No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Enterococci and Their Interactions with the Intestinal Microbiome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    387.94 Kb
  • XML
    178.42 Kb
  • HTML
    174.60 Kb
  • Authors: Krista Dubin1,2, Eric G. Pamer3,4,5
  • Editors: Robert Allen Britton6, Patrice D. Cani7
    Affiliations: 1: Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; 2: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; 3: Immunology Program and Infectious Disease Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; 4: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; 5: Lucille Castori Center for Microbes, Inflammation, and Cancer, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; 6: Baylor College of Medicine, Houston, TX 77030; 7: Université catholique de Louvain, Louvain Drug Research Institute, Brussels 1200, Belgium
  • Source: microbiolspec November 2017 vol. 5 no. 6 doi:10.1128/microbiolspec.BAD-0014-2016
  • Received 12 October 2016 Accepted 10 October 2017 Published 17 November 2017
  • Krista Dubin, [email protected]
image of Enterococci and Their Interactions with the Intestinal Microbiome
    Preview this microbiology spectrum article:
    Zoom in

    Enterococci and Their Interactions with the Intestinal Microbiome, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/6/BAD-0014-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/6/BAD-0014-2016-2.gif
  • Abstract:

    The genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named “entero” to emphasize their intestinal habitat, and were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.

  • Citation: Dubin K, Pamer E. 2017. Enterococci and Their Interactions with the Intestinal Microbiome. Microbiol Spectrum 5(6):BAD-0014-2016. doi:10.1128/microbiolspec.BAD-0014-2016.


1. Euzeby JP. 1997. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 47:590–592. [PubMed]
2. Mundt JO. 1963. Occurrence of enterococci in animals in a wild environment. Appl Microbiol 11:136–140. [PubMed]
3. MacCallum WG, Hastings TW. 1899. A case of acute endocarditis caused by Micrococcus zymogenes (nov. spec.), with a description of the microorganism. J Exp Med 4:521–534 http://dx.doi.org/10.1084/jem.4.5-6.521. [PubMed]
4. Thiercelin ME, Jouhaud L. 1899. Sur un diplococque saprophyte de l’intestin susceptible de devenir pathogene. CR Soc Biol 5:269–271.
5. Schleifer KH, Kilpper-Bälz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. Rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 34:31–34.
6. Sherman JM. 1937. The streptococci. Bacteriol Rev 1:3–97. [PubMed]
7. Facklam RR. 1973. Comparison of several laboratory media for presumptive identification of enterococci and group D streptococci. Appl Microbiol 26:138–145. [PubMed]
8. Facklam RR, Collins MD. 1989. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol 27:731–734. [PubMed]
9. Facklam RR, Carvalho MG, Teixeira LM. 2002. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci, p 1–54. In Gilmore MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB (ed), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, DC.
10. Martin JD, Mundt JO. 1972. Enterococci in insects. Appl Microbiol 24:575–580. [PubMed]
11. Thiercelin ME. 1899. Morphologie et modes de reproduction de l’enterocoque. C R Seances Soc Biol Fil 11:551–553.
12. Andrewes FW, Horder TJ. 1906. A study of streptococci pathogenic for man. Lancet 168:852–855 http://dx.doi.org/10.1016/S0140-6736(01)43302-2.
13. Orla-Jensen S. 1919. The lactic acid bacteria. Mem Acad R Soc Denmark Sci Ser 85:81–197.
14. Gilmore MS, Lebreton F, van Schaik W. 2013. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16 http://dx.doi.org/10.1016/j.mib.2013.01.006. [PubMed]
15. Vollaard EJ, Clasener HA. 1994. Colonization resistance. Antimicrob Agents Chemother 38:409–414 http://dx.doi.org/10.1128/AAC.38.3.409. [PubMed]
16. Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J. 2000. Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266 http://dx.doi.org/10.1128/AEM.66.5.2263-2266.2000. [PubMed]
17. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–1638 http://dx.doi.org/10.1126/science.1110591. [PubMed]
18. Tendolkar PM, Baghdayan AS, Shankar N. 2003. Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 60:2622–2636 http://dx.doi.org/10.1007/s00018-003-3138-0. [PubMed]
19. Lebreton F, Willems RJL, Gilmore MS. 2014. Enterococcus diversity, origins in nature, and gut colonization. In Gilmore MS, et al. (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. (Online.) Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190247/.
20. Huycke MM, Sahm DF, Gilmore MS. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis 4:239–249 http://dx.doi.org/10.3201/eid0402.980211. [PubMed]
21. Galloway-Peña JR, Nallapareddy SR, Arias CA, Eliopoulos GM, Murray BE. 2009. Analysis of clonality and antibiotic resistance among early clinical isolates of Enterococcus faecium in the United States. J Infect Dis 200:1566–1573 http://dx.doi.org/10.1086/644790. [PubMed]
22. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM, Hutton-Thomas RA, Whalen CC, Bonomo RA, Rice LB. 2000. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 343:1925–1932 http://dx.doi.org/10.1056/NEJM200012283432604. [PubMed]
23. Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink MR, Kamboj M, Pamer EG. 2010. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341 http://dx.doi.org/10.1172/JCI43918. [PubMed]
24. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MR, Pamer EG. 2012. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914 http://dx.doi.org/10.1093/cid/cis580. [PubMed]
25. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network Team, Participating National Healthcare Safety Network Facilities. 2008. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29:996–1011 http://dx.doi.org/10.1086/591861. [PubMed]
26. Jett BD, Huycke MM, Gilmore MS. 1994. Virulence of enterococci. Clin Microbiol Rev 7:462–478 http://dx.doi.org/10.1128/CMR.7.4.462. [PubMed]
