, Cvitkovitch DG, Lévesque CM. 2009. Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917 http://dx.doi.org/10.1111/j.1365-2958.2009.06693.x. [PubMed]
445. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. 2007. Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670 http://dx.doi.org/10.1128/MMBR.00024-07. [PubMed]
446. Rodríguez E, Arqués JL, Rodríguez R, Nuñez M, Medina M. 2003. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett Appl Microbiol 37:259–263 http://dx.doi.org/10.1046/j.1472-765X.2003.01390.x. [PubMed]
447. Talarico TL, Casas IA, Chung TC, Dobrogosz WJ. 1988. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32:1854–1858 http://dx.doi.org/10.1128/AAC.32.12.1854. [PubMed]
448. Lüthi-Peng Q, Dileme FB, Puhan Z. 2002. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 59:289–296 http://dx.doi.org/10.1007/s00253-002-1002-z. [PubMed]
449. Schaefer L, Auchtung TA, Hermans KE, Whitehead D, Borhan B, Britton RA. 2010. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 156:1589–1599 http://dx.doi.org/10.1099/mic.0.035642-0. [PubMed]
450. Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, Warren MJ, Prentice MB. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J Bacteriol 190:4559–4567 http://dx.doi.org/10.1128/JB.01535-07. [PubMed]
451. Cleusix V, Lacroix C, Vollenweider S, Duboux M, Le Blay G. 2007. Inhibitory activity spectrum of reuterin produced by Lactobacillus reuteri against intestinal bacteria. BMC Microbiol 7:101 http://dx.doi.org/10.1186/1471-2180-7-101. [PubMed]
452. Arqués JL, Rodríguez E, Nuñez M, Medina M. 2011. Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control 22:457–461 http://dx.doi.org/10.1016/j.foodcont.2010.09.027.
453. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161 http://dx.doi.org/10.1093/dnares/dsn009. [PubMed]
454. Gänzle MG. 2004. Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64:326–332 http://dx.doi.org/10.1007/s00253-003-1536-8. [PubMed]
455. Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP. 2000. Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325–4333 http://dx.doi.org/10.1128/AEM.66.10.4325-4333.2000. [PubMed]
456. Helander IM, Mattila-Sandholm T. 2000. Permeability barrier of the Gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60:153–161 http://dx.doi.org/10.1016/S0168-1605(00)00307-X.

Article metrics loading...



Commensal and beneficial microbes secrete myriad products which target the mammalian host and other microbes. These secreted substances aid in bacterial niche development, and select compounds beneficially modulate the host and promote health. Microbes produce unique compounds which can serve as signaling factors to the host, such as biogenic amine neuromodulators, or quorum-sensing molecules to facilitate inter-bacterial communication. Bacterial metabolites can also participate in functional enhancement of host metabolic capabilities, immunoregulation, and improvement of intestinal barrier function. Secreted products such as lactic acid, hydrogen peroxide, bacteriocins, and bacteriocin-like substances can also target the microbiome. Microbes differ greatly in their metabolic potential and subsequent host effects. As a result, knowledge about microbial metabolites will facilitate selection of next-generation probiotics and therapeutic compounds derived from the mammalian microbiome. In this article we describe prominent examples of microbial metabolites and their effects on microbial communities and the mammalian host.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Methods utilized by commensal bacteria to beneficially modulate the intestinal environment. Commensal bacteria secrete molecules which can alter the gut microbiota. By selectively inhibiting resident microbes, commensal bacteria establish an intestinal bacterial niche. Production of antimicrobial factors has also been shown to exclude pathogens. Select commensal bacteria also secrete compounds which can modulate immune cells such as macrophages, dendritic cells, and lymphocytes such as T cells. These compounds decrease intestinal inflammation by dampening proinflammatory cytokines and promoting anti-inflammatory factors such as IL-10. Commensal bacteria can secrete factors which modulate the functions of the epithelial barrier by enhancing the secretion of the protective mucus layer, upregulating tight junctions, and promoting secretion of molecules such as IgA.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0012-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


A depiction of secreted metabolites from commensal bacteria and their interactions with the microbiome or host. Lactic acid, hydrogen peroxide, short-chain fatty acids (SCFAs), and bacteriocins are all capable of serving as quorum-sensing molecules and/or directly modulating the composition of the microbiome. SCFAs, long-chain fatty acids (LCFAs), outer membrane vesicles, vitamins, lactocepins, serpins, and biogenic amines have all been demonstrated to beneficially modulate the host. Together, these bacterial products shape the intestinal environment and the host.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0012-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Mechanisms by which commensal secreted products beneficially modulate the host. Epithelial cells. Vitamins produced by bacteria provide essential nutrients to the host. Likewise, short-chain fatty acids (SCFAs) such as butyrate are known to serve as energy sources for intestinal epithelial cells. The SCFA acetate has also been shown to inhibit IL-8 production and increase tubulin-α acetylation. Lactobacilli-produced p40 and p75 inhibit TNF-induced apoptosis and enhance tight junctions, which attenuates intestinal barrier disruption. Goblet cells. p40 is known to transactivate the epidermal growth factor receptor, activating the downstream target Akt and stimulating Muc2 gene expression and mucin production. Acetate produced by bacteria has also been shown to increase goblet cell differentiation and expression of mucus-related genes. Immune cells. Vitamins, outer membrane vesicles (OMVs), SCFAs, and long-chain fatty acids (LCFAs) are known to directly influence the development and function of immune cells. In general, these molecules modulate T cell and dendritic cell homeostasis and cytokine production, promoting production of anti-inflammatory IL-10 and inhibiting proinflammatory cytokines such as TNF. Biogenic amines such as histamine have also been shown to suppress proinflammatory cytokines such as TNF in immune cells, thereby ameliorating intestinal inflammation. Bacterial enzymes such as lactocepin selectively degrade lymphocyte-recruiting chemokine IP-10 and other proinflammatory chemokines such as I-TAC and eotaxin. The protease inhibitor serpin has been shown to suppress inflammatory responses by binding and inactivating neutrophil elastase. Using the highlighted mechanism, commensal bacteria produce signals that reduce intestinal inflammation and promote health.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0012-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Schematic representation of the molecular mechanisms of commensal secreted products on a Gram-negative bacterium. Bacteriocins are classified based on their structure. Bacteriocins such as nisin bind to a peptidoglycan subunit transporter, thereby preventing cell wall synthesis and resulting in cell death. Furthermore, bacteriocins can initiate pore formation. Pore formation depletes the bacterial transmembrane potential (Δψ) and/or the pH gradient, resulting in membrane disruption and cellular leakage that lead to rapid cell death. Other bacteriocins insert themselves directly or degrade the target membrane, leading to depolarization and death. Bacteriocins have also been shown to serve as quorum-sensing molecules for other microbes. Lactic acid decreases local pH and suppresses the growth and survival of pathogens. Additionally, undissociated lactic acid can traverse the outer membrane via water-filled porins and penetrate the cytoplasmic membrane. This shift lowers the intracellular pH, disrupts the transmembrane proton motive force, and generates oxidative stress. Hydrogen peroxide and select bacteriocins such as microcins damage bacterial DNA and inhibit cell growth. Together, these compounds secreted by select members of the microbiota effectively target pathogens.

Source: microbiolspec October 2017 vol. 5 no. 5 doi:10.1128/microbiolspec.BAD-0012-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error