1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Host-Encoded Sensors of Bacteria: Our Windows into the Microbial World

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Charlotte Odendall1, Jonathan C. Kagan2
  • Editors: Pascale Cossart3, Craig R. Roy4, Philippe Sansonetti5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Kings College, Department of Infectious Diseases, Guy’s Hospital, London United Kingdom; 2: Harvard Medical School and Division of Gastroenterology, Boston Children’s Hospital, Boston, MA; 3: Institut Pasteur, Paris, France; 4: Yale University School of Medicine, New Haven, Connecticut; 5: Institut Pasteur, Paris, France
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0011-2019
  • Received 06 July 2018 Accepted 18 January 2019 Published 31 May 2019
  • Charlotte Odendall, [email protected]; Jonathan C. Kagan, [email protected]
image of Host-Encoded Sensors of Bacteria: Our Windows into the Microbial World
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Host-Encoded Sensors of Bacteria: Our Windows into the Microbial World, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/BAI-0011-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/BAI-0011-2019-2.gif
  • Abstract:

    Bacterial pathogens can be very efficient at causing disease and are the cause of some of the worst epidemics that have affected humanity. However, most infections are prevented by the actions of our immune system. Immune activation depends on the rapid detection of bacteria by a diverse family of sensory proteins known as pattern recognition receptors. These receptors detect conserved features of bacteria that are not found in humans but are often necessary for survival within the host or environment. In this review, we discuss the strategies used by pattern recognition receptors to detect bacteria and their products. We also discuss emerging evidence that some pattern recognition receptors can be activated by bacterial pathogens specifically, through the surveillance of host activities that are commonly targeted by virulence factors. This collection of surveillance mechanisms provides an interconnected network of defense, which is important to maintain the germ-free environment of the inner organs of humans and other multicellular organisms.

  • Citation: Odendall C, Kagan J. 2019. Host-Encoded Sensors of Bacteria: Our Windows into the Microbial World. Microbiol Spectrum 7(3):BAI-0011-2019. doi:10.1128/microbiolspec.BAI-0011-2019.

