No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Endosymbionts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Frédéric Landmann1
  • Editors: Pascale Cossart2, Craig R. Roy3, Philippe Sansonetti4
    Affiliations: 1: CRBM, University of Montpellier, CNRS, Montpellier, France; 2: Institut Pasteur, Paris, France; 3: Yale University School of Medicine, New Haven, Connecticut; 4: Institut Pasteur, Paris, France
  • Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0018-2019
  • Received 04 June 2018 Accepted 10 January 2019 Published 12 April 2019
  • Frédéric Landmann, [email protected]
image of The <span class="jp-italic">Wolbachia</span> Endosymbionts
    Preview this microbiology spectrum article:
    Zoom in

    The Endosymbionts, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/BAI-0018-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/2/BAI-0018-2019-2.gif
  • Abstract:

    The endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to , , and . This genus of Gram-negative members of the does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the “-omics” revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by , and the identification of effectors is ongoing.

  • Citation: Landmann F. 2019. The Endosymbionts. Microbiol Spectrum 7(2):BAI-0018-2019. doi:10.1128/microbiolspec.BAI-0018-2019.


1. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. 2008. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281:215–220 http://dx.doi.org/10.1111/j.1574-6968.2008.01110.x.
2. Slatko BE, Luck AN, Dobson SL, Foster JM. 2014. Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 195:88–95 http://dx.doi.org/10.1016/j.molbiopara.2014.07.004.
3. Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751 http://dx.doi.org/10.1038/nrmicro1969.
4. Hertig M, Wolbach SB. 1924. Studies on Rickettsia-like micro-organisms in insects. J Med Res 44:329–374.7.
5. Baldo L, Dunning Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH. 2006.Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110 http://dx.doi.org/10.1128/AEM.00731-06.
6. Bandi C, Anderson TJC, Genchi C, Blaxter ML. 1998. Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 265:2407–2413 http://dx.doi.org/10.1098/rspb.1998.0591. [PubMed]
7. Kozek WJ. 1977. Transovarially-transmitted intracellular microorganisms in adult and larval stages of Brugia malayi. J Parasitol 63:992–1000 http://dx.doi.org/10.2307/3279832. [PubMed]
8. Lefoulon E, Bain O, Makepeace BL, d’Haese C, Uni S, Martin C, Gavotte L. 2016. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 4:e1840 http://dx.doi.org/10.7717/peerj.1840. [PubMed]
9. Glowska E, Dragun-Damian A, Dabert M, Gerth M. 2015. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae). Infect Genet Evol 30:140–146 http://dx.doi.org/10.1016/j.meegid.2014.12.019. [PubMed]
10. Wang G-H, Jia L-Y, Xiao J-H, Huang D-W. 2016. Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts. Infect Genet Evol 41:1–7 http://dx.doi.org/10.1016/j.meegid.2016.03.015. [PubMed]
11. Casiraghi M, Anderson TJC, Bandi C, Bazzocchi C, Genchi C. 2001. A phylogenetic analysis of filarial nematodes: comparison with the phylogeny of Wolbachia endosymbionts. Parasitology 122:93–103 http://dx.doi.org/10.1017/S0031182000007149. [PubMed]
12. Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. 2002. How many Wolbachia supergroups exist? Mol Biol Evol 19:341–346 http://dx.doi.org/10.1093/oxfordjournals.molbev.a004087. [PubMed]
13. Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M, Borgonie G, Gheysen G. 2009. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int J Parasitol 39:1045–1054 http://dx.doi.org/10.1016/j.ijpara.2009.01.006. [PubMed]
14. Brown AMV, Wasala SK, Howe DK, Peetz AB, Zasada IA, Denver DR. 2016. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Sci Rep 6:34955 http://dx.doi.org/10.1038/srep34955. [PubMed]
15. Foster J, Ganatra M, Kamal I, Ware J, Makarova K, Ivanova N, Bhattacharyya A, Kapatral V, Kumar S, Posfai J, Vincze T, Ingram J, Moran L, Lapidus A, Omelchenko M, Kyrpides N, Ghedin E, Wang S, Goltsman E, Joukov V, Ostrovskaya O, Tsukerman K, Mazur M, Comb D, Koonin E, Slatko B. 2005. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3:e121 http://dx.doi.org/10.1371/journal.pbio.0030121. [PubMed]
16. Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O’Neill SL, Eisen JA. 2004. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:e69 http://dx.doi.org/10.1371/journal.pbio.0020069. [PubMed]
17. Masui S, Kamoda S, Sasaki T, Ishikawa H. 2000. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 51:491–497 http://dx.doi.org/10.1007/s002390010112. [PubMed]
18. LePage DP, Metcalf JA, Bordenstein SR, On J, Perlmutter JI, Shropshire JD, Layton EM, Funkhouser-Jones LJ, Beckmann JF, Bordenstein SR. 2017. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–247 http://dx.doi.org/10.1038/nature21391. [PubMed]
19. Pichon S, Bouchon D, Cordaux R, Chen L, Garrett RA, Grève P. 2009. Conservation of the type IV secretion system throughout Wolbachia evolution. Biochem Biophys Res Commun 385:557–562 http://dx.doi.org/10.1016/j.bbrc.2009.05.118. [PubMed]
20. Li Z, Carlow CKS. 2012. Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi. PLoS One 7:e51597 http://dx.doi.org/10.1371/journal.pone.0051597. [PubMed]
21. Masui S, Sasaki T, Ishikawa H. 2000. Genes for the type IV secretion system in an intracellular symbiont, Wolbachia, a causative agent of various sexual alterations in arthropods. J Bacteriol 182:6529–6531 http://dx.doi.org/10.1128/JB.182.22.6529-6531.2000. [PubMed]
22. Rancès E, Voronin D, Tran-Van V, Mavingui P. 2008. Genetic and functional characterization of the type IV secretion system in Wolbachia. J Bacteriol 190:5020–5030 http://dx.doi.org/10.1128/JB.00377-08. [PubMed]
23. Félix C, Pichon S, Braquart-Varnier C, Braig H, Chen L, Garrett RA, Martin G, Grève P. 2008. Characterization and transcriptional analysis of two gene clusters for type IV secretion machinery in Wolbachia of Armadillidium vulgare. Res Microbiol 159:481–485 http://dx.doi.org/10.1016/j.resmic.2008.05.007. [PubMed]
24. Ote M, Ueyama M, Yamamoto D. 2016. Wolbachia protein TomO targets nanos mRNA and restores germ stem cells in Drosophila sex-lethal mutants. Curr Biol 26:2223–2232 http://dx.doi.org/10.1016/j.cub.2016.06.054. [PubMed]
25. Sheehan KB, Martin M, Lesser CF, Isberg RR, Newton ILG. 2016. Identification and characterization of a candidate Wolbachia pipientis type IV effector that interacts with the actin cytoskeleton. mBio 7:e00622-16 http://dx.doi.org/10.1128/mBio.00622-16. [PubMed]
26. Beckmann JF, Fallon AM. 2013. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. Insect Biochem Mol Biol 43:867–878 http://dx.doi.org/10.1016/j.ibmb.2013.07.002. [PubMed]
27. Beckmann JF, Ronau JA, Hochstrasser M. 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2:17007 http://dx.doi.org/10.1038/nmicrobiol.2017.7. [PubMed]
28. Shropshire JD, On J, Layton EM, Zhou H, Bordenstein SR. 2018. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc Natl Acad Sci USA 115:4987–4991 http://dx.doi.org/10.1073/pnas.1800650115. [PubMed]
29. Rice DW, Sheehan KB, Newton ILG. 2017. Large-scale identification of Wolbachia pipientis effectors. Genome Biol Evol 9:1925–1937 http://dx.doi.org/10.1093/gbe/evx139. [PubMed]
30. Carpinone EM, Li Z, Mills MK, Foltz C, Brannon ER, Carlow CKS, Starai VJ. 2018. Identification of putative effectors of the type IV secretion system from the Wolbachia endosymbiont of Brugia malayi. PLoS One 13:e0204736 http://dx.doi.org/10.1371/journal.pone.0204736. [PubMed]
31. Pietri JE, DeBruhl H, Sullivan W. 2016. The rich somatic life of Wolbachia. MicrobiologyOpen 5:923–936 http://dx.doi.org/10.1002/mbo3.390. [PubMed]
32. Rasgon JL, Gamston CE, Ren X. 2006. Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol 72:6934–6937 http://dx.doi.org/10.1128/AEM.01673-06. [PubMed]
33. Serbus LR, Casper-Lindley C, Landmann F, Sullivan W. 2008. The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707 http://dx.doi.org/10.1146/annurev.genet.41.110306.130354. [PubMed]
34. Weeks AR, Breeuwer JAJ. 2001. Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc Biol Sci 268:2245–2251 http://dx.doi.org/10.1098/rspb.2001.1797. [PubMed]
35. Gottlieb Y, Zchori-Fein E. 2001. Irreversible thelytokous reproduction in Muscidifurax uniraptor. Entomol Exp Appl 100:271–278 http://dx.doi.org/10.1046/j.1570-7458.2001.00874.x.