27. CDC. 2013. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report-2013/.
28. Agudelo Higuita NI, Huycke MM. 2014. Enterococcal disease, epidemiology, and implications for treatment. In Gilmore MS, et al. (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. (Online.) Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190429/. [PubMed]
29. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. 2016. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol 37:1288–1301 http://dx.doi.org/10.1017/ice.2016.174. [PubMed]
30. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 http://dx.doi.org/10.1086/421946. [PubMed]
31. Berg RD. 1999. Bacterial translocation from the gastrointestinal tract. Adv Exp Med Biol 473:11–30 http://dx.doi.org/10.1007/978-1-4615-4143-1_2. [PubMed]
32. Kuehnert MJ, Jernigan JA, Pullen AL, Rimland D, Jarvis WR. 1999. Association between mucositis severity and vancomycin-resistant enterococcal bloodstream infection in hospitalized cancer patients. Infect Control Hosp Epidemiol 20:660–663 http://dx.doi.org/10.1086/501561. [PubMed]
33. Roghmann MC, McCarter RJ Jr, Brewrink J, Cross AS, Morris JG Jr. 1997. Clostridium difficile infection is a risk factor for bacteremia due to vancomycin-resistant enterococci (VRE) in VRE-colonized patients with acute leukemia. Clin Infect Dis 25:1056–1059 http://dx.doi.org/10.1086/516112. [PubMed]
34. Lautenbach E, Bilker WB, Brennan PJ. 1999. Enterococcal bacteremia: risk factors for vancomycin resistance and predictors of mortality. Infect Control Hosp Epidemiol 20:318–323 http://dx.doi.org/10.1086/501624. [PubMed]
35. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG Jr, Bayer AS, Karchmer AW, Olaison L, Pappas PA, Moreillon P, Chambers ST, Chu VH, Falcó V, Holland DJ, Jones P, Klein JL, Raymond NJ, Read KM, Tripodi MF, Utili R, Wang A, Woods CW, Cabell CH, International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS) Investigators. 2009. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med 169:463–473 http://dx.doi.org/10.1001/archinternmed.2008.603. [PubMed]
36. Anderson DJ, Murdoch DR, Sexton DJ, Reller LB, Stout JE, Cabell CH, Corey GR. 2004. Risk factors for infective endocarditis in patients with enterococcal bacteremia: a case-control study. Infection 32:72–77 http://dx.doi.org/10.1007/s15010-004-2036-1. [PubMed]
37. Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278 http://dx.doi.org/10.1038/nrmicro2761. [PubMed]
38. Mandell GL, Kaye D, Levison ME, Hook EW. 1970. Enterococcal endocarditis. An analysis of 38 patients observed at the New York Hospital-Cornell Medical Center. Arch Intern Med 125:258–264 http://dx.doi.org/10.1001/archinte.1970.00310020064005. [PubMed]
39. D’Agata EM, Green WK, Schulman G, Li H, Tang YW, Schaffner W. 2001. Vancomycin-resistant enterococci among chronic hemodialysis patients: a prospective study of acquisition. Clin Infect Dis 32:23–29 http://dx.doi.org/10.1086/317549. [PubMed]
40. Boyce JM, Opal SM, Chow JW, Zervos MJ, Potter-Bynoe G, Sherman CB, Romulo RL, Fortna S, Medeiros AA. 1994. Outbreak of multidrug-resistant Enterococcus faecium with transferable vanB class vancomycin resistance. J Clin Microbiol 32:1148–1153. [PubMed]
41. Boyce JM, Mermel LA, Zervos MJ, Rice LB, Potter-Bynoe G, Giorgio C, Medeiros AA. 1995. Controlling vancomycin-resistant enterococci. Infect Control Hosp Epidemiol 16:634–637 http://dx.doi.org/10.2307/30141115. [PubMed]
42. Handwerger S, Raucher B, Altarac D, Monka J, Marchione S, Singh KV, Murray BE, Wolff J, Walters B. 1993. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomycin, penicillin, and gentamicin. Clin Infect Dis 16:750–755 http://dx.doi.org/10.1093/clind/16.6.750. [PubMed]
43. Cetinkaya Y, Falk P, Mayhall CG. 2000. Vancomycin-resistant enterococci. Clin Microbiol Rev 13:686–707 http://dx.doi.org/10.1128/CMR.13.4.686-707.2000. [PubMed]
44. Howden BP, Holt KE, Lam MM, Seemann T, Ballard S, Coombs GW, Tong SY, Grayson ML, Johnson PD, Stinear TP. 2013. Genomic insights to control the emergence of vancomycin-resistant enterococci. MBio 4:e00412-13 http://dx.doi.org/10.1128/mBio.00412-13. [PubMed]
45. Weinstein RA, Hota B. 2004. Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 39:1182–1189 http://dx.doi.org/10.1086/424667. [PubMed]
46. Drees M, Snydman DR, Schmid CH, Barefoot L, Hansjosten K, Vue PM, Cronin M, Nasraway SA, Golan Y. 2008. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis 46:678–685 http://dx.doi.org/10.1086/527394. [PubMed]
47. Austin DJ, Bonten MJ, Weinstein RA, Slaughter S, Anderson RM. 1999. Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Natl Acad Sci USA 96:6908–6913 http://dx.doi.org/10.1073/pnas.96.12.6908. [PubMed]
48. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM, SHEA. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 24:362–386. [PubMed]
49. Duckro AN, Blom DW, Lyle EA, Weinstein RA, Hayden MK. 2005. Transfer of vancomycin-resistant enterococci via health care worker hands. Arch Intern Med 165:302–307 http://dx.doi.org/10.1001/archinte.165.3.302. [PubMed]
50. Mayer RA, Geha RC, Helfand MS, Hoyen CK, Salata RA, Donskey CJ. 2003. Role of fecal incontinence in contamination of the environment with vancomycin-resistant enterococci. Am J Infect Control 31:221–225 http://dx.doi.org/10.1067/mic.2003.45. [PubMed]
51. Zervos MJ, Terpenning MS, Schaberg DR, Therasse PM, Medendorp SV, Kauffman CA. 1987. High-level aminoglycoside-resistant enterococci. Colonization of nursing home and acute care hospital patients. Arch Intern Med 147:1591–1594 http://dx.doi.org/10.1001/archinte.1987.00370090069013. [PubMed]
52. Bonten MJ, Slaughter S, Ambergen AW, Hayden MK, van Voorhis J, Nathan C, Weinstein RA. 1998. The role of “colonization pressure” in the spread of vancomycin-resistant enterococci: an important infection control variable. Arch Intern Med 158:1127–1132 http://dx.doi.org/10.1001/archinte.158.10.1127. [PubMed]
