1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Reaching the End of the Line: Urinary Tract Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Kevin O. Tamadonfar1, Natalie S. Omattage2, Caitlin N. Spaulding3,4, Scott J. Hultgren5,6
  • Editors: Pascale Cossart7, Craig R. Roy8, Philippe Sansonetti9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; 2: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; 3: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; 4: Harvard University School of Public Health, Boston, MA 02115; 5: Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; 6: Center for Women’s Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110; 7: Institut Pasteur, Paris, France; 8: Yale University School of Medicine, New Haven, Connecticut; 9: Institut Pasteur, Paris, France
  • Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0014-2019
  • Received 31 July 2018 Accepted 01 April 2019 Published 07 June 2019
  • Scott J. Hultgren, [email protected]
image of Reaching the End of the Line: Urinary Tract Infections
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Reaching the End of the Line: Urinary Tract Infections, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/BAI-0014-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/BAI-0014-2019-2.gif
  • Abstract:

    Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by and as well as UPEC, represent a major health care concern. The host’s response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a “canary in the coal mine,” warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.

  • Citation: Tamadonfar K, Omattage N, Spaulding C, Hultgren S. 2019. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectrum 7(3):BAI-0014-2019. doi:10.1128/microbiolspec.BAI-0014-2019.

References

1. Griebling TL. 2005. Urologic diseases in America project: trends in resource use for urinary tract infections in women. J Urol 173:1281–1287 http://dx.doi.org/10.1097/01.ju.0000155596.98780.82. [PubMed]
2. Foxman B. 2014. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28:1–13 http://dx.doi.org/10.1016/j.idc.2013.09.003. [PubMed]
3. Foxman B. 2002. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113(Suppl 1A) :5–13 http://dx.doi.org/10.1016/S0002-9343(02)01054-9.
4. Fowler CJ, Griffiths D, de Groat WC. 2008. The neural control of micturition. Nat Rev Neurosci 9:453–466 http://dx.doi.org/10.1038/nrn2401. [PubMed]
5. Elbadawi A. 1996. Functional anatomy of the organs of micturition. Urol Clin North Am 23:177–210 http://dx.doi.org/10.1016/S0094-0143(05)70304-9.
6. Macarak EJ, Howard PS. 1999. The role of collagen in bladder filling. Adv Exp Med Biol 462:215–223, 225–233 http://dx.doi.org/10.1007/978-1-4615-4737-2_17. [PubMed]
7. Hickling DR, Sun TT, Wu XR. 2015. Anatomy and physiology of the urinary tract: relation to host defense and microbial infection. Microbiol Spectr 3:UTI-0016-2012 http://dx.doi.org/10.1128/microbiolspec.UTI-0016-2012. [PubMed]
8. Khandelwal P, Abraham SN, Apodaca G. 2009. Cell biology and physiology of the uroepithelium. Am J Physiol Renal Physiol 297:F1477–F1501 http://dx.doi.org/10.1152/ajprenal.00327.2009. [PubMed]
9. Kachar B, Liang F, Lins U, Ding M, Wu XR, Stoffler D, Aebi U, Sun TT. 1999. Three-dimensional analysis of the 16 nm urothelial plaque particle: luminal surface exposure, preferential head-to-head interaction, and hinge formation. J Mol Biol 285:595–608 http://dx.doi.org/10.1006/jmbi.1998.2304. [PubMed]
10. Vergara J, Longley W, Robertson JD. 1969. A hexagonal arrangement of subunits in membrane of mouse urinary bladder. J Mol Biol 46:593–596 http://dx.doi.org/10.1016/0022-2836(69)90200-9.
11. Hicks RM, Ketterer B. 1969. Hexagonal lattice of subunits in the thick luminal membrane of the rat urinary bladder. Nature 224:1304–1305 http://dx.doi.org/10.1038/2241304a0. [PubMed]
12. Taylor KA, Robertson JD. 1984. Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res 87:23–30 http://dx.doi.org/10.1016/S0022-5320(84)90113-8.
13. Walz T, Häner M, Wu XR, Henn C, Engel A, Sun TT, Aebi U. 1995. Towards the molecular architecture of the asymmetric unit membrane of the mammalian urinary bladder epithelium: a closed “twisted ribbon” structure. J Mol Biol 248:887–900 http://dx.doi.org/10.1006/jmbi.1995.0269. [PubMed]
14. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT. 2009. Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165 http://dx.doi.org/10.1038/ki.2009.73. [PubMed]
15. Ho PL, Kurtova A, Chan KS. 2012. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol 9:583–594 http://dx.doi.org/10.1038/nrurol.2012.142. [PubMed]
16. Shin K, Lee J, Guo N, Kim J, Lim A, Qu L, Mysorekar IU, Beachy PA. 2011. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472:110–114 http://dx.doi.org/10.1038/nature09851. [PubMed]
17. O’Grady F, Cattell WR. 1966. Kinetics of urinary tract infection. II. The bladder. Br J Urol 38:156–162 http://dx.doi.org/10.1111/j.1464-410X.1966.tb09694.x. [PubMed]
18. Thomas-White K, Forster SC, Kumar N, Van Kuiken M, Putonti C, Stares MD, Hilt EE, Price TK, Wolfe AJ, Lawley TD. 2018. Culturing of female bladder bacteria reveals an interconnected urogenital microbiota. Nat Commun 9:1557 http://dx.doi.org/10.1038/s41467-018-03968-5. [PubMed]