36. Stouthamer R, Kazmer DJ. 1994. Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Hered Edinb 73:317–327 http://dx.doi.org/10.1038/hdy.1994.139.
37. Adachi-Hagimori T, Miura K, Stouthamer R. 2008. A new cytogenetic mechanism for bacterial endosymbiont-induced parthenogenesis in Hymenoptera. Proc Biol Sci 275:2667–2673 http://dx.doi.org/10.1098/rspb.2008.0792. [PubMed]
38. Cordaux R, Bouchon D, Grève P. 2011. The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet 27:332–341 http://dx.doi.org/10.1016/j.tig.2011.05.002. [PubMed]
39. Bouchon D, Cordaux R, Grève P. 2008. Feminizing Wolbachia and the evolution of sex determination in isopods, p 273–294. In Bourtzis K, Miller T (ed), Insect Symbiosis, vol 3. CRC Press, Boca Raton, FL.
40. Ferdy JB, Liu N, Sicard M. 2016. Transmission modes and the evolution of feminizing symbionts. J Evol Biol 29:2395–2409 http://dx.doi.org/10.1111/jeb.12963. [PubMed]
41. Hurst GDD, Majerus MEN. 1993. Why do maternally inherited microorganisms kill males? Hered Edinb 71:81–95 http://dx.doi.org/10.1038/hdy.1993.110.
42. Hurst GDD, Jiggins FM, Majerus MEN. 2003. Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution? p 177–199. In Bourtzis K, Miller T (ed), Insect Symbiosis, vol 1. CRC Press, Boca Raton, FL.
43. Riparbelli MG, Giordano R, Ueyama M, Callaini G. 2012. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 7:e30045 http://dx.doi.org/10.1371/journal.pone.0030045. [PubMed]
44. Harumoto T, Lemaitre B. 2018. Male-killing toxin in a bacterial symbiont of Drosophila. Nature 557:252–255 http://dx.doi.org/10.1038/s41586-018-0086-2. [PubMed]
45. Veneti Z. 2005. A functional dosage compensation complex required for male killing in Drosophila. Science 307:1461–1463. [PubMed]
46. Bordenstein SR, Werren JH. 2007. Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Hered Edinb 99:278–287 http://dx.doi.org/10.1038/sj.hdy.6800994. [PubMed]
47. Yen JH, Barr AR. 1971. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232:657–658 http://dx.doi.org/10.1038/232657a0. [PubMed]
48. Clark ME, Veneti Z, Bourtzis K, Karr TL. 2002. The distribution and proliferation of the intracellular bacteria Wolbachia during spermatogenesis in Drosophila. Mech Dev 111:3–15 http://dx.doi.org/10.1016/S0925-4773(01)00594-9.
49. Callaini G, Dallai R, Riparbelli MG. 1997. Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 110:271–280. [PubMed]
50. Landmann F, Orsi GA, Loppin B, Sullivan W. 2009. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog 5:e1000343 http://dx.doi.org/10.1371/journal.ppat.1000343. [PubMed]
51. Zabalou S, Apostolaki A, Pattas S, Veneti Z, Paraskevopoulos C, Livadaras I, Markakis G, Brissac T, Merçot H, Bourtzis K. 2008. Multiple rescue factors within a Wolbachia strain. Genetics 178:2145–2160 http://dx.doi.org/10.1534/genetics.107.086488.