53. Tornieporth NG, Roberts RB, John J, Hafner A, Riley LW. 1996. Risk factors associated with vancomycin-resistant Enterococcus faecium infection or colonization in 145 matched case patients and control patients. Clin Infect Dis 23:767–772 http://dx.doi.org/10.1093/clinids/23.4.767. [PubMed]
54. Vergis EN, Hayden MK, Chow JW, Snydman DR, Zervos MJ, Linden PK, Wagener MM, Schmitt B, Muder RR. 2001. Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia: a prospective multicenter study. Ann Intern Med 135:484–492 http://dx.doi.org/10.7326/0003-4819-135-7-200110020-00007. [PubMed]
55. Jawetz E, Sonne M. 1966. Penicillin-streptomycin treatment of enterococcal endocarditis. A re-evaluation. N Engl J Med 274:710–715 http://dx.doi.org/10.1056/NEJM196603312741304. [PubMed]
56. Moellering RC Jr, Wennersten C, Weinberg AN. 1971. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J Lab Clin Med 77:821–828. [PubMed]
57. Murray BE. 1990. The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65 http://dx.doi.org/10.1128/CMR.3.1.46. [PubMed]
58. Nigo M, Munita JM, Arias CA, Murray BE. 2014. What’s new in the treatment of enterococcal endocarditis? Curr Infect Dis Rep 16:431 http://dx.doi.org/10.1007/s11908-014-0431-z. [PubMed]
59. Munita JM, Arias CA, Murray BE. 2013. Editorial commentary: Enterococcus faecalis infective endocarditis: is it time to abandon aminoglycosides? Clin Infect Dis 56:1269–1272 http://dx.doi.org/10.1093/cid/cit050. [PubMed]
60. Mainardi JL, Gutmann L, Acar JF, Goldstein FW. 1995. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother 39:1984–1987 http://dx.doi.org/10.1128/AAC.39.9.1984. (Erratum, 39:2835.)
61. Baddour LM, Wilson WR, Bayer AS, Fowler VG Jr, Tleyjeh IM, Rybak MJ, Barsic B, Lockhart PB, Gewitz MH, Levison ME, Bolger AF, Steckelberg JM, Baltimore RS, Fink AM, O’Gara P, Taubert KA, American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council. 2015. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132:1435–1486 http://dx.doi.org/10.1161/CIR.0000000000000296. [PubMed]
62. O’Driscoll T, Crank CW. 2015. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist 8:217–230. [PubMed]
63. Treitman AN, Yarnold PR, Warren J, Noskin GA. 2005. Emerging incidence of Enterococcus faecium among hospital isolates (1993 to 2002). J Clin Microbiol 43:462–463 http://dx.doi.org/10.1128/JCM.43.1.462-463.2005. [PubMed]
64. Top J, Willems R, Blok H, de Regt M, Jalink K, Troelstra A, Goorhuis B, Bonten M. 2007. Ecological replacement of Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus faecium. Clin Microbiol Infect 13:316–319 http://dx.doi.org/10.1111/j.1469-0691.2006.01631.x. [PubMed]
65. Kristich CJ, Rice LB, Arias CA. 2014. Enterococcal infection: treatment and antibiotic resistance. In Gilmore MS, et al. (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. (Online.) Massachusetts Eye and Ear Infirmary, Boston, MA. http://www.ncbi.nlm.nih.gov/books/NBK190420/.
66. Edelsberg J, Weycker D, Barron R, Li X, Wu H, Oster G, Badre S, Langeberg WJ, Weber DJ. 2014. Prevalence of antibiotic resistance in US hospitals. Diagn Microbiol Infect Dis 78:255–262 http://dx.doi.org/10.1016/j.diagmicrobio.2013.11.011. [PubMed]
67. Leclercq R, Derlot E, Duval J, Courvalin P. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161 http://dx.doi.org/10.1056/NEJM198807213190307. [PubMed]
68. Uttley AHC, George RC, Naidoo J, Woodford N, Johnson AP, Collins CH, Morrison D, Gilfillan AJ, Fitch LE, Heptonstall J. 1989. High-level vancomycin-resistant enterococci causing hospital infections. Epidemiol Infect 103:173–181 http://dx.doi.org/10.1017/S0950268800030478. [PubMed]
69. Carmeli Y, Eliopoulos GM, Samore MH. 2002. Antecedent treatment with different antibiotic agents as a risk factor for vancomycin-resistant enterococcus. Emerg Infect Dis 8:802–807 http://dx.doi.org/10.3201/eid0808.010418. [PubMed]
70. Currie BP, Lemos-Filho L. 2004. Evidence for biliary excretion of vancomycin into stool during intravenous therapy: potential implications for rectal colonization with vancomycin-resistant enterococci. Antimicrob Agents Chemother 48:4427–4429 http://dx.doi.org/10.1128/AAC.48.11.4427-4429.2004. [PubMed]
71. Aarestrup FM. 2000. Characterization of glycopeptide-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J Clin Microbiol 38:2774–2777. [PubMed]
72. Bates J. 1997. Epidemiology of vancomycin-resistant enterococci in the community and the relevance of farm animals to human infection. J Hosp Infect 37:89–101 http://dx.doi.org/10.1016/S0195-6701(97)90179-1. [PubMed]
73. Van Tyne D, Gilmore MS. 2014. Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Annu Rev Microbiol 68:337–356 http://dx.doi.org/10.1146/annurev-micro-091213-113003. [PubMed]
74. Bager F, Aarestrup FM, Madsen M, Wegener HC. 1999. Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb Drug Resist 5:53–56 http://dx.doi.org/10.1089/mdr.1999.5.53. [PubMed]
75. Klare I, Badstübner D, Konstabel C, Böhme G, Claus H, Witte W. 1999. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb Drug Resist 5:45–52 http://dx.doi.org/10.1089/mdr.1999.5.45. [PubMed]
76. Hammerum AM. 2012. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect 18:619–625 http://dx.doi.org/10.1111/j.1469-0691.2012.03829.x. [PubMed]
77. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N. 2008. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:19046. http://www.eurosurveillance.org/content/10.2807/ese.13.47.19046-en. [PubMed]
78. Fontana R, Grossato A, Rossi L, Cheng YR, Satta G. 1985. Transition from resistance to hypersusceptibility to beta-lactam antibiotics associated with loss of a low-affinity penicillin-binding protein in a Streptococcus faecium mutant highly resistant to penicillin. Antimicrob Agents Chemother 28:678–683 http://dx.doi.org/10.1128/AAC.28.5.678. [PubMed]