References

1. Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. 2012. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111–1115 http://dx.doi.org/10.1126/science.1220363. [PubMed]
2. Li X-D, Chen ZJ. 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. eLife 1:e00102 http://dx.doi.org/10.7554/eLife.00102. [PubMed]
3. Palm NW, Medzhitov R. 2009. Pattern recognition receptors and control of adaptive immunity. Immunol Rev 227:221–233 http://dx.doi.org/10.1111/j.1600-065X.2008.00731.x. [PubMed]
4. Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323–329 http://dx.doi.org/10.1038/nature05286. [PubMed]
5. Padmanabhan M, Cournoyer P, Dinesh-Kumar SP. 2009. The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities. Cell Microbiol 11:191–198 http://dx.doi.org/10.1111/j.1462-5822.2008.01260.x. [PubMed]
6. Buchon N, Silverman N, Cherry S. 2014. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810 http://dx.doi.org/10.1038/nri3763. [PubMed]
7. Dunne A, O’Neill LAJ. 2003. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci STKE 2003:re3.
8. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397 http://dx.doi.org/10.1038/41131. [PubMed]
9. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088 http://dx.doi.org/10.1126/science.282.5396.2085. [PubMed]
10. Poltorak A, Smirnova I, He X, Liu MY, Van Huffel C, Birdwell D, Alejos E, Silva M, Du X, Thompson P, Chan EK, Ledesma J, Roe B, Clifton S, Vogel SN, Beutler B. 1998. Genetic and physical mapping of the Lps locus: identification of the Toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 24:340–355 http://dx.doi.org/10.1006/bcmd.1998.0201.
11. Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162:3749–3752.
12. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451 http://dx.doi.org/10.1016/S1074-7613(00)80119-3.
13. Aliprantis AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285:736–739 http://dx.doi.org/10.1126/science.285.5428.736. [PubMed]
14. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103 http://dx.doi.org/10.1038/35074106. [PubMed]
15. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745 http://dx.doi.org/10.1038/35047123. [PubMed]
16. Gioannini TL, Weiss JP. 2007. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res 39:249–260 http://dx.doi.org/10.1007/s12026-007-0069-0. [PubMed]
17. Tobias PS, Soldau K, Ulevitch RJ. 1986. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. J Exp Med 164:777–793 http://dx.doi.org/10.1084/jem.164.3.777. [PubMed]
18. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433 http://dx.doi.org/10.1126/science.1698311. [PubMed]
19. Tobias PS, Soldau K, Kline L, Lee JD, Kato K, Martin TP, Ulevitch RJ. 1993. Cross-linking of lipopolysaccharide (LPS) to CD14 on THP-1 cells mediated by LPS-binding protein. J Immunol 150:3011–3021.
20. Haziot A, Ferrero E, Köntgen F, Hijiya N, Yamamoto S, Silver J, Stewart CL, Goyert SM. 1996. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4:407–414 http://dx.doi.org/10.1016/S1074-7613(00)80254-X.
21. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782 http://dx.doi.org/10.1084/jem.189.11.1777. [PubMed]
22. Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN. 2001. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 276:38044–38051.
23. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, Miyake K, Zhang J, Lee WP, Muszyński A, Forsberg LS, Carlson RW, Dixit VM. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–1249 http://dx.doi.org/10.1126/science.1240248. [PubMed]
24. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–1253 http://dx.doi.org/10.1126/science.1240988. [PubMed]
25. Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A, Michal F, Martin A, Di Lorenzo F, Py BF, Molinaro A, Henry T. 2018. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun 9:242 http://dx.doi.org/10.1038/s41467-017-02682-y. [PubMed]
26. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. 2011. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147:868–880 http://dx.doi.org/10.1016/j.cell.2011.09.051. [PubMed]
27. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nuñez G, Inohara N. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4:702–707 http://dx.doi.org/10.1038/ni945. [PubMed]
28. Girardin SE, Boneca IG, Carneiro LAM, Antignac A, Jéhanno M, Viala J, Tedin K, Taha M-K, Labigne A, Zähringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587 http://dx.doi.org/10.1126/science.1084677. [PubMed]
29. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nuñez G. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512 http://dx.doi.org/10.1074/jbc.C200673200. [PubMed]
30. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278:8869–8872 http://dx.doi.org/10.1074/jbc.C200651200. [PubMed]
31. Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595 http://dx.doi.org/10.1038/nature10394. [PubMed]
32. Kang D-C, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. 2002. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci USA 99:637–642 http://dx.doi.org/10.1073/pnas.022637199. [PubMed]
33. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737 http://dx.doi.org/10.1038/ni1087. [PubMed]
34. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh C-S, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 http://dx.doi.org/10.1038/nature04734. [PubMed]
35. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M, Endres S, Hartmann G. 2006. 5′-triphosphate RNA is the ligand for RIG-I. Science 314:994–997 http://dx.doi.org/10.1126/science.1132505. [PubMed]
36. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, Reis e Sousa C. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001 http://dx.doi.org/10.1126/science.1132998. [PubMed]
37. Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, Hornung V, Hartmann G, Schlee M. 2013. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 8:e62872 http://dx.doi.org/10.1371/journal.pone.0062872. [PubMed]
38. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC. 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15:717–726 http://dx.doi.org/10.1038/ni.2915. [PubMed]
39. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518 http://dx.doi.org/10.1038/nature07725. [PubMed]
40. Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–791 http://dx.doi.org/10.1126/science.1232458. [PubMed]
41. Prantner D, Darville T, Nagarajan UM. 2010. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection. J Immunol 184:2551–2560 http://dx.doi.org/10.4049/jimmunol.0903704. [PubMed]
42. Lippmann J, Müller HC, Naujoks J, Tabeling C, Shin S, Witzenrath M, Hellwig K, Kirschning CJ, Taylor GA, Barchet W, Bauer S, Suttorp N, Roy CR, Opitz B. 2011. Dissection of a type I interferon pathway in controlling bacterial intracellular infection in mice. Cell Microbiol 13:1668–1682 http://dx.doi.org/10.1111/j.1462-5822.2011.01646.x. [PubMed]
43. Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, Bliska JB, Medzhitov R. 2010. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376–387 http://dx.doi.org/10.1016/j.chom.2010.04.009. [PubMed]
44. Marathe R, Dinesh-Kumar SP. 2003. Plant defense: one post, multiple guards?! Mol Cell 11:284–286 http://dx.doi.org/10.1016/S1097-2765(03)00072-8.
45. Lee D, Bourdais G, Yu G, Robatzek S, Coaker G. 2015. Phosphorylation of the plant immune regulator RPM1-INTERACTING PROTEIN4 enhances plant plasma membrane H +-ATPase activity and inhibits flagellin-triggered immune responses in Arabidopsis. Plant Cell 27:2042–2056 http://dx.doi.org/10.1105/tpc.114.132308. [PubMed]
46. Chung E-H, da Cunha L, Wu A-J, Gao Z, Cherkis K, Afzal AJ, Mackey D, Dangl JL. 2011. Specific threonine phosphorylation of a host target by two unrelated type III effectors activates a host innate immune receptor in plants. Cell Host Microbe 9:125–136 http://dx.doi.org/10.1016/j.chom.2011.01.009. [PubMed]
47. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–389 http://dx.doi.org/10.1016/S0092-8674(03)00040-0.
48. Mackey D, Holt BF III, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–754 http://dx.doi.org/10.1016/S0092-8674(02)00661-X.
49. Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N, Hinault C, Charriere GM, Ip WKE, Fracchia S, Hennessy E, Erturk-Hasdemir D, Reichhart J-M, Silverman N, Lacy-Hulbert A, Stuart LM. 2011. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity 35:536–549 http://dx.doi.org/10.1016/j.immuni.2011.08.015. [PubMed]
50. Keestra AM, Winter MG, Auburger JJ, Frässle SP, Xavier MN, Winter SE, Kim A, Poon V, Ravesloot MM, Waldenmaier JFT, Tsolis RM, Eigenheer RA, Bäumler AJ. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–237 http://dx.doi.org/10.1038/nature12025. [PubMed]
51. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong Y-N, Peng X, Xi JJ, Chen S, Wang F, Shao F. 2014. Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513:237–241 http://dx.doi.org/10.1038/nature13449. [PubMed]
52. Vijay K. 2018. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 59:391–412. CORRIGENDUM Int Immunopharmacol 62:338 http://dx.doi.org/10.1016/j.intimp.2018.03.002. [PubMed]
53. Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175 http://dx.doi.org/10.1038/nri3399. [PubMed]
54. Galli SJ, Borregaard N, Wynn TA. 2011. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12:1035–1044 http://dx.doi.org/10.1038/ni.2109. [PubMed]
55. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–1535 http://dx.doi.org/10.1126/ science.1092385.
56. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAI-0011-2019
2019-05-31
2019-10-23

