No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Carmen Aguilar1, Miguel Mano2, Ana Eulalio3,4
  • Editors: Pascale Cossart5, Craig R. Roy6, Philippe Sansonetti7
    Affiliations: 1: Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; 2: Functional Genomics and RNA-Based Therapeutics Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; 3: Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany; 4: RNA & Infection Group, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; 5: Institut Pasteur, Paris, France; 6: Yale University School of Medicine, New Haven, Connecticut; 7: Institut Pasteur, Paris, France
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0002-2019
  • Received 20 March 2018 Accepted 17 May 2018 Published 31 May 2019
  • Ana Eulalio, [email protected]
image of Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction
    Preview this microbiology spectrum article:
    Zoom in

    Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/BAI-0002-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/BAI-0002-2019-2.gif
  • Abstract:

    MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including , , spp., and , among others.

  • Citation: Aguilar C, Mano M, Eulalio A. 2019. Multifaceted Roles of microRNAs in Host-Bacterial Pathogen Interaction. Microbiol Spectrum 7(3):BAI-0002-2019. doi:10.1128/microbiolspec.BAI-0002-2019.


1. Bartel DP. 2018. Metazoan MicroRNAs. Cell 173:20–51 http://dx.doi.org/10.1016/j.cell.2018.03.006. [PubMed]
2. Krol J, Loedige I, Filipowicz W. 2010. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610 http://dx.doi.org/10.1038/nrg2843. [PubMed]
3. Jonas S, Izaurralde E. 2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433 http://dx.doi.org/10.1038/nrg3965. [PubMed]
4. Friedman RC, Farh KK, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105 http://dx.doi.org/10.1101/gr.082701.108. [PubMed]
5. Bueno MJ, Pérez de Castro I, Malumbres M. 2008. Control of cell proliferation pathways by microRNAs. Cell Cycle 7:3143–3148 http://dx.doi.org/10.4161/cc.7.20.6833. [PubMed]
6. Jovanovic M, Hengartner MO. 2006. miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187 http://dx.doi.org/10.1038/sj.onc.1209912. [PubMed]
7. Shenoy A, Blelloch RH. 2014. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol 15:565–576 http://dx.doi.org/10.1038/nrm3854. [PubMed]
8. Croce CM. 2009. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–714 http://dx.doi.org/10.1038/nrg2634. [PubMed]
9. Small EM, Olson EN. 2011. Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342 http://dx.doi.org/10.1038/nature09783. [PubMed]
10. Bruscella P, Bottini S, Baudesson C, Pawlotsky JM, Feray C, Trabucchi M. 2017. Viruses and miRNAs: more friends than foes. Front Microbiol 8:824 http://dx.doi.org/10.3389/fmicb.2017.00824. [PubMed]
11. Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T. 2004. Identification of virus-encoded microRNAs. Science 304:734–736 http://dx.doi.org/10.1126/science.1096781. [PubMed]
12. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439 http://dx.doi.org/10.1126/science.1126088. [PubMed]
13. Navarro L, Jay F, Nomura K, He SY, Voinnet O. 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967 http://dx.doi.org/10.1126/science.1159505. [PubMed]
14. Taganov KD, Boldin MP, Chang KJ, Baltimore D. 2006. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486 http://dx.doi.org/10.1073/pnas.0605298103. [PubMed]
15. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889 http://dx.doi.org/10.1086/650733. [PubMed]
16. Herrero-Fresno A, Olsen JE. 2018. Salmonella Typhimurium metabolism affects virulence in the host: a mini-review. Food Microbiol 71:98–110 http://dx.doi.org/10.1016/j.fm.2017.04.016. [PubMed]
17. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. 2011. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 30:1977–1989 http://dx.doi.org/10.1038/emboj.2011.94. [PubMed]
18. Sharbati S, Sharbati J, Hoeke L, Bohmer M, Einspanier R. 2012. Quantification and accurate normalisation of small RNAs through new custom RT-qPCR arrays demonstrates Salmonella-induced microRNAs in human monocytes. BMC Genomics 13:23 http://dx.doi.org/10.1186/1471-2164-13-23. [PubMed]
19. Li P, Fan W, Li Q, Wang J, Liu R, Everaert N, Liu J, Zhang Y, Zheng M, Cui H, Zhao G, Wen J. 2017. Splenic microRNA expression profiles and integration analyses involved in host responses to Salmonella enteritidis infection in chickens. Front Cell Infect Microbiol 7:377 http://dx.doi.org/10.3389/fcimb.2017.00377. [PubMed]
20. Schulte LN, Westermann AJ, Vogel J. 2013. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 41:542–553 http://dx.doi.org/10.1093/nar/gks1030. [PubMed]
21. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A. 2007. Requirement of bic/microRNA-155 for normal immune function. Science 316:608–611 http://dx.doi.org/10.1126/science.1139253. [PubMed]
22. Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Förstner KU, Eulalio A. 2014. Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nat Commun 5:4718 http://dx.doi.org/10.1038/ncomms5718. [PubMed]
23. Flotho A, Melchior F. 2013. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385 http://dx.doi.org/10.1146/annurev-biochem-061909-093311. [PubMed]
24. Verma S, Mohapatra G, Ahmad SM, Rana S, Jain S, Khalsa JK, Srikanth CV. 2015. Salmonella engages host microRNAs to modulate SUMOylation: a new arsenal for intracellular survival. Mol Cell Biol 35:2932–2946 http://dx.doi.org/10.1128/MCB.00397-15. [PubMed]
25. Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M, Spaink HP, Meijer AH. 2013. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella Typhimurium infection. BMC Genomics 14:696 http://dx.doi.org/10.1186/1471-2164-14-696. [PubMed]
26. Chen Q, Tong C, Ma S, Zhou L, Zhao L, Zhao X. 2017. Involvement of MicroRNAs in probiotics-induced reduction of the cecal inflammation by Salmonella Typhimurium. Front Immunol 8:704 http://dx.doi.org/10.3389/fimmu.2017.00704. [PubMed]
27. Hoeke L, Sharbati J, Pawar K, Keller A, Einspanier R, Sharbati S. 2013. Intestinal Salmonella Typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 8:e67300 http://dx.doi.org/10.1371/journal.pone.0067300. [PubMed]
28. Herrera-Uribe J, Zaldívar-López S, Aguilar C, Luque C, Bautista R, Carvajal A, Claros MG, Garrido JJ. 2018. Regulatory role of microRNA in mesenteric lymph nodes after Salmonella Typhimurium infection. Vet Res (Faisalabad) 49:9 http://dx.doi.org/10.1186/s13567-018-0506-1. [PubMed]
29. Bao H, Kommadath A, Liang G, Sun X, Arantes AS, Tuggle CK, Bearson SM, Plastow GS, Stothard P, Guan L. 2015. Genome-wide whole blood microRNAome and transcriptome analyses reveal miRNA-mRNA regulated host response to foodborne pathogen Salmonella infection in swine. Sci Rep 5:12620 http://dx.doi.org/10.1038/srep12620. [PubMed]
30. Yao M, Gao W, Tao H, Yang J, Liu G, Huang T. 2016. Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis. Mol Genet Genomics 291:789–799 http://dx.doi.org/10.1007/s00438-015-1146-z. [PubMed]
31. Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, Liu F, Zhang CY, Gu H, Zen K. 2014. Salmonella enterica serovar Enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis 209:2000–2011 http://dx.doi.org/10.1093/infdis/jiu006. [PubMed]
32. Wu G, Qi Y, Liu X, Yang N, Xu G, Liu L, Li X. 2017. Cecal MicroRNAome response to Salmonella enterica serovar Enteritidis infection in white leghorn layer. BMC Genomics 18:77 http://dx.doi.org/10.1186/s12864-016-3413-8. [PubMed]
33. Cover TL, Blaser MJ. 2009. Helicobacter pylori in health and disease. Gastroenterology 136:1863–1873 http://dx.doi.org/10.1053/j.gastro.2009.01.073. [PubMed]
34. Jones KR, Whitmire JM, Merrell DS. 2010. A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease. Front Microbiol 1:115 http://dx.doi.org/10.3389/fmicb.2010.00115.
35. Zhang Z, Li Z, Gao C, Chen P, Chen J, Liu W, Xiao S, Lu H. 2008. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest 88:1358–1366 http://dx.doi.org/10.1038/labinvest.2008.94. [PubMed]
36. Li N, Tang B, Zhu ED, Li BS, Zhuang Y, Yu S, Lu DS, Zou QM, Xiao B, Mao XH. 2012. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett 586:722–728 http://dx.doi.org/10.1016/j.febslet.2012.01.025. [PubMed]
37. Tan X, Tang H, Bi J, Li N, Jia Y. 2018. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J Cell Biochem 119:5153–5162 http://dx.doi.org/10.1002/jcb.26542. [PubMed]
38. Zhou X, Xia Y, Li L, Zhang G. 2015. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol Ther 16:160–169 http://dx.doi.org/10.4161/15384047.2014.987523. [PubMed]
39. Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T, Sanada T, Kim M, Ogawa M, Iwasaki YW, Kayo H, Fukuda-Yuzawa Y, Yashiro M, Fukayama M, Fukao T, Sasakawa C. 2014. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat Commun 5:4497 http://dx.doi.org/10.1038/ncomms5497. [PubMed]
40. Noto JM, Piazuelo MB, Chaturvedi R, Bartel CA, Thatcher EJ, Delgado A, Romero-Gallo J, Wilson KT, Correa P, Patton JG, Peek RM Jr. 2013. Strain-specific suppression of microRNA-320 by carcinogenic Helicobacter pylori promotes expression of the antiapoptotic protein Mcl-1. Am J Physiol Gastrointest Liver Physiol 305:G786–G796 http://dx.doi.org/10.1152/ajpgi.00279.2013. [PubMed]
41. Feng Y, Wang L, Zeng J, Shen L, Liang X, Yu H, Liu S, Liu Z, Sun Y, Li W, Chen C, Jia J. 2013. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol Cancer Res 11:834–844 http://dx.doi.org/10.1158/1541-7786.MCR-13-0007. [PubMed]
42. Zhu Y, Jiang Q, Lou X, Ji X, Wen Z, Wu J, Tao H, Jiang T, He W, Wang C, Du Q, Zheng S, Mao J, Huang J. 2012. MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One 7:e35147 http://dx.doi.org/10.1371/journal.pone.0035147. [PubMed]
43. Chu YX, Wang WH, Dai Y, Teng GG, Wang SJ. 2014. Esophageal Helicobacter pylori colonization aggravates esophageal injury caused by reflux. World J Gastroenterol 20:15715–15726 http://dx.doi.org/10.3748/wjg.v20.i42.15715. [PubMed]
44. Liu FX, Wang WH, Wang J, Li J, Gao PP. 2011. Effect of Helicobacter pylori infection on Barrett’s esophagus and esophageal adenocarcinoma formation in a rat model of chronic gastroesophageal reflux. Helicobacter 16:66–77 http://dx.doi.org/10.1111/j.1523-5378.2010.00811.x. [PubMed]
45. Teng G, Dai Y, Chu Y, Li J, Zhang H, Wu T, Shuai X, Wang W. 2018. Helicobacter pylori induces caudal-type homeobox protein 2 and cyclooxygenase 2 expression by modulating microRNAs in esophageal epithelial cells. Cancer Sci 109:297–307 http://dx.doi.org/10.1111/cas.13462. [PubMed]
46. Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C, Darfeuille F. 2011. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence 2:7 http://dx.doi.org/10.1186/1758-907X-2-7. [PubMed]
47. Wang F, Liu J, Zou Y, Jiao Y, Huang Y, Fan L, Li X, Yu H, He C, Wei W, Wang H, Sun G. 2017. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget 8:28711–28724.