79. Williamson R, le Bouguénec C, Gutmann L, Horaud T. 1985. One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J Gen Microbiol 131:1933–1940. [PubMed]
80. Fontana R, Cerini R, Longoni P, Grossato A, Canepari P. 1983. Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol 155:1343–1350. [PubMed]
81. Rybkine T, Mainardi JL, Sougakoff W, Collatz E, Gutmann L. 1998. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J Infect Dis 178:159–163 http://dx.doi.org/10.1086/515605. [PubMed]
82. Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L, Coyette J. 1996. Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 178:4948–4957 http://dx.doi.org/10.1128/jb.178.16.4948-4957.1996. [PubMed]
83. Rice LB, Bellais S, Carias LL, Hutton-Thomas R, Bonomo RA, Caspers P, Page MGP, Gutmann L. 2004. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob Agents Chemother 48:3028–3032. [PubMed]
84. Rice LB, Carias LL, Rudin S, Lakticová V, Wood A, Hutton-Thomas R. 2005. Enterococcus faecium low-affinity pbp5 is a transferable determinant. Antimicrob Agents Chemother 49:5007–5012 http://dx.doi.org/10.1128/AAC.49.12.5007-5012.2005. [PubMed]
85. Galloway-Peña JR, Rice LB, Murray BE. 2011. Analysis of PBP5 of early U.S. isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob Agents Chemother 55:3272–3277 http://dx.doi.org/10.1128/AAC.00099-11. [PubMed]
86. Grayson ML, Eliopoulos GM, Wennersten CB, Ruoff KL, De Girolami PC, Ferraro MJ, Moellering RC Jr. 1991. Increasing resistance to beta-lactam antibiotics among clinical isolates of Enterococcus faecium: a 22-year review at one institution. Antimicrob Agents Chemother 35:2180–2184 http://dx.doi.org/10.1128/AAC.35.11.2180. [PubMed]
87. Arthur M, Courvalin P. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37:1563–1571 http://dx.doi.org/10.1128/AAC.37.8.1563. [PubMed]
88. Courvalin P. 2006. Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 42(Suppl 1) :S25–S34 http://dx.doi.org/10.1086/491711. [PubMed]
89. Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ. 2005. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828 http://dx.doi.org/10.3201/1106.041204. [PubMed]
90. Alborn WE Jr, Allen NE, Preston DA. 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother 35:2282–2287 http://dx.doi.org/10.1128/AAC.35.11.2282. [PubMed]
91. Silverman JA, Perlmutter NG, Shapiro HM. 2003. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544 http://dx.doi.org/10.1128/AAC.47.8.2538-2544.2003. [PubMed]
92. Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, Diaz L, Tran TT, Rincon S, Barbu EM, Reyes J, Roh JH, Lobos E, Sodergren E, Pasqualini R, Arap W, Quinn JP, Shamoo Y, Murray BE, Weinstock GM. 2011. Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 365:892–900 http://dx.doi.org/10.1056/NEJMoa1011138. [PubMed]
93. Palmer KL, Daniel A, Hardy C, Silverman J, Gilmore MS. 2011. Genetic basis for daptomycin resistance in enterococci. Antimicrob Agents Chemother 55:3345–3356 http://dx.doi.org/10.1128/AAC.00207-11. [PubMed]
94. Lellek H, Franke GC, Ruckert C, Wolters M, Wolschke C, Christner M, Büttner H, Alawi M, Kröger N, Rohde H. 2015. Emergence of daptomycin non-susceptibility in colonizing vancomycin-resistant Enterococcus faecium isolates during daptomycin therapy. Int J Med Microbiol 305:902–909 http://dx.doi.org/10.1016/j.ijmm.2015.09.005. [PubMed]
95. Paulsen IT, Banerjei L, Myers GSA, Nelson KER, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074 http://dx.doi.org/10.1126/science.1080613. [PubMed]
96. Zheng B, Tomita H, Inoue T, Ike Y. 2009. Isolation of VanB-type Enterococcus faecalis strains from nosocomial infections: first report of the isolation and identification of the pheromone-responsive plasmids pMG2200, encoding VanB-type vancomycin resistance and a Bac41-type bacteriocin, and pMG2201, encoding erythromycin resistance and cytolysin (Hly/Bac). Antimicrob Agents Chemother 53:735–747 http://dx.doi.org/10.1128/AAC.00754-08. [PubMed]
97. Heaton MP, Discotto LF, Pucci MJ, Handwerger S. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:9–17 http://dx.doi.org/10.1016/0378-1119(96)00022-4. [PubMed]
98. Manson JM, Hancock LE, Gilmore MS. 2010. Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proc Natl Acad Sci USA 107:12269–12274 http://dx.doi.org/10.1073/pnas.1000139107. [PubMed]
99. Arthur M, Molinas C, Depardieu F, Courvalin P. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127 http://dx.doi.org/10.1128/jb.175.1.117-127.1993. [PubMed]
100. Carias LL, Rudin SD, Donskey CJ, Rice LB. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn 5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J Bacteriol 180:4426–4434. [PubMed]
101. Dahl KH, Lundblad EW, Rokenes TP, Olsvik O, Sundsfjord A. 2000. Genetic linkage of the vanB2 gene cluster to Tn 5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiology 146:1469–1479 http://dx.doi.org/10.1099/00221287-146-6-1469. [PubMed]
102. Garnier F, Taourit S, Glaser P, Courvalin P, Galimand M. 2000. Characterization of transposon Tn 1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:1481–1489 http://dx.doi.org/10.1099/00221287-146-6-1481. [PubMed]
103. Rice LB, Carias LL, Marshall S, Rudin SD, Hutton-Thomas R. 2005. Tn 5386, a novel Tn916-like mobile element in Enterococcus faecium D344R that interacts with Tn 916 to yield a large genomic deletion. J Bacteriol 187:6668–6677 http://dx.doi.org/10.1128/JB.187.19.6668-6677.2005. [PubMed]
104. Palmer KL, et al. 2014. Enterococcal genomics. In Gilmore MS, et al. (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. (Online.) Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190425/.