19. Ronald A. 2003. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49:71–82 http://dx.doi.org/10.1067/mda.2003.8.
20. Scholes D, Hooton TM, Roberts PL, Stapleton AE, Gupta K, Stamm WE. 2000. Risk factors for recurrent urinary tract infection in young women. J Infect Dis 182:1177–1182 http://dx.doi.org/10.1086/315827. [PubMed]
21. Nicolle LE. 2015. Asymptomatic bacteriuria and bacterial interference. Microbiol Spectr 3:UTI-0001-2012 http://dx.doi.org/10.1128/microbiolspec.UTI-0001-2012. [PubMed]
22. Sedor J, Mulholland SG. 1999. Hospital-acquired urinary tract infections associated with the indwelling catheter. Urol Clin North Am 26:821–828 http://dx.doi.org/10.1016/S0094-0143(05)70222-6.
23. Edwards JR, Peterson KD, Mu Y, Banerjee S, Allen-Bridson K, Morrell G, Dudeck MA, Pollock DA, Horan TC. 2009. National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009. Am J Infect Control 37:783–805 http://dx.doi.org/10.1016/j.ajic.2009.10.001. [PubMed]
24. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284 http://dx.doi.org/10.1038/nrmicro3432. [PubMed]
25. Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, Yeo JK, Min SK, Lee H, Wie SH. 2018. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemother 50:67–100 http://dx.doi.org/10.3947/ic.2018.50.1.67. [PubMed]
26. Mazzulli T. 2002. Resistance trends in urinary tract pathogens and impact on management. J Urol 168:1720–1722 http://dx.doi.org/10.1016/S0022-5347(05)64397-2. [PubMed]
27. Public Health England. 2017. English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR): Report 2017. Public Health England, London, United Kingdom.
28. Schreiber HL IV, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson KW, Hannan TJ, Roberts PL, Stapleton AE, Hooton TM, Livny J, Earl AM, Hultgren SJ. 2017. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med 9:eaaf1283 http://dx.doi.org/10.1126/scitranslmed.aaf1283. [PubMed]
29. O’Brien VP, Hannan TJ, Yu L, Livny J, Roberson ED, Schwartz DJ, Souza S, Mendelsohn CL, Colonna M, Lewis AL, Hultgren SJ. 2016. A mucosal imprint left by prior Escherichia coli bladder infection sensitizes to recurrent disease. Nat Microbiol 2:16196 http://dx.doi.org/10.1038/nmicrobiol.2016.196. [PubMed]
30. Guiton PS, Cusumano CK, Kline KA, Dodson KW, Han Z, Janetka JW, Henderson JP, Caparon MG, Hultgren SJ. 2012. Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob Agents Chemother 56:4738–4745 http://dx.doi.org/10.1128/AAC.00447-12. [PubMed]
31. Spaulding CN, Hultgren SJ. 2016. Adhesive pili in UTI pathogenesis and drug development. Pathogens 5:30 http://dx.doi.org/10.3390/pathogens5010030. [PubMed]
32. Schwartz DJ, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, Hultgren SJ. 2013. Positively selected FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl Acad Sci USA 110:15530–15537 http://dx.doi.org/10.1073/pnas.1315203110. [PubMed]
33. Kalas V, Hibbing ME, Maddirala AR, Chugani R, Pinkner JS, Mydock-McGrane LK, Conover MS, Janetka JW, Hultgren SJ. 2018. Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc Natl Acad Sci USA 115:E2819–E2828 http://dx.doi.org/10.1073/pnas.1720140115. [PubMed]
34. Han Z, Pinkner JS, Ford B, Obermann R, Nolan W, Wildman SA, Hobbs D, Ellenberger T, Cusumano CK, Hultgren SJ, Janetka JW. 2010. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53:4779–4792 http://dx.doi.org/10.1021/jm100438s. [PubMed]
35. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. 2007. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli. PLoS Pathog 3:e100 http://dx.doi.org/10.1371/journal.ppat.0030100. [PubMed]
36. Zhou G, Mo WJ, Sebbel P, Min G, Neubert TA, Glockshuber R, Wu XR, Sun TT, Kong XP. 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114:4095–4103.
37. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19:2803–2812 http://dx.doi.org/10.1093/emboj/19.12.2803. [PubMed]
38. Martinez JJ, Hultgren SJ. 2002. Requirement of Rho-family GTPases in the invasion of type 1-piliated uropathogenic Escherichia coli. Cell Microbiol 4:19–28 http://dx.doi.org/10.1046/j.1462-5822.2002.00166.x. [PubMed]
39. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. 2010. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 6:e1001042 http://dx.doi.org/10.1371/journal.ppat.1001042. [PubMed]
40. Hannan TJ, Roberts PL, Riehl TE, van der Post S, Binkley JM, Schwartz DJ, Miyoshi H, Mack M, Schwendener RA, Hooton TM, Stappenbeck TS, Hansson GC, Stenson WF, Colonna M, Stapleton AE, Hultgren SJ. 2014. Inhibition of cyclooxygenase-2 prevents chronic and recurrent cystitis. EBioMedicine 1:46–57 http://dx.doi.org/10.1016/j.ebiom.2014.10.011. [PubMed]
41. Song J, Bishop BL, Li G, Grady R, Stapleton A, Abraham SN. 2009. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 106:14966–14971 http://dx.doi.org/10.1073/pnas.0900527106. [PubMed]
42. Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, Dodson K, Raivio TL, Hultgren SJ. 2015. Dysregulation of Escherichia coli α-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci USA 112:E871–E880 http://dx.doi.org/10.1073/pnas.1500374112. [PubMed]
43. Choi HW, Bowen SE, Miao Y, Chan CY, Miao EA, Abrink M, Moeser AJ, Abraham SN. 2016. Loss of bladder epithelium induced by cytolytic mast cell granules. Immunity 45:1258–1269 http://dx.doi.org/10.1016/j.immuni.2016.11.003. [PubMed]
44. Mysorekar IU, Hultgren SJ. 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 103:14170–14175 http://dx.doi.org/10.1073/pnas.0602136103. [PubMed]
45. Chan CY, St John AL, Abraham SN. 2013. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 38:349–359 http://dx.doi.org/10.1016/j.immuni.2012.10.019. [PubMed]
46. Conover MS, Ruer S, Taganna J, Kalas V, De Greve H, Pinkner JS, Dodson KW, Remaut H, Hultgren SJ. 2016. Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection. Cell Host Microbe 20:482–492 http://dx.doi.org/10.1016/j.chom.2016.08.013. [PubMed]
47. Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, Dodson KW, Pinkner JS, Fremont DH, Janetka JW, Remaut H, Gordon JI, Hultgren SJ. 2017. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546:528–532 http://dx.doi.org/10.1038/nature22972. [PubMed]
48. Moreno E, Andreu A, Pigrau C, Kuskowski MA, Johnson JR, Prats G. 2008. Relationship between Escherichia coli strains causing acute cystitis in women and the fecal E. coli population of the host. J Clin Microbiol 46:2529–2534 http://dx.doi.org/10.1128/JCM.00813-08. [PubMed]
49. Chen SL, Wu M, Henderson JP, Hooton TM, Hibbing ME, Hultgren SJ, Gordon JI. 2013. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med 5:184ra60 http://dx.doi.org/10.1126/scitranslmed.3005497. [PubMed]
50. Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. 2018. Context-dependent requirements for FimH and other canonical virulence factors in gut colonization by extraintestinal pathogenic Escherichia coli. Infect Immun 86:e00746-17 http://dx.doi.org/10.1128/IAI.00746-17. [PubMed]
51. Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S, Lyras D, Schembri MA, Totsika M. 2018. Intestinal colonization traits of pandemic multidrug-resistant Escherichia coli ST131. J Infect Dis 218:979–990 http://dx.doi.org/10.1093/infdis/jiy031. [PubMed]
52. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. 2012. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36:616–648 http://dx.doi.org/10.1111/j.1574-6976.2012.00339.x. [PubMed]
53. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, Li Z, Bouckaert J, Gordon JI, Hultgren SJ. 2009. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci USA 106:22439–22444 http://dx.doi.org/10.1073/pnas.0902179106. [PubMed]
54. Conover MS, Hadjifrangiskou M, Palermo JJ, Hibbing ME, Dodson KW, Hultgren SJ. 2016. Metabolic requirements of Escherichia coli in intracellular bacterial communities during urinary tract infection pathogenesis. mBio 7:e00104-16 http://dx.doi.org/10.1128/mBio.00104-16. [PubMed]
55. Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. 2011. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun 79:4250–4259 http://dx.doi.org/10.1128/IAI.05339-11. [PubMed]
56. Duraiswamy S, Chee JLY, Chen S, Yang E, Lees K, Chen SL. 2018. Purification of intracellular bacterial communities during experimental urinary tract infection reveals an abundant and viable bacterial reservoir. Infect Immun 86:e00740-17 http://dx.doi.org/10.1128/IAI.00740-17. [PubMed]
57. Robino L, Scavone P, Araujo L, Algorta G, Zunino P, Vignoli R. 2013. Detection of intracellular bacterial communities in a child with Escherichia coli recurrent urinary tract infections. Pathog Dis 68:78–81 http://dx.doi.org/10.1111/2049-632X.12047. [PubMed]
58. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. 2007. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329 http://dx.doi.org/10.1371/journal.pmed.0040329. [PubMed]
59. Waksman G, Hultgren SJ. 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774 http://dx.doi.org/10.1038/nrmicro2220. [PubMed]
60. Wright KJ, Seed PC, Hultgren SJ. 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9:2230–2241 http://dx.doi.org/10.1111/j.1462-5822.2007.00952.x. [PubMed]
61. Reigstad CS, Hultgren SJ, Gordon JI. 2007. Functional genomic studies of uropathogenic Escherichia coli and host urothelial cells when intracellular bacterial communities are assembled. J Biol Chem 282:21259–21267 http://dx.doi.org/10.1074/jbc.M611502200. [PubMed]
62. Blango MG, Ott EM, Erman A, Veranic P, Mulvey MA. 2014. Forced resurgence and targeting of intracellular uropathogenic Escherichia coli reservoirs. PLoS One 9:e93327 http://dx.doi.org/10.1371/journal.pone.0093327. [PubMed]
63. Gilbert NM, O’Brien VP, Lewis AL. 2017. Transient microbiota exposures activate dormant Escherichia coli infection in the bladder and drive severe outcomes of recurrent disease. PLoS Pathog 13:e1006238 http://dx.doi.org/10.1371/journal.ppat.1006238. [PubMed]
64. Eto DS, Sundsbak JL, Mulvey MA. 2006. Actin-gated intracellular growth and resurgence of uropathogenic Escherichia coli. Cell Microbiol 8:704–717 http://dx.doi.org/10.1111/j.1462-5822.2006.00691.x. [PubMed]
65. Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448 http://dx.doi.org/10.1371/journal.ppat.1000448. [PubMed]
66. Hull RA, Hull SI. 1997. Nutritional requirements for growth of uropathogenic Escherichia coli in human urine. Infect Immun 65:1960–1961.
67. Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. 2009. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5:e1000305 http://dx.doi.org/10.1371/journal.ppat.1000305. [PubMed]
68. O’Brien VP, Hannan TJ, Nielsen HV, Hultgren SJ. 2016. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol Spectr 4:UTI-0013-2012. [PubMed]
69. Guyer DM, Radulovic S, Jones FE, Mobley HL. 2002. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun 70:4539–4546 http://dx.doi.org/10.1128/IAI.70.8.4539-4546.2002. [PubMed]
70. Lane MC, Alteri CJ, Smith SN, Mobley HL. 2007. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc Natl Acad Sci USA 104:16669–16674 http://dx.doi.org/10.1073/pnas.0607898104. [PubMed]
71. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187 http://dx.doi.org/10.1371/journal.ppat.1001187. [PubMed]
72. Greene SE, Hibbing ME, Janetka J, Chen SL, Hultgren SJ. 2015. Human urine decreases function and expression of type 1 pili in uropathogenic Escherichia coli. mBio 6:e00820-15 http://dx.doi.org/10.1128/mBio.00820-15. [PubMed]
73. Ronald AR, Nicolle LE, Stamm E, Krieger J, Warren J, Schaeffer A, Naber KG, Hooton TM, Johnson J, Chambers S, Andriole V. 2001. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents 17:343–348 http://dx.doi.org/10.1016/S0924-8579(01)00303-X.
74. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, Richter-Dahlfors A. 2011. Uropathogenic Escherichia coli P and type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7:e1001298 http://dx.doi.org/10.1371/journal.ppat.1001298. [PubMed]
75. Roberts JA, Marklund BI, Ilver D, Haslam D, Kaack MB, Baskin G, Louis M, Möllby R, Winberg J, Normark S. 1994. The Gal(alpha 1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91:11889–11893 http://dx.doi.org/10.1073/pnas.91.25.11889. [PubMed]
76. Abraham SN, Sun D, Dale JB, Beachey EH. 1988. Conservation of the d-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature 336:682–684 http://dx.doi.org/10.1038/336682a0. [PubMed]
77. Nuccio SP, Bäumler AJ. 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575 http://dx.doi.org/10.1128/MMBR.00014-07. [PubMed]
78. Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, Ernst RD, Rasko DA, Mobley HL. 2014. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci USA 111:18327–18332 http://dx.doi.org/10.1073/pnas.1415959112. [PubMed]
79. Lim JK, Gunther NW IV, Zhao H, Johnson DE, Keay SK, Mobley HL. 1998. In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect Immun 66:3303–3310.
80. Gunther NW IV, Lockatell V, Johnson DE, Mobley HL. 2001. In vivo dynamics of type 1 fimbria regulation in uropathogenic Escherichia coli during experimental urinary tract infection. Infect Immun 69:2838–2846 http://dx.doi.org/10.1128/IAI.69.5.2838-2846.2001. [PubMed]
81. Hultgren SJ, Porter TN, Schaeffer AJ, Duncan JL. 1985. Role of type 1 pili and effects of phase variation on lower urinary tract infections produced by Escherichia coli. Infect Immun 50:370–377.