48. Fassi Fehri L, Koch M, Belogolova E, Khalil H, Bolz C, Kalali B, Mollenkopf HJ, Beigier-Bompadre M, Karlas A, Schneider T, Churin Y, Gerhard M, Meyer TF. 2010. Helicobacter pylori induces miR-155 in T cells in a cAMP-Foxp3-dependent manner. PLoS One 5:e9500 http://dx.doi.org/10.1371/journal.pone.0009500. [PubMed]
49. Koch M, Mollenkopf HJ, Klemm U, Meyer TF. 2012. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc Natl Acad Sci U S A 109:E1153–E1162 http://dx.doi.org/10.1073/pnas.1116125109. [PubMed]
50. Lario S, Ramírez-Lázaro MJ, Aransay AM, Lozano JJ, Montserrat A, Casalots Á, Junquera F, Álvarez J, Segura F, Campo R, Calvet X. 2012. microRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clin Microbiol Infect 18:E273–E282 http://dx.doi.org/10.1111/j.1469-0691.2012.03849.x. [PubMed]
51. Oertli M, Engler DB, Kohler E, Koch M, Meyer TF, Müller A. 2011. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic gastritis and colitis. J Immunol 187:3578–3586 http://dx.doi.org/10.4049/jimmunol.1101772. [PubMed]
52. Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G, Shi Y, Wang F, Wu Y, Tong WD, Guo H, Mao XH, Zou QM. 2009. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 200:916–925 http://dx.doi.org/10.1086/605443. [PubMed]
53. Pachathundikandi SK, Backert S. 2018. Helicobacter pylori controls NLRP3 expression by regulating hsa-miR-223-3p and IL-10 in cultured and primary human immune cells. Innate Immun 24:11–23 http://dx.doi.org/10.1177/1753425917738043. [PubMed]
54. Li N, Xu X, Xiao B, Zhu ED, Li BS, Liu Z, Tang B, Zou QM, Liang HP, Mao XH. 2012. H. pylori related proinflammatory cytokines contribute to the induction of miR-146a in human gastric epithelial cells. Mol Biol Rep 39:4655–4661 http://dx.doi.org/10.1007/s11033-011-1257-5. [PubMed]
55. Liu Z, Wang D, Hu Y, Zhou G, Zhu C, Yu Q, Chi Y, Cao Y, Jia C, Zou Q. 2013. MicroRNA-146a negatively regulates PTGS2 expression induced by Helicobacter pylori in human gastric epithelial cells. J Gastroenterol 48:86–92 http://dx.doi.org/10.1007/s00535-012-0609-9. [PubMed]
56. Liu Z, Xiao B, Tang B, Li B, Li N, Zhu E, Guo G, Gu J, Zhuang Y, Liu X, Ding H, Zhao X, Guo H, Mao X, Zou Q. 2010. Up-regulated microRNA-146a negatively modulate Helicobacter pylori-induced inflammatory response in human gastric epithelial cells. Microbes Infect 12:854–863 http://dx.doi.org/10.1016/j.micinf.2010.06.002. [PubMed]
57. Teng GG, Wang WH, Dai Y, Wang SJ, Chu YX, Li J. 2013. Let-7b is involved in the inflammation and immune responses associated with Helicobacter pylori infection by targeting Toll-like receptor 4. PLoS One 8:e56709 http://dx.doi.org/10.1371/journal.pone.0056709. [PubMed]
58. Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T, Kohno S. 2011. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer 128:361–370 http://dx.doi.org/10.1002/ijc.25348. [PubMed]
59. Xie G, Li W, Li R, Wu K, Zhao E, Zhang Y, Zhang P, Shi L, Wang D, Yin Y, Deng R, Tao K. 2017. Helicobacter pylori promote B7-H1 expression by suppressing miR-152 and miR-200b in gastric cancer cells. PLoS One 12:e0168822 http://dx.doi.org/10.1371/journal.pone.0168822. [PubMed]
60. Chen J, Li G, Meng H, Fan Y, Song Y, Wang S, Zhu F, Guo C, Zhang L, Shi Y. 2012. Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunol Immunother 61:101–108 http://dx.doi.org/10.1007/s00262-011-1094-3. [PubMed]
61. Pagliari M, Munari F, Toffoletto M, Lonardi S, Chemello F, Codolo G, Millino C, Della Bella C, Pacchioni B, Vermi W, Fassan M, de Bernard M, Cagnin S. 2017. Helicobacter pylori affects the antigen presentation activity of macrophages modulating the expression of the immune receptor CD300E through miR-4270. Front Immunol 8:1288 http://dx.doi.org/10.3389/fimmu.2017.01288. [PubMed]
62. Tang B, Li N, Gu J, Zhuang Y, Li Q, Wang HG, Fang Y, Yu B, Zhang JY, Xie QH, Chen L, Jiang XJ, Xiao B, Zou QM, Mao XH. 2012. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy 8:1045–1057 http://dx.doi.org/10.4161/auto.20159. [PubMed]
63. Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB, Wang B, Gao P. 2016. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J Gastroenterol 22:3978–3991 http://dx.doi.org/10.3748/wjg.v22.i15.3978. [PubMed]