52. Atyame CM, Labbé P, Dumas E, Milesi P, Charlat S, Fort P, Weill M. 2014. Wolbachia divergence and the evolution of cytoplasmic incompatibility in Culex pipiens. PLoS One 9:e87336 http://dx.doi.org/10.1371/journal.pone.0087336.
53. Atyame CM, Duron O, Tortosa P, Pasteur N, Fort P, Weill M. 2011. Multiple Wolbachia determinants control the evolution of cytoplasmic incompatibilities in Culex pipiens mosquito populations. Mol Ecol 20:286–298 http://dx.doi.org/10.1111/j.1365-294X.2010.04937.x.
54. Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H, Weill M, Sicard M, Charlat S. 2019. The toxin-antidote model of cytoplasmic incompatibility: genetics and evolutionary implications. Trends Genet 35:175–185.
55. Atyame CM, Delsuc F, Pasteur N, Weill M, Duron O. 2011. Diversification of Wolbachia endosymbiont in the Culex pipiens mosquito. Mol Biol Evol 28:2761–2772 http://dx.doi.org/10.1093/molbev/msr083.
56. Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, Weill M. 2018. Culex pipiens crossing type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nat Commun 9:319.
57. Choe KN, Moldovan GL. 2017. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell 65:380–392.
58. Jaenike J. 2007. Spontaneous emergence of a new Wolbachia phenotype. Evolution 61:2244–2252 http://dx.doi.org/10.1111/j.1558-5646.2007.00180.x.
59. Sasaki T, Massaki N, Kubo T. 2005. Wolbachia variant that induces two distinct reproductive phenotypes in different hosts. Hered Edinb 95:389–393 http://dx.doi.org/10.1038/sj.hdy.6800737.
60. Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190 http://dx.doi.org/10.1146/annurev.genet.41.110306.130119.
61. Telschow A, Flor M, Kobayashi Y, Hammerstein P, Werren JH. 2007. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One 2:e701 http://dx.doi.org/10.1371/journal.pone.0000701.
62. Rokas A. 2000. Wolbachia as a speciation agent. Trends Ecol Evol 15:44–45.
63. Karr TL, Ballard B. 2006. Speciation and Wolbachia, p 245–260. In Encyclopedia of Life Sciences. John Wiley & Sons, Ltd, Chichester, United Kingdom. http://dx.doi.org/10.1038/npg.els.0001758.
64. Chang C-W, Nashchekin D, Wheatley L, Irion U, Dahlgaard K, Montague TG, Hall J, St Johnston D. 2011. Anterior-posterior axis specification in Drosophila oocytes: identification of novel bicoid and oskar mRNA localization factors. Genetics 188:883–896 http://dx.doi.org/10.1534/genetics.111.129312.
65. Frydman HM, Li JM, Robson DN, Wieschaus E. 2006. Somatic stem cell niche tropism in Wolbachia. Nature 441:509–512 http://dx.doi.org/10.1038/nature04756.
66. Toomey ME, Panaram K, Fast EM, Beatty C, Frydman HM. 2013. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc Natl Acad Sci USA 110:10788–10793 http://dx.doi.org/10.1073/pnas.1301524110.
67. Kamath AD, Deehan MA, Frydman HM. 2018. Polar cell fate stimulates Wolbachia intracellular growth. Development 145:158097.
68. Steinhauer J, Kalderon D. 2006. Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn 235:1455–1468 http://dx.doi.org/10.1002/dvdy.20770.
69. Ferree PM, Frydman HM, Li JM, Cao J, Wieschaus E, Sullivan W. 2005. Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte. PLoS Pathog 1:e14.
70. Serbus LR, Sullivan W. 2007. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog 3:1930–1937 http://dx.doi.org/10.1371/journal.ppat.0030190.