82. Forsyth VS, Armbruster CE, Smith SN, Pirani A, Springman AC, Walters MS, Nielubowicz GR, Himpsl SD, Snitkin ES, Mobley HLT. 2018. Rapid growth of uropathogenic Escherichia coli during human urinary tract infection. mBio 9:e00186-18 http://dx.doi.org/10.1128/mBio.00186-18. [PubMed]
83. Phan G, Remaut H, Wang T, Allen WJ, Pirker KF, Lebedev A, Henderson NS, Geibel S, Volkan E, Yan J, Kunze MB, Pinkner JS, Ford B, Kay CW, Li H, Hultgren SJ, Thanassi DG, Waksman G. 2011. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474:49–53 http://dx.doi.org/10.1038/nature10109. [PubMed]
84. Geibel S, Procko E, Hultgren SJ, Baker D, Waksman G. 2013. Structural and energetic basis of folded-protein transport by the FimD usher. Nature 496:243–246 http://dx.doi.org/10.1038/nature12007. [PubMed]
85. Farabella I, Pham T, Henderson NS, Geibel S, Phan G, Thanassi DG, Delcour AH, Waksman G, Topf M. 2014. Allosteric signalling in the outer membrane translocation domain of PapC usher. eLife 3:e03532 http://dx.doi.org/10.7554/eLife.03532. [PubMed]
86. Mapingire OS, Henderson NS, Duret G, Thanassi DG, Delcour AH. 2009. Modulating effects of the plug, helix, and N- and C-terminal domains on channel properties of the PapC usher. J Biol Chem 284:36324–36333 http://dx.doi.org/10.1074/jbc.M109.055798. [PubMed]
87. Pham T, Henderson NS, Werneburg GT, Thanassi DG, Delcour AH. 2015. Electrostatic networks control plug stabilization in the PapC usher. Mol Membr Biol 32:198–207 http://dx.doi.org/10.3109/09687688.2016.1160450. [PubMed]
88. Remaut H, Tang C, Henderson NS, Pinkner JS, Wang T, Hultgren SJ, Thanassi DG, Waksman G, Li H. 2008. Fiber formation across the bacterial outer membrane by the chaperone/usher pathway. Cell 133:640–652 http://dx.doi.org/10.1016/j.cell.2008.03.033. [PubMed]
89. Saulino ET, Thanassi DG, Pinkner JS, Hultgren SJ. 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 17:2177–2185 http://dx.doi.org/10.1093/emboj/17.8.2177. [PubMed]
90. Volkan E, Ford BA, Pinkner JS, Dodson KW, Henderson NS, Thanassi DG, Waksman G, Hultgren SJ. 2012. Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine. Proc Natl Acad Sci USA 109:9563–9568 http://dx.doi.org/10.1073/pnas.1207085109. [PubMed]
91. Volkan E, Kalas V, Pinkner JS, Dodson KW, Henderson NS, Pham T, Waksman G, Delcour AH, Thanassi DG, Hultgren SJ. 2013. Molecular basis of usher pore gating in Escherichia coli pilus biogenesis. Proc Natl Acad Sci USA 110:20741–20746 http://dx.doi.org/10.1073/pnas.1320528110. [PubMed]
92. Spaulding CN, Schreiber HL IV, Zheng W, Dodson KW, Hazen JE, Conover MS, Wang F, Svenmarker P, Luna-Rico A, Francetic O, Andersson M, Hultgren S, Egelman EH. 2018. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 7:e31662 http://dx.doi.org/10.7554/eLife.31662. [PubMed]
93. Hospenthal MK, Zyla D, Costa TRD, Redzej A, Giese C, Lillington J, Glockshuber R, Waksman G. 2017. The cryoelectron microscopy structure of the type 1 chaperone-usher pilus rod. Structure 25:1829-1838.e4. [PubMed]
94. Hospenthal MK, Redzej A, Dodson K, Ukleja M, Frenz B, Rodrigues C, Hultgren SJ, DiMaio F, Egelman EH, Waksman G. 2016. Structure of a chaperone-usher pilus reveals the molecular basis of rod uncoiling. Cell 164:269–278 http://dx.doi.org/10.1016/j.cell.2015.11.049. [PubMed]
95. Kalas V, Pinkner JS, Hannan TJ, Hibbing ME, Dodson KW, Holehouse AS, Zhang H, Tolia NH, Gross ML, Pappu RV, Janetka J, Hultgren SJ. 2017. Evolutionary fine-tuning of conformational ensembles in FimH during host-pathogen interactions. Sci Adv 3:e1601944 http://dx.doi.org/10.1126/sciadv.1601944. [PubMed]
96. Bahrani-Mougeot FK, Buckles EL, Lockatell CV, Hebel JR, Johnson DE, Tang CM, Donnenberg MS. 2002. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45:1079–1093 http://dx.doi.org/10.1046/j.1365-2958.2002.03078.x. [PubMed]
97. Buckles EL, Wang X, Lane MC, Lockatell CV, Johnson DE, Rasko DA, Mobley HL, Donnenberg MS. 2009. Role of the K2 capsule in Escherichia coli urinary tract infection and serum resistance. J Infect Dis 199:1689–1697 http://dx.doi.org/10.1086/598524. [PubMed]
98. Burns SM, Hull SI. 1999. Loss of resistance to ingestion and phagocytic killing by O and K mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect Immun 67:3757–3762.