64. Zhang YM, Noto JM, Hammond CE, Barth JL, Argraves WS, Backert S, Peek RM Jr, Smolka AJ. 2014. Helicobacter pylori-induced posttranscriptional regulation of H-K-ATPase α-subunit gene expression by miRNA. Am J Physiol Gastrointest Liver Physiol 306:G606–G613 http://dx.doi.org/10.1152/ajpgi.00333.2013. [PubMed]
65. Abdalla AE, Duan X, Deng W, Zeng J, Xie J. 2016. MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection. Infect Genet Evol 45:378–382 http://dx.doi.org/10.1016/j.meegid.2016.09.023. [PubMed]
66. Ghorpade DS, Leyland R, Kurowska-Stolarska M, Patil SA, Balaji KN. 2012. MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol 32:2239–2253 http://dx.doi.org/10.1128/MCB.06597-11. [PubMed]
67. Kumar R, Halder P, Sahu SK, Kumar M, Kumari M, Jana K, Ghosh Z, Sharma P, Kundu M, Basu J. 2012. Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis. Cell Microbiol 14:1620–1631 http://dx.doi.org/10.1111/j.1462-5822.2012.01827.x. [PubMed]
68. Das K, Saikolappan S, Dhandayuthapani S. 2013. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis. Tuberculosis (Edinb) 93(Suppl) :S47–S50 http://dx.doi.org/10.1016/S1472-9792(13)70010-6.
69. Ahluwalia PK, Pandey RK, Sehajpal PK, Prajapati VK. 2017. Perturbed microRNA expression by Mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell. Front Immunol 8:107 http://dx.doi.org/10.3389/fimmu.2017.00107. [PubMed]
70. Etna MP, Sinigaglia A, Grassi A, Giacomini E, Romagnoli A, Pardini M, Severa M, Cruciani M, Rizzo F, Anastasiadou E, Di Camillo B, Barzon L, Fimia GM, Manganelli R, Coccia EM. 2018. Mycobacterium tuberculosis-induced miR-155 subverts autophagy by targeting ATG3 in human dendritic cells. PLoS Pathog 14:e1006790 http://dx.doi.org/10.1371/journal.ppat.1006790. [PubMed]
71. Huang J, Jiao J, Xu W, Zhao H, Zhang C, Shi Y, Xiao Z. 2015. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol Med Rep 12:7102–7108 http://dx.doi.org/10.3892/mmr.2015.4250. [PubMed]
72. Qin Y, Wang Q, Zhou Y, Duan Y, Gao Q. 2016. Inhibition of IFN-γ-induced nitric oxide dependent antimycobacterial activity by miR-155 and C/EBPβ. Int J Mol Sci 17:535 http://dx.doi.org/10.3390/ijms17040535. [PubMed]
73. Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, Schoenberg DR, Torrelles JB, Schlesinger LS. 2011. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 108:17408–17413 http://dx.doi.org/10.1073/pnas.1112660108. [PubMed]
74. Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, Gilchrist M, Peschon J, Larson RP, Bergthaler A, Baliga NS, Urdahl KB, Aderem A. 2016. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:E6172–E6181 http://dx.doi.org/10.1073/pnas.1608255113. [PubMed]
75. Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S. 2011. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 6:e20258 http://dx.doi.org/10.1371/journal.pone.0020258. [PubMed]
76. Wang J, Yang K, Zhou L, Minhaowu, Wu Y, Zhu M, Lai X, Chen T, Feng L, Li M, Huang C, Zhong Q, Huang X. 2013. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog 9:e1003697 http://dx.doi.org/10.1371/journal.ppat.1003697. [PubMed]
77. Yang S, Li F, Jia S, Zhang K, Jiang W, Shang Y, Chang K, Deng S, Chen M. 2015. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cell Physiol Biochem 35:1276–1288 http://dx.doi.org/10.1159/000373950. [PubMed]
78. Liang S, Song Z, Wu Y, Gao Y, Gao M, Liu F, Wang F, Zhang Y. 2018. MicroRNA-27b modulates inflammatory response and apoptosis during Mycobacterium tuberculosis infection. J Immunol 200:3506–3518 http://dx.doi.org/10.4049/jimmunol.1701448. [PubMed]
79. Kumar M, Sahu SK, Kumar R, Subuddhi A, Maji RK, Jana K, Gupta P, Raffetseder J, Lerm M, Ghosh Z, van Loo G, Beyaert R, Gupta UD, Kundu M, Basu J. 2015. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell Host Microbe 17:345–356 http://dx.doi.org/10.1016/j.chom.2015.01.007. [PubMed]
80. Dorhoi A, Iannaccone M, Farinacci M, Faé KC, Schreiber J, Moura-Alves P, Nouailles G, Mollenkopf HJ, Oberbeck-Müller D, Jörg S, Heinemann E, Hahnke K, Löwe D, Del Nonno F, Goletti D, Capparelli R, Kaufmann SH. 2013. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest 123:4836–4848 http://dx.doi.org/10.1172/JCI67604. [PubMed]