105. van Schaik W, Willems RJL. 2010. Genome-based insights into the evolution of enterococci. Clin Microbiol Infect 16:527–532 http://dx.doi.org/10.1111/j.1469-0691.2010.03201.x. [PubMed]
106. Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR, Chowdhury S, Bourgogne A, Choudhury T, Muzny DM, Buhay CJ, Ding Y, Dugan-Rocha S, Liu W, Kovar C, Sodergren E, Highlander S, Petrosino JF, Worley KC, Gibbs RA, Weinstock GM, Murray BE. 2012. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 12:135 http://dx.doi.org/10.1186/1471-2180-12-135. [PubMed]
107. Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS. 2012. Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. MBio 3:e00318-11 http://dx.doi.org/10.1128/mBio.00318-11. [PubMed]
108. Palmer KL, Gilmore MS. 2010. Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227-10 http://dx.doi.org/10.1128/mBio.00227-10. [PubMed]
109. van Schaik W, Top J, Riley DR, Boekhorst J, Vrijenhoek JE, Schapendonk CM, Hendrickx AP, Nijman IJ, Bonten MJ, Tettelin H, Willems RJ. 2010. Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics 11:239 http://dx.doi.org/10.1186/1471-2164-11-239. [PubMed]
110. Leavis HL, Willems RJL, van Wamel WJB, Schuren FH, Caspers MPM, Bonten MJM. 2007. Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog 3:e7 http://dx.doi.org/10.1371/journal.ppat.0030007. [PubMed]
111. Willems RJ, van Schaik W. 2009. Transition of Enterococcus faecium from commensal organism to nosocomial pathogen. Future Microbiol 4:1125–1135 http://dx.doi.org/10.2217/fmb.09.82. [PubMed]
112. Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W. 2011. IS element IS 16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80 http://dx.doi.org/10.1186/1471-2334-11-80. [PubMed]
113. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, Coque TM, Cantón R, Baquero F, Murray BE, del Campo R, Willems RJ. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospital-adapted genetic complexes in a background of high rates of recombination. J Clin Microbiol 44:2220–2228 http://dx.doi.org/10.1128/JCM.02596-05. [PubMed]
114. Bourgogne A, Garsin DA, Qin X, Singh KV, Sillanpaa J, Yerrapragada S, Ding Y, Dugan-Rocha S, Buhay C, Shen H, Chen G, Williams G, Muzny D, Maadani A, Fox KA, Gioia J, Chen L, Shang Y, Arias CA, Nallapareddy SR, Zhao M, Prakash VP, Chowdhury S, Jiang H, Gibbs RA, Murray BE, Highlander SK, Weinstock GM. 2008. Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110 http://dx.doi.org/10.1186/gb-2008-9-7-r110. [PubMed]
115. Galloway-Peña J, Roh JH, Latorre M, Qin X, Murray BE. 2012. Genomic and SNP analyses demonstrate a distant separation of the hospital and community-associated clades of Enterococcus faecium. PLoS One 7:e30187 http://dx.doi.org/10.1371/journal.pone.0030187. [PubMed]
116. Willems RJL, Top J, van Schaik W, Leavis H, Bonten M, Sirén J, Hanage WP, Corander J. 2012. Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151-12 http://dx.doi.org/10.1128/mBio.00151-12. [PubMed]
117. Lebreton F, van Schaik W, McGuire AM, Godfrey P, Griggs A, Mazumdar V, Corander J, Cheng L, Saif S, Young S, Zeng Q, Wortman J, Birren B, Willems RJ, Earl AM, Gilmore MS. 2013. Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains. MBio 4:e00534-13 http://dx.doi.org/10.1128/mBio.00534-13. [PubMed]
118. de Regt MJA, van Schaik W, van Luit-Asbroek M, Dekker HAT, van Duijkeren E, Koning CJM, Bonten MJM, Willems RJL. 2012. Hospital and community ampicillin-resistant Enterococcus faecium are evolutionarily closely linked but have diversified through niche adaptation. PLoS One 7:e30319 http://dx.doi.org/10.1371/journal.pone.0030319. [PubMed]
119. Woodford N, Adebiyi AM, Palepou MF, Cookson BD. 1998. Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources. Antimicrob Agents Chemother 42:502–508. [PubMed]
120. Willems RJ, Top J, van den Braak N, van Belkum A, Mevius DJ, Hendriks G, van Santen-Verheuvel M, van Embden JD. 1999. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob Agents Chemother 43:483–491. [PubMed]
121. Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM. 2006. In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50:596–599 http://dx.doi.org/10.1128/AAC.50.2.596-599.2006. [PubMed]
122. Kühn I, Iversen A, Finn M, Greko C, Burman LG, Blanch AR, Vilanova X, Manero A, Taylor H, Caplin J, Domínguez L, Herrero IA, Moreno MA, Möllby R. 2005. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl Environ Microbiol 71:5383–5390 http://dx.doi.org/10.1128/AEM.71.9.5383-5390.2005. [PubMed]
123. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145 http://dx.doi.org/10.1073/pnas.95.6.3140. [PubMed]
124. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JDA, Willems RJL. 2002. Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971 http://dx.doi.org/10.1128/JCM.40.6.1963-1971.2002. [PubMed]
125. Nallapareddy SR, Wenxiang H, Weinstock GM, Murray BE. 2005. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J Bacteriol 187:5709–5718 http://dx.doi.org/10.1128/JB.187.16.5709-5718.2005. [PubMed]
126. Leavis HL, Bonten MJM, Willems RJL. 2006. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr Opin Microbiol 9:454–460 http://dx.doi.org/10.1016/j.mib.2006.07.001. [PubMed]
127. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2:e582 http://dx.doi.org/10.1371/journal.pone.0000582. [PubMed]
128. Turner KME, Hanage WP, Fraser C, Connor TR, Spratt BG. 2007. Assessing the reliability of eBURST using simulated populations with known ancestry. BMC Microbiol 7:30 http://dx.doi.org/10.1186/1471-2180-7-30. [PubMed]
129. Devriese LA, Van de Kerckhove A, Kilpper-Bälz R, Schleifer KH. 1987. Characterization and identification of Enterococcus species isolated from the intestines of animals. Int J Syst Evol Microbiol 37:257–259.