Abstract:

Bacterial pathogens can be very efficient at causing disease and are the cause of some of the worst epidemics that have affected humanity. However, most infections are prevented by the actions of our immune system. Immune activation depends on the rapid detection of bacteria by a diverse family of sensory proteins known as pattern recognition receptors. These receptors detect conserved features of bacteria that are not found in humans but are often necessary for survival within the host or environment. In this review, we discuss the strategies used by pattern recognition receptors to detect bacteria and their products. We also discuss emerging evidence that some pattern recognition receptors can be activated by bacterial pathogens specifically, through the surveillance of host activities that are commonly targeted by virulence factors. This collection of surveillance mechanisms provides an interconnected network of defense, which is important to maintain the germ-free environment of the inner organs of humans and other multicellular organisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Evolutionary arms race between the host immune system and bacterial virulence mechanisms. (1) PRRs recognize PAMPs and activate conserved signaling pathways that induce transcriptional activation of inflammation with expression of cytokines and interferons. (2) Pathogenic bacteria use secretion systems (SS) to inject effector proteins into host cells. The diverse functions of these effectors include the ability to block different components of PRR-induced pathways. (3) The activities of pathogenic bacteria are detected by guard proteins. In vertebrates, these are mostly NLRs and other inflammasome stimulators. They detect the presence of T3SSs and T4SSs, usually through the formation of pores in host membranes (3a) and posttranslational modification of host proteins (3b). Consequently, NLRs and inflammasomes induce inflammation at the transcriptional and posttranslational levels through caspase-dependent activation of pyroptosis.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0011-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Mammalian PRRs and their targets

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0011-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error