81. Bettencourt P, Marion S, Pires D, Santos LF, Lastrucci C, Carmo N, Blake J, Benes V, Griffiths G, Neyrolles O, Lugo-Villarino G, Anes E. 2013. Actin-binding protein regulation by microRNAs as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and miR-142-3p. Front Cell Infect Microbiol 3:19 http://dx.doi.org/10.3389/fcimb.2013.00019. [PubMed]
82. Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B, Mehta MD, Vazirnia A, Rea TH, Sarno EN, Graeber TG, Modlin RL. 2012. MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med 18:267–273 http://dx.doi.org/10.1038/nm.2584. [PubMed]
83. Fu Y, Yi Z, Wu X, Li J, Xu F. 2011. Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol 49:4246–4251 http://dx.doi.org/10.1128/JCM.05459-11. [PubMed]
84. Kleinsteuber K, Heesch K, Schattling S, Kohns M, Sander-Jülch C, Walzl G, Hesseling A, Mayatepek E, Fleischer B, Marx FM, Jacobsen M. 2013. Decreased expression of miR-21, miR-26a, miR-29a, and miR-142-3p in CD4 + T cells and peripheral blood from tuberculosis patients. PLoS One 8:e61609 http://dx.doi.org/10.1371/journal.pone.0061609. [PubMed]
85. Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H, Cao X. 2011. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol 12:861–869 http://dx.doi.org/10.1038/ni.2073. [PubMed]
86. Wang Q, Liu S, Tang Y, Liu Q, Yao Y. 2014. MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PLoS One 9:e100949 http://dx.doi.org/10.1371/journal.pone.0100949. [PubMed]
87. Liu Y, Jiang J, Wang X, Zhai F, Cheng X. 2013. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1. PLoS One 8:e78381 http://dx.doi.org/10.1371/journal.pone.0078381. [PubMed]
88. Lou J, Wang Y, Zhang Z, Qiu W. 2017. MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res 358:120–128 http://dx.doi.org/10.1016/j.yexcr.2017.06.007. [PubMed]
89. Jo EK, Yuk JM, Shin DM, Sasakawa C. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 4:97 http://dx.doi.org/10.3389/fimmu.2013.00097. [PubMed]
90. Kumar R, Sahu SK, Kumar M, Jana K, Gupta P, Gupta UD, Kundu M, Basu J. 2016. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol 18:679–691 http://dx.doi.org/10.1111/cmi.12540. [PubMed]
91. Duan X, Zhang T, Ding S, Wei J, Su C, Liu H, Xu G. 2015. microRNA-17-5p modulates bacille Calmette-Guerin growth in RAW264.7 cells by targeting ULK1. PLoS One 10:e0138011 http://dx.doi.org/10.1371/journal.pone.0138011. [PubMed]
92. Chen Z, Wang T, Liu Z, Zhang G, Wang J, Feng S, Liang J. 2015. Inhibition of autophagy by MiR-30A induced by Mycobacteria tuberculosis as a possible mechanism of immune escape in human macrophages. Jpn J Infect Dis 68:420–424 http://dx.doi.org/10.7883/yoken.JJID.2014.466. [PubMed]
93. Kim JK, Yuk JM, Kim SY, Kim TS, Jin HS, Yang CS, Jo EK. 2015. MicroRNA-125a inhibits autophagy activation and antimicrobial responses during mycobacterial infection. J Immunol 194:5355–5365 http://dx.doi.org/10.4049/jimmunol.1402557. [PubMed]
94. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, Karunakaran D, Portal-Celhay C, Sheedy FJ, Ray TD, Cecchini K, Zamore PD, Rayner KJ, Marcel YL, Philips JA, Moore KJ. 2016. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17:677–686 http://dx.doi.org/10.1038/ni.3434. [PubMed]
95. Liu F, Chen J, Wang P, Li H, Zhou Y, Liu H, Liu Z, Zheng R, Wang L, Yang H, Cui Z, Wang F, Huang X, Wang J, Sha W, Xiao H, Ge B. 2018. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 9:4295 http://dx.doi.org/10.1038/s41467-018-06836-4. [PubMed]
96. Kim JK, Lee HM, Park KS, Shin DM, Kim TS, Kim YS, Suh HW, Kim SY, Kim IS, Kim JM, Son JW, Sohn KM, Jung SS, Chung C, Han SB, Yang CS, Jo EK. 2017. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2. Autophagy 13:423–441 http://dx.doi.org/10.1080/15548627.2016.1241922. [PubMed]
97. Guo L, Zhou L, Gao Q, Zhang A, Wei J, Hong D, Chu Y, Duan X, Zhang Y, Xu G. 2017. MicroRNA-144-3p inhibits autophagy activation and enhances bacillus Calmette-Guérin infection by targeting ATG4a in RAW264.7 macrophage cells. PLoS One 12:e0179772 http://dx.doi.org/10.1371/journal.pone.0179772. [PubMed]
98. Guo L, Zhao J, Qu Y, Yin R, Gao Q, Ding S, Zhang Y, Wei J, Xu G. 2016. microRNA-20a inhibits autophagic process by targeting ATG7 and ATG16L1 and favors mycobacterial survival in macrophage cells. Front Cell Infect Microbiol 6:134 http://dx.doi.org/10.3389/fcimb.2016.00134.