99. Anderson GG, Goller CC, Justice S, Hultgren SJ, Seed PC. 2010. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 78:963–975 http://dx.doi.org/10.1128/IAI.00925-09. [PubMed]
100. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL, Jarrott RJ, Perugini MA, Whitten AE, Schembri MA. 2014. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA 111:457–462 http://dx.doi.org/10.1073/pnas.1311592111. [PubMed]
101. Ulett GC, Valle J, Beloin C, Sherlock O, Ghigo JM, Schembri MA. 2007. Functional analysis of antigen 43 in uropathogenic Escherichia coli reveals a role in long-term persistence in the urinary tract. Infect Immun 75:3233–3244 http://dx.doi.org/10.1128/IAI.01952-06. [PubMed]
102. Klein RD, Shu Q, Cusumano ZT, Nagamatsu K, Gualberto NC, Lynch AJL, Wu C, Wang W, Jain N, Pinkner JS, Amarasinghe GK, Hultgren SJ, Frieden C, Chapman MR. 2018. Structure-function analysis of the curli accessory protein CsgE defines surfaces essential for coordinating amyloid fiber formation. mBio 9:e01349-18 http://dx.doi.org/10.1128/mBio.01349-18. [PubMed]
103. Kai-Larsen Y, Lüthje P, Chromek M, Peters V, Wang X, Holm A, Kádas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Römling U, Agerberth B, Brauner A. 2010. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6:e1001010 http://dx.doi.org/10.1371/journal.ppat.1001010. [PubMed]
104. Ingersoll MA. 2017. Sex differences shape the response to infectious diseases. PLoS Pathog 13:e1006688 http://dx.doi.org/10.1371/journal.ppat.1006688. [PubMed]
105. Lüthje P, Brauner H, Ramos NL, Ovregaard A, Gläser R, Hirschberg AL, Aspenström P, Brauner A. 2013. Estrogen supports urothelial defense mechanisms. Sci Transl Med 5:190ra80 http://dx.doi.org/10.1126/scitranslmed.3005574. [PubMed]
106. Olson PD, Hruska KA, Hunstad DA. 2016. Androgens enhance male urinary tract infection severity in a new model. J Am Soc Nephrol 27:1625–1634 http://dx.doi.org/10.1681/ASN.2015030327. [PubMed]
107. Zychlinsky Scharff A, Albert ML, Ingersoll MA. 2017. Urinary tract infection in a small animal model: transurethral catheterization of male and female mice. J Vis Exp 2017:e54432 http://dx.doi.org/10.3791/54432. [PubMed]
108. Flores-Mireles AL, Walker JN, Potretzke A, Schreiber HL IV, Pinkner JS, Bauman TM, Park AM, Desai A, Hultgren SJ, Caparon MG. 2016. Antibody-based therapy for enterococcal catheter-associated urinary tract infections. mBio 7:e01653-16 http://dx.doi.org/10.1128/mBio.01653-16. [PubMed]
109. Rousseau M, Goh HMS, Holec S, Albert ML, Williams RB, Ingersoll MA, Kline KA. 2016. Bladder catheterization increases susceptibility to infection that can be prevented by prophylactic antibiotic treatment. JCI Insight 1:e88178 http://dx.doi.org/10.1172/jci.insight.88178. [PubMed]
110. Walker JN, Flores-Mireles AL, Pinkner CL, Schreiber HL IV, Joens MS, Park AM, Potretzke AM, Bauman TM, Pinkner JS, Fitzpatrick JAJ, Desai A, Caparon MG, Hultgren SJ. 2017. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci USA 114:E8721–E8730 http://dx.doi.org/10.1073/pnas.1707572114. [PubMed]
111. Armbruster CE, Forsyth-DeOrnellas V, Johnson AO, Smith SN, Zhao L, Wu W, Mobley HLT. 2017. Genome-wide transposon mutagenesis of Proteus mirabilis: essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog 13:e1006434 http://dx.doi.org/10.1371/journal.ppat.1006434. [PubMed]
112. Center for Disease Dynamics, Economics & Policy. 2018. Drug Resistance Index. https://resistancemap.cddep.org/DRI.php. Accessed 26 July 2018.