71. Newton ILG, Savytskyy O, Sheehan KB. 2015. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster. PLoS Pathog 11:e1004798 http://dx.doi.org/10.1371/journal.ppat.1004798.
72. Melnikow E, Xu S, Liu J, Bell AJ, Ghedin E, Unnasch TR, Lustigman S. 2013. A potential role for the interaction of Wolbachia surface proteins with the Brugia malayi glycolytic enzymes and cytoskeleton in maintenance of endosymbiosis. PLoS Negl Trop Dis 7:e2151 http://dx.doi.org/10.1371/journal.pntd.0002151.
73. Fattouh N, Cazevieille C, Landmann F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl Trop Dis, in press.
74. Albertson R, Casper-Lindley C, Cao J, Tram U, Sullivan W. 2009. Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue. J Cell Sci 122:4570–4583 http://dx.doi.org/10.1242/jcs.054981.
75. Foster JM, Hoerauf A, Slatko BE, Taylor MJ. 2013. The Wolbachia bacterial endosymbionts of filarial nematodes, p 308–336. In Kennedy MW, Harnett W (ed), Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology, 2nd ed. CABI, Wallingford, United Kingdom.
76. Howells RE, Mendis AM, Bray PG. 1983. The mechanisms of amino acid uptake by Brugia pahangi in vitro. Z Parasitenkd 69:247–253.
77. Landmann F, Foster JM, Slatko B, Sullivan W. 2010. Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Negl Trop Dis 4:e758 http://dx.doi.org/10.1371/journal.pntd.0000758.
78. Lefoulon E, Gavotte L, Junker K, Barbuto M, Uni S, Landmann F, Laaksonen S, Saari S, Nikander S, de Souza Lima S, Casiraghi M, Bain O, Martin C. 2012. A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup. Int J Parasitol 42:1025–1036 http://dx.doi.org/10.1016/j.ijpara.2012.09.004.
79. Landmann F, Foster JM, Michalski ML, Slatko BE, Sullivan W. 2014. Co-evolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment. PLoS Negl Trop Dis 8:e3096 http://dx.doi.org/10.1371/journal.pntd.0003096.
80. Landmann F, Bain O, Martin C, Uni S, Taylor MJ, Sullivan W. 2012. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biol Open 1:536–547 http://dx.doi.org/10.1242/bio.2012737.
81. Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM. 2011. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science 334:990–992 http://dx.doi.org/10.1126/science.1209609.
82. Landmann F, Voronin D, Sullivan W, Taylor MJ. 2011. Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes. PLoS Pathog 7:e1002351 http://dx.doi.org/10.1371/journal.ppat.1002351.
83. Foray V, Pérez-Jiménez MM, Fattouh N, Landmann F. 2018. Wolbachia control stem cell behavior and stimulate germline proliferation in filarial nematodes. Dev Cell 45:198–211.e3 http://dx.doi.org/10.1016/j.devcel.2018.03.017.
84. Flores HA, Bubnell JE, Aquadro CF, Barbash DA. 2015. The Drosophila bag of marbles gene interacts genetically with Wolbachia and shows female-specific effects of divergence. PLoS Genet 11:e1005453 http://dx.doi.org/10.1371/journal.pgen.1005453.
85. Starr DJ, Cline TW. 2002. A host parasite interaction rescues Drosophila oogenesis defects. Nature 418:76–79 http://dx.doi.org/10.1038/nature00843.
86. Sun S, Cline TW. 2009. Effects of Wolbachia infection and ovarian tumor mutations on sex-lethal germline functioning in Drosophila. Genetics 181:1291–1301 http://dx.doi.org/10.1534/genetics.108.099374.
87. Hashiyama K, Hayashi Y, Kobayashi S. 2011. Drosophila Sex lethal gene initiates female development in germline progenitors. Science 333:885–888.
88. Slaidina M, Lehmann R. 2014. Translational control in germline stem cell development. J Cell Biol 207:13–21 http://dx.doi.org/10.1083/jcb.201407102.