99. Wang J, Hussain T, Yue R, Liao Y, Li Q, Yao J, Song Y, Sun X, Wang N, Xu L, Sreevatsan S, Zhao D, Zhou X. 2018. MicroRNA-199a inhibits cellular autophagy and downregulates IFN-β expression by targeting TBK1 in Mycobacterium bovis infected cells. Front Cell Infect Microbiol 8:238 http://dx.doi.org/10.3389/fcimb.2018.00238. [PubMed]
100. Vegh P, Magee DA, Nalpas NC, Bryan K, McCabe MS, Browne JA, Conlon KM, Gordon SV, Bradley DG, MacHugh DE, Lynn DJ. 2015. MicroRNA profiling of the bovine alveolar macrophage response to Mycobacterium bovis infection suggests pathogen survival is enhanced by microRNA regulation of endocytosis and lysosome trafficking. Tuberculosis (Edinb) 95:60–67 http://dx.doi.org/10.1016/j.tube.2014.10.011. [PubMed]
101. Sahu SK, Kumar M, Chakraborty S, Banerjee SK, Kumar R, Gupta P, Jana K, Gupta UD, Ghosh Z, Kundu M, Basu J. 2017. MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPβ regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection. PLoS Pathog 13:e1006410 http://dx.doi.org/10.1371/journal.ppat.1006410. [PubMed]
102. Pires D, Bernard EM, Pombo JP, Carmo N, Fialho C, Gutierrez MG, Bettencourt P, Anes E. 2017. Mycobacterium tuberculosis modulates miR-106b-5p to control cathepsin S expression resulting in higher pathogen survival and poor T-cell activation. Front Immunol 8:1819 http://dx.doi.org/10.3389/fimmu.2017.01819. [PubMed]
103. Cossart P. 2011. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 108:19484–19491 http://dx.doi.org/10.1073/pnas.1112371108. [PubMed]
104. Schnitger AK, Machova A, Mueller RU, Androulidaki A, Schermer B, Pasparakis M, Krönke M, Papadopoulou N. 2011. Listeria monocytogenes infection in macrophages induces vacuolar-dependent host miRNA response. PLoS One 6:e27435 http://dx.doi.org/10.1371/journal.pone.0027435. [PubMed]
105. Lind EF, Elford AR, Ohashi PS. 2013. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. J Immunol 190:1210–1216 http://dx.doi.org/10.4049/jimmunol.1202700. [PubMed]
106. Johnston DGW, Kearney J, Zasłona Z, Williams MA, O’Neill LAJ, Corr SC. 2017. MicroRNA-21 limits uptake of Listeria monocytogenes by macrophages to reduce the intracellular niche and control infection. Front Cell Infect Microbiol 7:201 http://dx.doi.org/10.3389/fcimb.2017.00201. [PubMed]
107. Izar B, Mannala GK, Mraheil MA, Chakraborty T, Hain T. 2012. microRNA response to Listeria monocytogenes infection in epithelial cells. Int J Mol Sci 13:1173–1185 http://dx.doi.org/10.3390/ijms13011173. [PubMed]
108. Collison A, Mattes J, Plank M, Foster PS. 2011. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol 128:160–167e164. [PubMed]
109. Witwer KW, Sisk JM, Gama L, Clements JE. 2010. MicroRNA regulation of IFN-beta protein expression: rapid and sensitive modulation of the innate immune response. J Immunol 184:2369–2376 http://dx.doi.org/10.4049/jimmunol.0902712. [PubMed]
110. Dussurget O, Bierne H, Cossart P. 2014. The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Front Cell Infect Microbiol 4:50 http://dx.doi.org/10.3389/fcimb.2014.00050. [PubMed]
111. Li R, Shen Q, Wu N, He M, Liu N, Huang J, Lu B, Yao Q, Yang Y, Hu R. 2018. MiR-145 improves macrophage-mediated inflammation through targeting Arf6. Endocrine 60:73–82 http://dx.doi.org/10.1007/s12020-018-1521-8. [PubMed]
112. Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L, Lechat P, Smokvina T, Langella P, Lecuit M, Cossart P. 2012. Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci U S A 109:16684–16689 http://dx.doi.org/10.1073/pnas.1212809109. [PubMed]
113. Archambaud C, Sismeiro O, Toedling J, Soubigou G, Bécavin C, Lechat P, Lebreton A, Ciaudo C, Cossart P. 2013. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio 4:e00707-13 http://dx.doi.org/10.1128/mBio.00707-13. [PubMed]
114. Bandyopadhyay S, Long ME, Allen LA. 2014. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response. PLoS One 9:e109525 http://dx.doi.org/10.1371/journal.pone.0109525. [PubMed]
115. Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, Butchar JP, Tridandapani S. 2009. MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS One 4:e8508 http://dx.doi.org/10.1371/journal.pone.0008508. [PubMed]