113. Riley LW. 2014. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol Infect 20:380–390 http://dx.doi.org/10.1111/1469-0691.12646. [PubMed]
114. Totsika M, Beatson SA, Sarkar S, Phan MD, Petty NK, Bachmann N, Szubert M, Sidjabat HE, Paterson DL, Upton M, Schembri MA. 2011. Insights into a multidrug resistant Escherichia coli pathogen of the globally disseminated ST131 lineage: genome analysis and virulence mechanisms. PLoS One 6:e26578 http://dx.doi.org/10.1371/journal.pone.0026578. [PubMed]
115. Schembri MA, Zakour NL, Phan MD, Forde BM, Stanton-Cook M, Beatson SA. 2015. Molecular characterization of the multidrug resistant Escherichia coli ST131 clone. Pathogens 4:422–430 http://dx.doi.org/10.3390/pathogens4030422. [PubMed]
116. Langermann S, Palaszynski S, Barnhart M, Auguste G, Pinkner JS, Burlein J, Barren P, Koenig S, Leath S, Jones CH, Hultgren SJ. 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276:607–611 http://dx.doi.org/10.1126/science.276.5312.607. [PubMed]
117. Langermann S, Möllby R, Burlein JE, Palaszynski SR, Auguste CG, DeFusco A, Strouse R, Schenerman MA, Hultgren SJ, Pinkner JS, Winberg J, Guldevall L, Söderhäll M, Ishikawa K, Normark S, Koenig S. 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli. J Infect Dis 181:774–778 http://dx.doi.org/10.1086/315258. [PubMed]
118. Roberts JA, Kaack MB, Baskin G, Chapman MR, Hunstad DA, Pinkner JS, Hultgren SJ. 2004. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J Urol 171:1682–1685 http://dx.doi.org/10.1097/01.ju.0000116123.05160.43. [PubMed]
119. Mike LA, Smith SN, Sumner CA, Eaton KA, Mobley HL. 2016. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc Natl Acad Sci USA 113:13468–13473 http://dx.doi.org/10.1073/pnas.1606324113. [PubMed]
120. Mobley HL, Alteri CJ. 2015. Development of a vaccine against Escherichia coli urinary tract infections. Pathogens 5:1 http://dx.doi.org/10.3390/pathogens5010001. [PubMed]
121. Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, Pinkner JS, Klein R, Kalas V, Crowley J, Rath NP, Hultgren SJ, Janetka JW. 2016. Antivirulence C-mannosides as antibiotic-sparing, oral therapeutics for urinary tract infections. J Med Chem 59:9390–9408 http://dx.doi.org/10.1021/acs.jmedchem.6b00948. [PubMed]
122. Cusumano CK, Pinkner JS, Han Z, Greene SE, Ford BA, Crowley JR, Henderson JP, Janetka JW, Hultgren SJ. 2011. Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci Transl Med 3:109ra115 http://dx.doi.org/10.1126/scitranslmed.3003021. [PubMed]
123. Totsika M, Kostakioti M, Hannan TJ, Upton M, Beatson SA, Janetka JW, Hultgren SJ, Schembri MA. 2013. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis 208:921–928 http://dx.doi.org/10.1093/infdis/jit245. [PubMed]
124. Han Z, Pinkner JS, Ford B, Chorell E, Crowley JM, Cusumano CK, Campbell S, Henderson JP, Hultgren SJ, Janetka JW. 2012. Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J Med Chem 55:3945–3959 http://dx.doi.org/10.1021/jm300165m. [PubMed]
125. Fimbrion Therapeutics, Inc. 6 December 2018. Fimbrion and GSK identify novel, antibiotic-sparing development candidate for urinary tract infections. PR Newswire.
126. Åberg V, Almqvist F. 2007. Pilicides-small molecules targeting bacterial virulence. Org Biomol Chem 5:1827–1834 http://dx.doi.org/10.1039/B702397A. [PubMed]
127. Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, Conover MS, Livny J, Hadjifrangiskou M, Almqvist F, Hultgren SJ. 2014. Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. mBio 5:e02038-14 http://dx.doi.org/10.1128/mBio.02038-14. [PubMed]
128. Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M. 2013. Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol 13:131 http://dx.doi.org/10.1186/1471-2180-13-131. [PubMed]
129. Chorell E, Pinkner JS, Phan G, Edvinsson S, Buelens F, Remaut H, Waksman G, Hultgren SJ, Almqvist F. 2010. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity. J Med Chem 53:5690–5695 http://dx.doi.org/10.1021/jm100470t. [PubMed]
130. Sperandio V, Li CC, Kaper JB. 2002. Quorum-sensing Escherichia coli regulator A: a regulator of the LysR family involved in the regulation of the locus of enterocyte effacement pathogenicity island in enterohemorrhagic E. coli. Infect Immun 70:3085–3093 http://dx.doi.org/10.1128/IAI.70.6.3085-3093.2002. [PubMed]
131. Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. 2011. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 82:145–163 http://dx.doi.org/10.1111/j.1365-2958.2011.07804.x. [PubMed]
132. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425 http://dx.doi.org/10.1073/pnas.0604343103. [PubMed]
133. Debnath I, Norton JP, Barber AE, Ott EM, Dhakal BK, Kulesus RR, Mulvey MA. 2013. The Cpx stress response system potentiates the fitness and virulence of uropathogenic Escherichia coli. Infect Immun 81:1450–1459 http://dx.doi.org/10.1128/IAI.01213-12. [PubMed]
134. Guckes KR, Kostakioti M, Breland EJ, Gu AP, Shaffer CL, Martinez CR III, Hultgren SJ, Hadjifrangiskou M. 2013. Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor. Proc Natl Acad Sci USA 110:16592–16597 http://dx.doi.org/10.1073/pnas.1315320110. [PubMed]
135. Kostakioti M, Hadjifrangiskou M, Cusumano CK, Hannan TJ, Janetka JW, Hultgren SJ. 2012. Distinguishing the contribution of type 1 pili from that of other QseB-misregulated factors when QseC is absent during urinary tract infection. Infect Immun 80:2826–2834 http://dx.doi.org/10.1128/IAI.00283-12. [PubMed]
136. Doye A, Mettouchi A, Bossis G, Clément R, Buisson-Touati C, Flatau G, Gagnoux L, Piechaczyk M, Boquet P, Lemichez E. 2002. CF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564 http://dx.doi.org/10.1016/S0092-8674(02)01132-7.