89. Ote M, Yamamoto D. 2018. Enhancing Nanos expression via the bacterial TomO protein is a conserved strategy used by the symbiont Wolbachia to fuel germ stem cell maintenance in infected Drosophila females. Arch Insect Biochem Physiol 98:e21471 http://dx.doi.org/10.1002/arch.21471.
90. Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M. 2001. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252 http://dx.doi.org/10.1073/pnas.101304298.
91. Peterson JS, Timmons AK, Mondragon AA, McCall K. 2015. The end of the beginning; cell death in the germline. Curr Top Dev Biol 114:93–119.
92. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO. 1999. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126:1011–1022.
93. Pannebakker BA, Loppin B, Elemans CPH, Humblot L, Vavre F. 2007. Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA 104:213–215 http://dx.doi.org/10.1073/pnas.0607845104.
94. Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, Ribeiro JM, Saif S, Levin JZ, Fan L, Zeng Q, Russ C, Wortman JR, Fink DL, Birren BW, Nutman TB. 2013. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nat Genet 45:495–500 http://dx.doi.org/10.1038/ng.2585.
95. Voronin D, Bachu S, Shlossman M, Unnasch TR, Ghedin E, Lustigman S. 2016. Glucose and glycogen metabolism in brugia malayi is associated with Wolbachia symbiont fitness. PLoS One 11:e0153812 http://dx.doi.org/10.1371/journal.pone.0153812.
96. Sullivan W. 2017. Wolbachia, bottled water, and the dark side of symbiosis. Mol Biol Cell 28:2343–2346 http://dx.doi.org/10.1091/mbc.e17-02-0132.
97. Fry AJ, Palmer MR, Rand DM. 2004. Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Hered Edinb 93:379–389 http://dx.doi.org/10.1038/sj.hdy.6800514.
98. Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill SL. 2017. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 13:e1006751 http://dx.doi.org/10.1371/journal.ppat.1006751.
99. Maistrenko OM, Serga SV, Vaiserman AM, Kozeretska IA. 2016. Longevity-modulating effects of symbiosis: insights from Drosophila- Wolbachia interaction. Biogerontology 17:785–803 http://dx.doi.org/10.1007/s10522-016-9653-9.
100. Alexandrov ID, Alexandrova MV, Goryacheva II, Rochina NV, Shaikevich EV, Zakharov IA. 2007. Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster. Russ J Genet 43:1147–1152 http://dx.doi.org/10.1134/S1022795407100080.
101. Kremer N, Voronin D, Charif D, Mavingui P, Mollereau B, Vavre F. 2009. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog 5:e1000630 http://dx.doi.org/10.1371/journal.ppat.1000630.
102. Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774 http://dx.doi.org/10.1073/pnas.0911476107.
103. Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. 2015. Riboflavin provisioning underlies Wolbachia’s fitness contribution to its insect host. mBio 6:e01732-15.
104. Ikeya T, Broughton S, Alic N, Grandison R, Partridge L. 2009. The endosymbiont Wolbachia increases insulin/IGF-like signalling in Drosophila. Proc Biol Sci 276:3799–3807 http://dx.doi.org/10.1098/rspb.2009.0778.
105. Eleftherianos I, Atri J, Accetta J, Castillo JC. 2013. Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol 4:46 http://dx.doi.org/10.3389/fphys.2013.00046.
106. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O’Neill SL. 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8:e3115 http://dx.doi.org/10.1371/journal.pntd.0003115.
107. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O’Neill SL. 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476:454–457 http://dx.doi.org/10.1038/nature10356.
108. Teixeira L, Ferreira A, Ashburner M. 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763 http://dx.doi.org/10.1371/journal.pbio.1000002.
109. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL. 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278 http://dx.doi.org/10.1016/j.cell.2009.11.042.
110. Caragata EP, Dutra HL, O’Neill SL, Moreira LA. 2016. Zika control through the bacterium Wolbachia pipientis. Future Microbiol 11:1499–1502 http://dx.doi.org/10.2217/fmb-2016-0177.
111. Bian G, Xu Y, Lu P, Xie Y, Xi Z. 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6:e1000833 http://dx.doi.org/10.1371/journal.ppat.1000833.
112. Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL. 2014. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis 8:e2688 http://dx.doi.org/10.1371/journal.pntd.0002688.