116. Clare S, John V, Walker AW, Hill JL, Abreu-Goodger C, Hale C, Goulding D, Lawley TD, Mastroeni P, Frankel G, Enright AJ, Vigorito E, Dougan G. 2013. Enhanced susceptibility to Citrobacter rodentium infection in microRNA-155-deficient mice. Infect Immun 81:723–732 http://dx.doi.org/10.1128/IAI.00969-12. [PubMed]
117. Roy BC, Subramaniam D, Ahmed I, Jala VR, Hester CM, Greiner KA, Haribabu B, Anant S, Umar S. 2015. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2. Oncogene 34:4519–4530 http://dx.doi.org/10.1038/onc.2014.386. [PubMed]
118. Rao R, Rieder SA, Nagarkatti P, Nagarkatti M. 2014. Staphylococcal enterotoxin B-induced microRNA-155 targets SOCS1 to promote acute inflammatory lung injury. Infect Immun 82:2971–2979 http://dx.doi.org/10.1128/IAI.01666-14. (Erratum, 82:3986.) [PubMed]
119. Jingjing Z, Nan Z, Wei W, Qinghe G, Weijuan W, Peng W, Xiangpeng W. 2017. MicroRNA-24 modulates Staphylococcus aureus-induced macrophage polarization by suppressing CHI3L1. Inflammation 40:995–1005 http://dx.doi.org/10.1007/s10753-017-0543-3. [PubMed]
120. Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, Cox SB, White JS. 2016. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 24:163–174 http://dx.doi.org/10.1111/wrr.12370. [PubMed]
121. Ramirez HA, Pastar I, Jozic I, Stojadinovic O, Stone RC, Ojeh N, Gil J, Davis SC, Kirsner RS, Tomic-Canic M. 2018. Staphylococcus aureus triggers induction of miR-15B-5P to diminish DNA repair and deregulate inflammatory response in diabetic foot ulcers. J Invest Dermatol 138:1187–1196. [PubMed]
122. Tanaka K, Kim SE, Yano H, Matsumoto G, Ohuchida R, Ishikura Y, Araki M, Araki K, Park S, Komatsu T, Hayashi H, Ikematsu K, Tanaka K, Hirano A, Martin P, Shimokawa I, Mori R. 2017. MiR-142 is required for Staphylococcus aureus clearance at skin wound sites via small GTPase-mediated regulation of the neutrophil actin cytoskeleton. J Invest Dermatol 137:931–940 http://dx.doi.org/10.1016/j.jid.2016.11.018. [PubMed]
123. de Kerckhove M, Tanaka K, Umehara T, Okamoto M, Kanematsu S, Hayashi H, Yano H, Nishiura S, Tooyama S, Matsubayashi Y, Komatsu T, Park S, Okada Y, Takahashi R, Kawano Y, Hanawa T, Iwasaki K, Nozaki T, Torigoe H, Ikematsu K, Suzuki Y, Tanaka K, Martin P, Shimokawa I, Mori R. 2018. Targeting miR-223 in neutrophils enhances the clearance of Staphylococcus aureus in infected wounds. EMBO Mol Med 10:e9024 http://dx.doi.org/10.15252/emmm.201809024. [PubMed]
124. Zhou X, Li X, Ye Y, Zhao K, Zhuang Y, Li Y, Wei Y, Wu M. 2014. MicroRNA-302b augments host defense to bacteria by regulating inflammatory responses via feedback to TLR/IRAK4 circuits. Nat Commun 5:3619 http://dx.doi.org/10.1038/ncomms4619. (Erratum, 6:8679. doi:10.1038/ncomms9679.) [PubMed]
125. Eledge MR, Yeruva L. 2018. Host and pathogen interface: microRNAs are modulators of disease outcome. Microbes Infect 20:410–415 http://dx.doi.org/10.1016/j.micinf.2017.08.002. [PubMed]
126. Derrick T, Roberts C, Rajasekhar M, Burr SE, Joof H, Makalo P, Bailey RL, Mabey DC, Burton MJ, Holland MJ. 2013. Conjunctival MicroRNA expression in inflammatory trachomatous scarring. PLoS Negl Trop Dis 7:e2117 http://dx.doi.org/10.1371/journal.pntd.0002117. [PubMed]
127. Chowdhury SR, Reimer A, Sharan M, Kozjak-Pavlovic V, Eulalio A, Prusty BK, Fraunholz M, Karunakaran K, Rudel T. 2017. Chlamydia preserves the mitochondrial network necessary for replication via microRNA-dependent inhibition of fission. J Cell Biol 216:1071–1089 http://dx.doi.org/10.1083/jcb.201608063. [PubMed]
128. Arkatkar T, Gupta R, Li W, Yu JJ, Wali S, Neal Guentzel M, Chambers JP, Christenson LK, Arulanandam BP. 2015. Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection. Immunology 145:534–542 http://dx.doi.org/10.1111/imm.12470. [PubMed]
129. Gupta R, Arkatkar T, Keck J, Koundinya GK, Castillo K, Hobel S, Chambers JP, Yu JJ, Guentzel MN, Aigner A, Christenson LK, Arulanandam BP. 2016. Antigen specific immune response in Chlamydia muridarum genital infection is dependent on murine microRNAs-155 and -182. Oncotarget 7:64726–64742 http://dx.doi.org/10.18632/oncotarget.11461.