130. Willems RJL, Top J, van Den Braak N, van Belkum A, Endtz H, Mevius D, Stobberingh E, van Den Bogaard A, van Embden JD. 2000. Host specificity of vancomycin-resistant Enterococcus faecium. J Infect Dis 182:816–823 http://dx.doi.org/10.1086/315752. [PubMed]
131. Ostrolenk M, Kramer N, Cleverdon RC. 1947. Comparative studies of enterococci and Escherichia coli as indices of pollution. J Bacteriol 53:197–203. [PubMed]
132. Harwood VJ, Whitlock J, Withington V. 2000. Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Appl Environ Microbiol 66:3698–3704 http://dx.doi.org/10.1128/AEM.66.9.3698-3704.2000. [PubMed]
133. Boehm AB, Sassoubre LM. 2014. Enterococci as indicators of environmental fecal contamination. In Gilmore MS, et al. (ed), Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. (Online.) Massachusetts Eye and Ear Infirmary, Boston, MA. https://www.ncbi.nlm.nih.gov/books/NBK190421/.
134. Sinclair JL, Alexander M. 1984. Role of resistance to starvation in bacterial survival in sewage and lake water. Appl Environ Microbiol 48:410–415. [PubMed]
135. Leclercq R, Oberlé K, Galopin S, Cattoir V, Budzinski H, Petit F. 2013. Changes in enterococcal populations and related antibiotic resistance along a medical center-wastewater treatment plant-river continuum. Appl Environ Microbiol 79:2428–2434 http://dx.doi.org/10.1128/AEM.03586-12. [PubMed]
136. Van Embden JD, Engel HW, Van Klingeren B. 1977. Drug resistance in group D streptococci of clinical and nonclinical origin: prevalence, transferability, and plasmid properties. Antimicrob Agents Chemother 11:925–932 http://dx.doi.org/10.1128/AAC.11.6.925. [PubMed]
137. Wade TJ, Pai N, Eisenberg JNS, Colford JM Jr. 2003. Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environ Health Perspect 111:1102–1109 http://dx.doi.org/10.1289/ehp.6241. [PubMed]
138. Chenoweth C, Schaberg D. 1990. The epidemiology of enterococci. Eur J Clin Microbiol Infect Dis 9:80–89 http://dx.doi.org/10.1007/BF01963631. [PubMed]
139. Noble CJ. 1978. Carriage of group D streptococci in the human bowel. J Clin Pathol 31:1182–1186 http://dx.doi.org/10.1136/jcp.31.12.1182. [PubMed]
140. Layton BA, Walters SP, Lam LH, Boehm AB. 2010. Enterococcus species distribution among human and animal hosts using multiplex PCR. J Appl Microbiol 109:539–547. [PubMed]
141. Hooper LV, Midtvedt T, Gordon JI. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307 http://dx.doi.org/10.1146/annurev.nutr.22.011602.092259. [PubMed]
142. Littman DR, Pamer EG. 2011. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10:311–323 http://dx.doi.org/10.1016/j.chom.2011.10.004. [PubMed]
143. Are A, Aronsson L, Wang S, Greicius G, Lee YK, Gustafsson JA, Pettersson S, Arulampalam V. 2008. Enterococcus faecalis from newborn babies regulate endogenous PPARγ activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci USA 105:1943–1948 http://dx.doi.org/10.1073/pnas.0711734105. [PubMed]
144. Wang S, Ng LH, Chow WL, Lee YK. 2008. Infant intestinal Enterococcus faecalis down-regulates inflammatory responses in human intestinal cell lines. World J Gastroenterol 14:1067–1076 http://dx.doi.org/10.3748/wjg.14.1067. [PubMed]
145. Chen CC, Kong MS, Lai MW, Chao HC, Chang KW, Chen SY, Huang YC, Chiu CH, Li WC, Lin PY, Chen CJ, Lin TY. 2010. Probiotics have clinical, microbiologic, and immunologic efficacy in acute infectious diarrhea. Pediatr Infect Dis J 29:135–138 http://dx.doi.org/10.1097/INF.0b013e3181b530bf. [PubMed]
146. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449:804–810 http://dx.doi.org/10.1038/nature06244. [PubMed]
147. Huttenhower C, et al, Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214 http://dx.doi.org/10.1038/nature11234. [PubMed]
148. Arumugam M, et al, MetaHIT Consortium. 2011. Enterotypes of the human gut microbiome. Nature 473:174–180 http://dx.doi.org/10.1038/nature09944. [PubMed]
149. Koren O, Knights D, Gonzalez A, Waldron L, Segata N, Knight R, Huttenhower C, Ley RE. 2013. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLOS Comput Biol 9:e1002863 http://dx.doi.org/10.1371/journal.pcbi.1002863. [PubMed]
150. Ding T, Schloss PD. 2014. Dynamics and associations of microbial community types across the human body. Nature 509:357–360 http://dx.doi.org/10.1038/nature13178. [PubMed]
151. Donskey CJ, Hanrahan JA, Hutton RA, Rice LB. 1999. Effect of parenteral antibiotic administration on persistence of vancomycin-resistant Enterococcus faecium in the mouse gastrointestinal tract. J Infect Dis 180:384–390 http://dx.doi.org/10.1086/314874. [PubMed]
152. Sjölund M, Wreiber K, Andersson DI, Blaser MJ, Engstrand L. 2003. Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori. Ann Intern Med 139:483–487 http://dx.doi.org/10.7326/0003-4819-139-6-200309160-00011. [PubMed]
153. van der Waaij D, Berghuis-de Vries JM, Lekkerkerk-van der Wees. 1971. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69:405–411 http://dx.doi.org/10.1017/S0022172400021653.