113. Jiggins FM. 2017. The spread of Wolbachia through mosquito populations. PLoS Biol 15:e2002780 http://dx.doi.org/10.1371/journal.pbio.2002780.
114. Lin M, Rikihisa Y. 2003. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect Immun 71:5324–5331 http://dx.doi.org/10.1128/IAI.71.9.5324-5331.2003.
115. Geoghegan V, Stainton K, Rainey SM, Ant TH, Dowle AA, Larson T, Hester S, Charles PD, Thomas B, Sinkins SP. 2017. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells. Nat Commun 8:526 http://dx.doi.org/10.1038/s41467-017-00610-8.
116. Taylor MJ, Hoerauf A, Bockarie M. 2010. Lymphatic filariasis and onchocerciasis. Lancet 376:1175–1185 http://dx.doi.org/10.1016/S0140-6736(10)60586-7.
117. McCall JW, Genchi C, Kramer LH, Guerrero J, Venco L. 2008. Heartworm disease in animals and humans. Adv Parasitol 66:193–285 http://dx.doi.org/10.1016/S0065-308X(08)00204-2.
118. Hildebrandt JC, Eisenbarth A, Renz A, Streit A. 2014. Reproductive biology of Onchocerca ochengi, a nodule forming filarial nematode in zebu cattle. Vet Parasitol 205:318–329 http://dx.doi.org/10.1016/j.vetpar.2014.06.006.
119. Taylor MJ, Makunde WH, McGarry HF, Turner JD, Mand S, Hoerauf A. 2005. Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomised placebo-controlled trial. Lancet 365:2116–2121 http://dx.doi.org/10.1016/S0140-6736(05)66591-9.
120. Slatko BE, Taylor MJ, Foster JM. 2010. The Wolbachia endosymbiont as an anti-filarial nematode target. Symbiosis 51:55–65 http://dx.doi.org/10.1007/s13199-010-0067-1.
121. Turner JD, Sharma R, Al Jayoussi G, Tyrer HE, Gamble J, Hayward L, Priestley RS, Murphy EA, Davies J, Waterhouse D, Cook DAN, Clare RH, Cassidy A, Steven A, Johnston KL, McCall J, Ford L, Hemingway J, Ward SA, Taylor MJ. 2017. Albendazole and antibiotics synergize to deliver short-course anti- Wolbachia curative treatments in preclinical models of filariasis. Proc Natl Acad Sci USA 114:E9712–E9721 http://dx.doi.org/10.1073/pnas.1710845114.
122. Hansen RDE, Trees AJ, Bah GS, Hetzel U, Martin C, Bain O, Tanya VN, Makepeace BL. 2011. A worm’s best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc Biol Sci 278:2293–2302 http://dx.doi.org/10.1098/rspb.2010.2367.
123. Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Büttner DW, Ceciliani F, Geisinger F, Hochrein H, Ernst M, Wagner H, Bandi C, Hoerauf A. 2004. The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 173:437–445 http://dx.doi.org/10.4049/jimmunol.173.1.437.
124. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, Koldkjær P, Rainbow L, Radford AD, Blaxter ML, Tanya VN, Trees AJ, Cordaux R, Wastling JM, Makepeace BL. 2012. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res 22:2467–2477 http://dx.doi.org/10.1101/gr.138420.112.
125. Chagas-Moutinho VA, Silva R, de Souza W, Motta MCM. 2015. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi. Parasit Vectors 8:74 http://dx.doi.org/10.1186/s13071-015-0668-x.
126. Fischer K, Beatty WL, Weil GJ, Fischer PU. 2014. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont-filarial nematode host interaction. PLoS One 9:e86383 http://dx.doi.org/10.1371/journal.pone.0086383.
127. White PM, Serbus LR, Debec A, Codina A, Bray W, Guichet A, Lokey RS, Sullivan W. 2017. Reliance of Wolbachia on high rates of host proteolysis revealed by a genome-wide RNAi screen of Drosophila cells. Genetics 205:1473–1488 http://dx.doi.org/10.1534/genetics.116.198903.