130. Gupta R, Arkatkar T, Yu JJ, Wali S, Haskins WE, Chambers JP, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. 2015. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 73:126–140 http://dx.doi.org/10.1111/aji.12281. [PubMed]
131. Yeruva L, Pouncey DL, Eledge MR, Bhattacharya S, Luo C, Weatherford EW, Ojcius DM, Rank RG. 2016. MicroRNAs modulate pathogenesis resulting from chlamydial infection in mice. Infect Immun 85:e00768-16. [PubMed]
132. Zheng K, Chen DS, Wu YQ, Xu XJ, Zhang H, Chen CF, Chen HC, Liu ZF. 2012. MicroRNA expression profile in RAW264.7 cells in response to Brucella melitensis infection. Int J Biol Sci 8:1013–1022 http://dx.doi.org/10.7150/ijbs.3836. [PubMed]
133. Liu N, Wang L, Sun C, Yang L, Sun W, Peng Q. 2016. MicroRNA-125b-5p suppresses Brucella abortus intracellular survival via control of A20 expression. BMC Microbiol 16:171 http://dx.doi.org/10.1186/s12866-016-0788-2. [PubMed]
134. Luo X, Zhang X, Wu X, Yang X, Han C, Wang Z, Du Q, Zhao X, Liu SL, Tong D, Huang Y. 2018. Brucella downregulates tumor necrosis factor-α to promote intracellular survival via Omp25 regulation of different MicroRNAs in porcine and murine macrophages. Front Immunol 8:2013 http://dx.doi.org/10.3389/fimmu.2017.02013. [PubMed]
135. Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio A. 2017. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS Pathog 13:e1006327 http://dx.doi.org/10.1371/journal.ppat.1006327. [PubMed]
136. Kotloff KL, Riddle MS, Platts-Mills JA, Pavlinac P, Zaidi AKM. 2018. Shigellosis. Lancet 391:801–812 http://dx.doi.org/10.1016/S0140-6736(17)33296-8.
137. Siddle KJ, Tailleux L, Deschamps M, Loh YH, Deluen C, Gicquel B, Antoniewski C, Barreiro LB, Farinelli L, Quintana-Murci L. 2015. Bacterial infection drives the expression dynamics of microRNAs and their isomiRs. PLoS Genet 11:e1005064 http://dx.doi.org/10.1371/journal.pgen.1005064. [PubMed]
138. Faridani OR, Abdullayev I, Hagemann-Jensen M, Schell JP, Lanner F, Sandberg R. 2016. Single-cell sequencing of the small-RNA transcriptome. Nat Biotechnol 34:1264–1266 http://dx.doi.org/10.1038/nbt.3701. [PubMed]
139. Dalmasso G, Nguyen HT, Yan Y, Laroui H, Charania MA, Ayyadurai S, Sitaraman SV, Merlin D. 2011. Microbiota modulate host gene expression via microRNAs. PLoS One 6:e19293 http://dx.doi.org/10.1371/journal.pone.0019293. [PubMed]
140. Singh N, Shirdel EA, Waldron L, Zhang RH, Jurisica I, Comelli EM. 2012. The murine caecal microRNA signature depends on the presence of the endogenous microbiota. Int J Biol Sci 8:171–186 http://dx.doi.org/10.7150/ijbs.8.171. [PubMed]
141. Liu S, da Cunha AP, Rezende RM, Cialic R, Wei Z, Bry L, Comstock LE, Gandhi R, Weiner HL. 2016. The host shapes the gut microbiota via fecal MicroRNA. Cell Host Microbe 19:32–43 http://dx.doi.org/10.1016/j.chom.2015.12.005. [PubMed]

Article metrics loading...



MicroRNAs (miRNAs) are a well-characterized class of small noncoding RNAs that act as major posttranscriptional regulators of gene expression. Accordingly, miRNAs have been associated with a wide range of fundamental biological processes and implicated in human diseases. During the past decade, miRNAs have also been recognized for their role in the complex interplay between the host and bacterial pathogens, either as part of the host response to counteract infection or as a molecular strategy employed by bacteria to subvert host pathways for their own benefit. Importantly, the characterization of downstream miRNA targets and their underlying mechanisms of action has uncovered novel molecular factors and pathways relevant to infection. In this article, we review the current knowledge of the miRNA response to bacterial infection, focusing on different bacterial pathogens, including , , spp., and , among others.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Overview of the canonical miRNA biogenesis pathway. miRNA genes are transcribed as pri-miRNAs by RNA polymerase II. The main proteins involved in the multistep miRNA processing are indicated. Repression of target gene expression occurs through inhibition of translation and mRNA degradation.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0002-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Regulation of miRNAs upon infection by bacterial pathogens impacts multiple crucial host cell functions. miRNA modulation upon infection has been shown to be an integral part of the host response or a mechanism exploited by bacteria to promote infection.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0002-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

spp.-induced miRNA changes have a strong impact on autophagy. The autophagic flux is controlled by multiple miRNAs that are regulated as a consequence of mycobacterial infection. Most studies report that miRNA modulation inhibits specific steps of the autophagy pathway, thus impairing bacterial degradation.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0002-2019
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Host cell miRNAs regulated upon infection by bacterial pathogens

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0002-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error