154. Freter R. 1955. The fatal enteric cholera infection in the guinea pig, achieved by inhibition of normal enteric flora. J Infect Dis 97:57–65 http://dx.doi.org/10.1093/infdis/97.1.57. [PubMed]
155. Bohnhoff M, Miller CP, Martin WR. 1964. Resistance of the mouse’s intestinal tract to experimental Salmonella infection. J Exp Med 120:817–828 http://dx.doi.org/10.1084/jem.120.5.817. [PubMed]
156. Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equinda M, Lipuma L, Ling L, Gobourne A, No D, Taur Y, Jenq RR, van den Brink MR, Xavier JB, Pamer EG. 2013. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81:965–973 http://dx.doi.org/10.1128/IAI.01197-12. [PubMed]
157. Caballero S, Kim S, Carter RA, Leiner IM, Sušac B, Miller L, Kim GJ, Ling L, Pamer EG. 2017. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 21:592–602.e4 http://dx.doi.org/10.1016/j.chom.2017.04.002. [PubMed]
158. Cash HL, Whitham CV, Behrendt CL, Hooper LV. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130 http://dx.doi.org/10.1126/science.1127119. [PubMed]
159. Brandl K, Plitas G, Schnabl B, DeMatteo RP, Pamer EG. 2007. MyD88-mediated signals induce the bactericidal lectin RegIII γ and protect mice against intestinal Listeria monocytogenes infection. J Exp Med 204:1891–1900 http://dx.doi.org/10.1084/jem.20070563. [PubMed]
160. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105:20858–20863 http://dx.doi.org/10.1073/pnas.0808723105. [PubMed]
161. Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. 2014. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 505:103–107 http://dx.doi.org/10.1038/nature12729. [PubMed]
162. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG. 2008. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807 http://dx.doi.org/10.1038/nature07250. [PubMed]
163. Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG. 2010. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201:534–543 http://dx.doi.org/10.1086/650203. [PubMed]
164. Godl K, Johansson MEV, Lidell ME, Mörgelin M, Karlsson H, Olson FJ, Gum JR Jr, Kim YS, Hansson GC. 2002. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J Biol Chem 277:47248–47256 http://dx.doi.org/10.1074/jbc.M208483200. [PubMed]
165. Donskey CJ. 2004. The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226 http://dx.doi.org/10.1086/422002. [PubMed]
166. Johansson ME, Jakobsson HE, Holmén-Larsson J, Schütte A, Ermund A, Rodríguez-Piñeiro AM, Arike L, Wising C, Svensson F, Bäckhed F, Hansson GC. 2015. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18:582–592 http://dx.doi.org/10.1016/j.chom.2015.10.007. [PubMed]
167. Petersson J, Schreiber O, Hansson GC, Gendler SJ, Velcich A, Lundberg JO, Roos S, Holm L, Phillipson M. 2011. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol Gastrointest Liver Physiol 300:G327–G333 http://dx.doi.org/10.1152/ajpgi.00422.2010. [PubMed]
168. Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, Bruno MEC, Kaetzel CS. 2012. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 5:501–512.
169. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB. 2011. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 79:1536–1545 http://dx.doi.org/10.1128/IAI.01104-10. [PubMed]
170. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105:15064–15069 http://dx.doi.org/10.1073/pnas.0803124105. [PubMed]
171. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O, Ley R, Wakeland EK, Hooper LV. 2011. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258 http://dx.doi.org/10.1126/science.1209791. [PubMed]
172. Loonen LMP, Stolte EH, Jaklofsky MTJ, Meijerink M, Dekker J, van Baarlen P, Wells JM. 2014. REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum. Mucosal Immunol 7:939–947. [PubMed]
173. Caballero S, Carter R, Ke X, Sušac B, Leiner IM, Kim GJ, Miller L, Ling L, Manova K, Pamer EG. 2015. Distinct but spatially overlapping intestinal niches for vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae. PLoS Pathog 11:e1005132 http://dx.doi.org/10.1371/journal.ppat.1005132. [PubMed]
174. Borrero J, Chen Y, Dunny GM, Kaznessis YN. 2015. Modified lactic acid bacteria detect and inhibit multiresistant enterococci. ACS Synth Biol 4:299–306 http://dx.doi.org/10.1021/sb500090b. [PubMed]
175. Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M. 2008. Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74:1997–2003 http://dx.doi.org/10.1128/AEM.02150-07. [PubMed]
176. Weisser M, Oostdijk EA, Willems RJL, Bonten MJM, Frei R, Elzi L, Halter J, Widmer AF, Top J. 2012. Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study. BMC Infect Dis 12:68 http://dx.doi.org/10.1186/1471-2334-12-68. [PubMed]
177. Montealegre MC, Singh KV, Murray BE. 2016. Gastrointestinal tract colonization dynamics by different Enterococcus faecium clades. J Infect Dis 213:1914–1922 http://dx.doi.org/10.1093/infdis/jiv597. [PubMed]
178. Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, Cao Y, Bousounis P, Kristich CJ, Salzman NH. 2015. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722 http://dx.doi.org/10.1038/nature15524. [PubMed]
179. Gilmore MS, Rauch M, Ramsey MM, Himes PR, Varahan S, Manson JM, Lebreton F, Hancock LE. 2015. Pheromone killing of multidrug-resistant Enterococcus faecalis V583 by native commensal strains. Proc Natl Acad Sci USA 112:7273–7278 http://dx.doi.org/10.1073/pnas.1500553112. [PubMed]
180. Duerkop BA, Clements CV, Rollins D, Rodrigues JLM, Hooper LV. 2012. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc Natl Acad Sci USA 109:17621–17626 http://dx.doi.org/10.1073/pnas.1206136109. [PubMed]
181. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210 http://dx.doi.org/10.1128/IAI.70.1.204-210.2002. [PubMed]
182. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A. 2011. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140 http://dx.doi.org/10.1016/j.ijfoodmicro.2011.08.014. [PubMed]
183. Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T. 2007. Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor 1. Int J Med Microbiol 297:533–539 http://dx.doi.org/10.1016/j.ijmm.2007.02.008. [PubMed]
184. Allen SJ, Martinez EG, Gregorio GV, Dans LF. 2010. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst Rev (11) :CD003048. [PubMed]
185. Bellomo G, Mangiagle A, Nicastro L, Frigerio G. 1980. A controlled double-blind study of SF68 strain as a new biological preparation for the treatment of diarrhoea in pediatrics. Curr Ther Res 28:927–934.
186. Buydens P, Debeuckelaere S. 1996. Efficacy of SF 68 in the treatment of acute diarrhea. A placebo-controlled trial. Scand J Gastroenterol 31:887–891 http://dx.doi.org/10.3109/00365529609051997. [PubMed]
187. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415 http://dx.doi.org/10.1056/NEJMoa1205037. [PubMed]
188. Dubberke ER, Mullane KM, Gerding DN, Lee CH, Louie TJ, Guthertz H, Jones C. 2016. Clearance of vancomycin-resistant Enterococcus concomitant with administration of a microbiota-based drug targeted at recurrent Clostridium difficile infection. Open Forum Infect Dis 3:ofw133 http://dx.doi.org/10.1093/ofid/ofw133.
189. Lahti L, Salojärvi J, Salonen A, Scheffer M, de Vos WM. 2014. Tipping elements in the human intestinal ecosystem. Nat Commun 5:4344 http://dx.doi.org/10.1038/ncomms5344. [PubMed]
190. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, Littmann E, van den Brink MRM, Jenq RR, Taur Y, Sander C, Cross JR, Toussaint NC, Xavier JB, Pamer EG. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–208 http://dx.doi.org/10.1038/nature13828. [PubMed]
191. Manley KJ, Fraenkel MB, Mayall BC, Power DA. 2007. Probiotic treatment of vancomycin-resistant enterococci: a randomised controlled trial. Med J Aust 186:454–457. [PubMed]
192. Szachta P, Ignyś I, Cichy W. 2011. An evaluation of the ability of the probiotic strain Lactobacillus rhamnosus GG to eliminate the gastrointestinal carrier state of vancomycin-resistant enterococci in colonized children. J Clin Gastroenterol 45:872–877 http://dx.doi.org/10.1097/MCG.0b013e318227439f. [PubMed]
193. Vidal M, Forestier C, Charbonnel N, Henard S, Rabaud C, Lesens O. 2010. Probiotics and intestinal colonization by vancomycin-resistant enterococci in mice and humans. J Clin Microbiol 48:2595–2598 http://dx.doi.org/10.1128/JCM.00473-10. [PubMed]
194. Doron S, Hibberd PL, Goldin B, Thorpe C, McDermott L, Snydman DR. 2015. Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59:4593–4599 http://dx.doi.org/10.1128/AAC.00300-15. [PubMed]
195. de Regt MJA, Willems RJL, Hené RJ, Siersema PD, Verhaar HJJ, Hopmans TEM, Bonten MJM. 2010. Effects of probiotics on acquisition and spread of multiresistant enterococci. Antimicrob Agents Chemother 54:2801–2805 http://dx.doi.org/10.1128/AAC.01765-09. [PubMed]
196. Stein RR, Bucci V, Toussaint NC, Buffie CG, Rätsch G, Pamer EG, Sander C, Xavier JB. 2013. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLOS Comput Biol 9:e1003388 http://dx.doi.org/10.1371/journal.pcbi.1003388. [PubMed]
197. Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL. 2016. A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214:173–181 http://dx.doi.org/10.1093/infdis/jiv766. [PubMed]
198. Ratner M. 2016. Seres’s pioneering microbiome drug fails mid-stage trial. Nat Biotechnol 34:1004–1005 http://dx.doi.org/10.1038/nbt1016-1004b. [PubMed]
199. Pamer EG. 2014. Fecal microbiota transplantation: effectiveness, complexities, and lingering concerns. Mucosal Immunol 7:210–214 http://dx.doi.org/10.1038/mi.2013.117. [PubMed]
200. Stiefel U, Nerandzic MM, Pultz MJ, Donskey CJ. 2014. Gastrointestinal colonization with a cephalosporinase-producing Bacteroides species preserves colonization resistance against vancomycin-resistant Enterococcus and Clostridium difficile in cephalosporin-treated mice. Antimicrob Agents Chemother 58:4535–4542 http://dx.doi.org/10.1128/AAC.02782-14. [PubMed]
201. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–1094 http://dx.doi.org/10.1016/j.cell.2015.11.001. [PubMed]

Article metrics loading...



The genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named “entero” to emphasize their intestinal habitat, and were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error