137. Dhakal BK, Mulvey MA. 2012. The UPEC pore-forming toxin α-hemolysin triggers proteolysis of host proteins to disrupt cell adhesion, inflammatory, and survival pathways. Cell Host Microbe 11:58–69 http://dx.doi.org/10.1016/j.chom.2011.12.003. [PubMed]
138. Murthy AMV, Phan MD, Peters KM, Nhu NTK, Welch RA, Ulett GC, Schembri MA, Sweet MJ. 2018. Regulation of hemolysin in uropathogenic Escherichia coli fine-tunes killing of human macrophages. Virulence 9:967–980 http://dx.doi.org/10.1080/21505594.2018.1465786. [PubMed]
139. Norton JP, Mulvey MA. 2012. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog 8:e1002954 http://dx.doi.org/10.1371/journal.ppat.1002954. [PubMed]
140. Russell CW, Mulvey MA. 2015. The extraintestinal pathogenic Escherichia coli factor RqlI constrains the genotoxic effects of the RecQ-like helicase RqlH. PLoS Pathog 11:e1005317 http://dx.doi.org/10.1371/journal.ppat.1005317. [PubMed]
141. Russell CW, Richards AC, Chang AS, Mulvey MA. 2017. The rhomboid protease GlpG promotes the persistence of extraintestinal pathogenic Escherichia coli within the gut. Infect Immun 85:e00866-16 http://dx.doi.org/10.1128/IAI.00866-16. [PubMed]
142. Allsopp LP, Beloin C, Ulett GC, Valle J, Totsika M, Sherlock O, Ghigo JM, Schembri MA. 2012. Molecular characterization of UpaB and UpaC, two new autotransporter proteins of uropathogenic Escherichia coli CFT073. Infect Immun 80:321–332 http://dx.doi.org/10.1128/IAI.05322-11. [PubMed]
143. Vigil PD, Wiles TJ, Engstrom MD, Prasov L, Mulvey MA, Mobley HL. 2012. The repeat-in-toxin family member TosA mediates adherence of uropathogenic Escherichia coli and survival during bacteremia. Infect Immun 80:493–505 http://dx.doi.org/10.1128/IAI.05713-11. [PubMed]
144. Allsopp LP, Totsika M, Tree JJ, Ulett GC, Mabbett AN, Wells TJ, Kobe B, Beatson SA, Schembri MA. 2010. UpaH is a newly identified autotransporter protein that contributes to biofilm formation and bladder colonization by uropathogenic Escherichia coli CFT073. Infect Immun 78:1659–1669 http://dx.doi.org/10.1128/IAI.01010-09. [PubMed]
145. Wiles TJ, Norton JP, Smith SN, Lewis AJ, Mobley HL, Casjens SR, Mulvey MA. 2013. A phyletically rare gene promotes the niche-specific fitness of an E. coli pathogen during bacteremia. PLoS Pathog 9:e1003175 http://dx.doi.org/10.1371/journal.ppat.1003175. [PubMed]
146. Mulvey MA. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:1494–1497. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAI-0014-2019
2019-06-07
2019-10-18

Abstract:

Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by and as well as UPEC, represent a major health care concern. The host’s response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a “canary in the coal mine,” warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

UPEC pathogenesis. (A) UPEC is housed in a reservoir in the gastrointestinal system. The bacteria are able to colonize the urinary tract from this reservoir. (B) Bacteria are able to adhere to and invade the bladder epithelial cells. (C) Bacterial cells can be evicted from the host cell in response. Bacterial cells can also enter the cytoplasm (D) and initiate IBC formation (E). (F) UPEC can, upon fluxing out of the host cells, filament and reinfect other urothelial cells. (G) To counteract intracellular pathogens, the host can initiate a program of host cell exfoliation. (H) Chronic cystitis in mice can occur with persistent high titers of bacteriuria. (I) QIRs can be established, in mice with resolved infections, in layers below superficial urothelial cells. Image and caption are adapted from reference 31 .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0014-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Overview of UPEC fitness and virulence factors. Surface-associated structures that play a role in UTI pathogenesis include lipopolysaccharide, polysaccharide capsule, flagella, pili, toxins, secretion systems (SS), and siderophore receptors. Image and caption are adapted from reference 68 .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0014-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Overview of CUP of pilus assembly and mode of action of antivirulence compounds. (A) Sec transports unfolded subunits of the pilus structure into the periplasmic space. (B, C, G, H) Pilus subunits interact with the pilus type-specific chaperone and fold. (D) Chaperone-subunit complexes interact with the N terminus of the pilus usher. (E) Secreted subunits, bound together through donor strand exchange, form the pilus. (F) Small-molecule inhibitors, mannosides and galactosides, antagonize interactions between the adhesive tip of the pilus and its ligand. Pilicides bind to the chaperone (I) and interrupt the interaction between chaperone and the N terminus of the usher (J). Image and caption are adapted from reference 31 .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0014-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Virulence factors in UPEC pathogenesis

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0014-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error