128. White PM, Pietri JE, Debec A, Russell S, Patel B, Sullivan W. 2017. Mechanisms of horizontal cell-to-cell transfer of Wolbachia spp. in Drosophila melanogaster. Appl Environ Microbiol 83:e03425-16 http://dx.doi.org/10.1128/AEM.03425-16.
129. Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, Sullivan W. 2015. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 11:e1004777.
130. Fallon AM, Witthuhn BA. 2009. Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB. In Vitro Cell Dev Biol Anim 45:460–466.
131. Xi Z, Gavotte L, Xie Y, Dobson SL. 2008. Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9:1–12 http://dx.doi.org/10.1186/1471-2164-9-1.
132. Grobler Y, Yun CY, Kahler DJ, Bergman CM, Lee H, Oliver B, Lehmann R. 2018. Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathog 14:e1007445 http://dx.doi.org/10.1371/journal.ppat.1007445.
133. Lefoulon E. 2015. L’association tripartie Wolbachia - nématode Onchocercidae - vertébré: de l’histoire évolutive au dialogue moléculaire entre les trois partenaires. Thesis, National museum of natural history, Paris, France.

Article metrics loading...



The endosymbionts encompass a large group of intracellular bacteria of biomedical and veterinary relevance, closely related to , , and . This genus of Gram-negative members of the does not infect vertebrates but is instead restricted to ecdysozoan species, including terrestrial arthropods and a family of parasitic filarial nematodes, the Onchocercidae. The profoundly impact not only the ecology and evolution but also the reproductive biology of their hosts, through a wide range of symbiotic interactions. Because they are essential to the survival and reproduction of their filarial nematode hosts, they represent an attractive target to fight filariasis. Their abilities to spread through insect populations and to affect vector competence through pathogen protection have made a staple for controlling vector-borne diseases. Estimated to be present in up to 66% of insect species, the are probably the most abundant endosymbionts on earth. Their success resides in their unique capacity to infect and manipulate the host germ line to favor their vertical transmission through the maternal lineage. Because the resist genetic manipulation and growth in axenic culture, our understanding of their biology is still in its infancy. Despite these limitations, the “-omics” revolution combined with the use of well-established and emerging experimental host models is accelerating our comprehension of the host phenotypes caused by , and the identification of effectors is ongoing.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Overview of diversity. () Unrooted phylogenic tree of the main supergroups. The triangle size represents the described diversity within each supergroup. () Comparison of genomic features of endosymbionts with other pathogens. Bm and Mel, endosymbionts from and ; , ; , . Adapted from references 15 and 133 .

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0018-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

The four reproductive outcomes caused by , with an example of arthropod species described in the text. () Parthenogenesis, MK, and feminization cause a sex ratio distortion. () CI (left) and the rescue cross (right). Uninfected females cannot successfully mate with infected males (CI), while infected females have the selective advantage to mate with noninfected males or with males infected with a compatible strain.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0018-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Germ line tropism and transmission in insect and nematode species. () Schematic representation of oogenesis. The germ line is in white, and the surrounding somatic follicle cells are in gray. For the sake of clarity, are not represented within the germarium, where they colonize the GSCs and associated niche (GSCN) (dark and light purple, respectively), as well as the somatic stem cell niche (SSCN; pink). In developing cysts, polar cells (PCs) are yellow, the microtubule (green) polarity is indicated by plus and minus signs, and the organisms are red foci. Nuclei of developing cysts are depicted in blue. () Asymmetric segregation of during early embryogenesis in . The confocal image of a fertilized egg shows the (red foci) in the posterior compartment around the centrosome (green) during the first anaphase. The route followed by to reach the hypodermis in the early lineage is highlighted in black. The P lineage represents the germ line precursor lineage, left by after the P2 division to concentrate in the hypodermal precursor C blastomere. () Schematic cross section of a female, with an emphasis on the tissues infected by . The confocal image shows the tropism of some organisms from the hypodermis to the somatic gonad in a juvenile female. Asterisks indicate the entry and proliferation of in the somatic ovarian distal sheath cells.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.BAI-0018-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error