1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Infect and Inject: How Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Sangeeta Tiwari1, Rosalyn Casey2, Celia W. Goulding3, Suzie Hingley-Wilson4, William R. Jacobs, Jr. Jr.5
  • Editors: Pascale Cossart6, Craig R. Roy7, Philippe Sansonetti8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; 2: Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guilford, Surrey, GU27XH, United Kingdom; 3: Department of Molecular Biology & Biochemistry and Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697; 4: Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guilford, Surrey, GU27XH, United Kingdom; 5: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; 6: Institut Pasteur, Paris, France; 7: Yale University School of Medicine, New Haven, Connecticut; 8: Institut Pasteur, Paris, France
  • Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0024-2019
  • Received 09 April 2019 Accepted 12 April 2019 Published 07 June 2019
  • William R. Jacobs, Jr., [email protected]; Sangeeta Tiwari, [email protected]
image of Infect and Inject: How <span class="jp-italic">Mycobacterium tuberculosis</span> Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Infect and Inject: How Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/BAI-0024-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/3/BAI-0024-2019-2.gif
  • Abstract:

    is an ancient master of the art of causing human disease. One important weapon within its fully loaded arsenal is the type VII secretion system. has five of them: ESAT-6 secretion systems (ESX) 1 to 5. ESX-1 has long been recognized as a major cause of attenuation of the FDA-licensed vaccine BCG, but its importance in disease progression and transmission has recently been elucidated in more detail. This review summarizes the recent advances in (i) the understanding of the ESX-1 structure and components, (ii) our knowledge of ESX-1’s role in hijacking macrophage function to set a path for infection and dissemination, and (iii) the development of interventions that utilize ESX-1 for diagnosis, drug interventions, host-directed therapies, and vaccines.

  • Citation: Tiwari S, Casey R, Goulding C, Hingley-Wilson S, Jacobs, Jr. W. 2019. Infect and Inject: How Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1. Microbiol Spectrum 7(3):BAI-0024-2019. doi:10.1128/microbiolspec.BAI-0024-2019.

References

1. World Health Organization. 2018. Global tuberculosis report 2018. World Health Organization, Geneva, Switzerland. https://www.who.int/tb/publications/global_report/en/.
2. Calmette A. 1922. L’infection Bacillaire et la Tuberculose chez l’Homme et chez les Animaux, 2nd ed. Masson et Cie, Paris, France.
3. Calmette A. 1931. Preventive vaccination against tuberculosis with BCG. Proc R Soc Med 24:1481–1490.
4. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282 http://dx.doi.org/10.1128/jb.178.5.1274-1282.1996. [PubMed]
5. Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. 2016. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14:677–691 http://dx.doi.org/10.1038/nrmicro.2016.131. [PubMed]
6. van Pinxteren LA, Ravn P, Agger EM, Pollock J, Andersen P. 2000. Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin Diagn Lab Immunol 7:155–160. [PubMed]
7. Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM. 2016. Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354:347–350 http://dx.doi.org/10.1126/science.aag0828. [PubMed]
8. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480 http://dx.doi.org/10.1016/j.chom.2012.03.007. [PubMed]
9. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425 http://dx.doi.org/10.1073/pnas.1635213100. [PubMed]
10. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 http://dx.doi.org/10.1126/science.284.5419.1520. [PubMed]
11. Pallen MJ. 2002. The ESAT-6/WXG100 superfamily—and a new Gram-positive secretion system? Trends Microbiol 10:209–212 http://dx.doi.org/10.1016/S0966-842X(02)02345-4.
12. Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guérin attenuation. J Infect Dis 187:117–123 http://dx.doi.org/10.1086/345862. [PubMed]
13. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539 http://dx.doi.org/10.1038/nm859. [PubMed]
14. Falkow S. 2004. Molecular Koch’s postulates applied to bacterial pathogenicity--a personal recollection 15 years later. Nat Rev Microbiol 2:67–72 http://dx.doi.org/10.1038/nrmicro799. [PubMed]
15. Clemmensen HS, Knudsen NPH, Rasmussen EM, Winkler J, Rosenkrands I, Ahmad A, Lillebaek T, Sherman DR, Andersen PL, Aagaard C. 2017. An attenuated Mycobacterium tuberculosis clinical strain with a defect in ESX-1 secretion induces minimal host immune responses and pathology. Sci Rep 7:46666 http://dx.doi.org/10.1038/srep46666. [PubMed]
16. Bosserman RE, Thompson CR, Nicholson KR, Champion PA. 2018. Esx paralogs are functionally equivalent to ESX-1 proteins but are dispensable for virulence in Mycobacterium marinum. J Bacteriol 200:e00726-17 http://dx.doi.org/10.1128/JB.00726-17. [PubMed]
17. Sakula A. 1983. BCG: who were Calmette and Guérin? Thorax 38:806–812 http://dx.doi.org/10.1136/thx.38.11.806. [PubMed]
18. Lou Y, Rybniker J, Sala C, Cole ST. 2017. EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol Microbiol 103:26–38 http://dx.doi.org/10.1111/mmi.13575. [PubMed]
19. Zhang XL, Li DF, Fleming J, Wang LW, Zhou Y, Wang DC, Zhang XE, Bi LJ. 2015. Core component EccB1 of the Mycobacterium tuberculosis type VII secretion system is a periplasmic ATPase. FASEB J 29:4804–4814 http://dx.doi.org/10.1096/fj.15-270843. [PubMed]
20. Champion PA, Champion MM, Manzanillo P, Cox JS. 2009. ESX-1 secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Mol Microbiol 73:950–962 http://dx.doi.org/10.1111/j.1365-2958.2009.06821.x. [PubMed]
21. Champion PA, Stanley SA, Champion MM, Brown EJ, Cox JS. 2006. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636 http://dx.doi.org/10.1126/science.1131167. [PubMed]
22. van Winden VJ, Ummels R, Piersma SR, Jiménez CR, Korotkov KV, Bitter W, Houben EN. 2016. Mycosins are required for the stabilization of the ESX-1 and ESX-5 type VII secretion membrane complexes. mBio 7:e01471-16 http://dx.doi.org/10.1128/mBio.01471-16. [PubMed]
23. Chen JM, Boy-Röttger S, Dhar N, Sweeney N, Buxton RS, Pojer F, Rosenkrands I, Cole ST. 2012. EspD is critical for the virulence-mediating ESX-1 secretion system in Mycobacterium tuberculosis. J Bacteriol 194:884–893 http://dx.doi.org/10.1128/JB.06417-11. [PubMed]
24. Sala C, Odermatt NT, Soler-Arnedo P, Gülen MF, von Schultz S, Benjak A, Cole ST. 2018. EspL is essential for virulence and stabilizes EspE, EspF and EspH levels in Mycobacterium tuberculosis. PLoS Pathog 14:e1007491 http://dx.doi.org/10.1371/journal.ppat.1007491. [PubMed]
25. Fortune SM, Jaeger A, Sarracino DA, Chase MR, Sassetti CM, Sherman DR, Bloom BR, Rubin EJ. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci USA 102:10676–10681 http://dx.doi.org/10.1073/pnas.0504922102. [PubMed]
26. Solomonson M, Setiaputra D, Makepeace KAT, Lameignere E, Petrotchenko EV, Conrady DG, Bergeron JR, Vuckovic M, DiMaio F, Borchers CH, Yip CK, Strynadka NCJ. 2015. Structure of EspB from the ESX-1 type VII secretion system and insights into its export mechanism. Structure 23:571–583 http://dx.doi.org/10.1016/j.str.2015.01.002. [PubMed]
27. Carlsson F, Joshi SA, Rangell L, Brown EJ. 2009. Polar localization of virulence-related Esx-1 secretion in mycobacteria. PLoS Pathog 5:e1000285 http://dx.doi.org/10.1371/journal.ppat.1000285. [PubMed]
28. Renshaw PS, Lightbody KL, Veverka V, Muskett FW, Kelly G, Frenkiel TA, Gordon SV, Hewinson RG, Burke B, Norman J, Williamson RA, Carr MD. 2005. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498 http://dx.doi.org/10.1038/sj.emboj.7600732. [PubMed]
29. Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM, Luirink J, Bitter W. 2012. General secretion signal for the mycobacterial type VII secretion pathway. Proc Natl Acad Sci USA 109:11342–11347 http://dx.doi.org/10.1073/pnas.1119453109. [PubMed]
30. Ates LS, Houben EN, Bitter W. 2016. Type VII secretion: a highly versatile secretion system. Microbiol Spectr 4:VMBF-0011-2015.
31. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R. 2008. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33 http://dx.doi.org/10.1371/journal.ppat.0040033. [PubMed]
32. Solans L, Aguiló N, Samper S, Pawlik A, Frigui W, Martín C, Brosch R, Gonzalo-Asensio J. 2014. A specific polymorphism in Mycobacterium tuberculosis H37Rv causes differential ESAT-6 expression and identifies WhiB6 as a novel ESX-1 component. Infect Immun 82:3446–3456 http://dx.doi.org/10.1128/IAI.01824-14. [PubMed]
33. Raghavan S, Manzanillo P, Chan K, Dovey C, Cox JS. 2008. Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717–721 http://dx.doi.org/10.1038/nature07219. [PubMed]
34. Gordon BR, Li Y, Wang L, Sintsova A, van Bakel H, Tian S, Navarre WW, Xia B, Liu J. 2010. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 107:5154–5159. [PubMed]
35. Pang X, Samten B, Cao G, Wang X, Tvinnereim AR, Chen XL, Howard ST. 2013. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. J Bacteriol 195:66–75 http://dx.doi.org/10.1128/JB.01067-12. [PubMed]
36. McDonough KA, Kress Y, Bloom BR. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61:2763–2773.
37. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ. 2012. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14:1287–1298 http://dx.doi.org/10.1111/j.1462-5822.2012.01799.x. [PubMed]
38. De Leon J, Jiang G, Ma Y, Rubin E, Fortune S, Sun J. 2012. Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis. J Biol Chem 287:44184–44191 http://dx.doi.org/10.1074/jbc.M112.420869. [PubMed]
39. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honoré N, Marchal G, Jiskoot W, England P, Cole ST, Brosch R. 2007. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189:6028–6034 http://dx.doi.org/10.1128/JB.00469-07. [PubMed]
40. Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, Hopkinson-Woolley D, Brosch R, Ramakrishnan L. 2017. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc Natl Acad Sci USA 114:1371–1376 http://dx.doi.org/10.1073/pnas.1620133114. [PubMed]
41. Gouzy A, Poquet Y, Neyrolles O. 2014. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol 12:729–737 http://dx.doi.org/10.1038/nrmicro3349. [PubMed]
42. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, Brosch R, Enninga J. 2012. Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathog 8:e1002507 http://dx.doi.org/10.1371/journal.ppat.1002507. [PubMed]
43. Beste DJ, Nöh K, Niedenführ S, Mendum TA, Hawkins ND, Ward JL, Beale MH, Wiechert W, McFadden J. 2013. 13C-flux spectral analysis of host-pathogen metabolism reveals a mixed diet for intracellular Mycobacterium tuberculosis. Chem Biol 20:1012–1021 http://dx.doi.org/10.1016/j.chembiol.2013.06.012. [PubMed]
44. Baughn AD, Rhee KY. 2014. Metabolomics of central carbon metabolism in Mycobacterium tuberculosis. Microbiol Spectr 2:MGM2-0026-2013. http://dx.doi.org/10.1128/microbiolspec.MGM2-0026-2013. [PubMed]
45. Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, Wang F, Jacobs WR Jr. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112:10008–10013 http://dx.doi.org/10.1073/pnas.1513033112. [PubMed]
46. Tiwari S, van Tonder AJ, Vilchèze C, Mendes V, Thomas SE, Malek A, Chen B, Chen M, Kim J, Blundell TL, Parkhill J, Weinrick B, Berney M, Jacobs WR Jr. 2018. Arginine-deprivation-induced oxidative damage sterilizes Mycobacterium tuberculosis. Proc Natl Acad Sci USA 115:9779–9784 http://dx.doi.org/10.1073/pnas.1808874115. [PubMed]
47. McAdam RA, Weisbrod TR, Martin J, Scuderi JD, Brown AM, Cirillo JD, Bloom BR, Jacobs WR Jr. 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63:1004–1012.
48. Gobert AP, Daulouede S, Lepoivre M, Boucher JL, Bouteille B, Buguet A, Cespuglio R, Veyret B, Vincendeau P. 2000. l-Arginine availability modulates local nitric oxide production and parasite killing in experimental trypanosomiasis. Infect Immun 68:4653–4657 http://dx.doi.org/10.1128/IAI.68.8.4653-4657.2000. [PubMed]
49. Peteroy-Kelly M, Venketaraman V, Connell ND. 2001. Effects of Mycobacterium bovis BCG infection on regulation of l-arginine uptake and synthesis of reactive nitrogen intermediates in J774.1 murine macrophages. Infect Immun 69:5823–5831 http://dx.doi.org/10.1128/IAI.69.9.5823-5831.2001. [PubMed]
50. Das P, Lahiri A, Lahiri A, Sen M, Iyer N, Kapoor N, Balaji KN, Chakravortty D. 2010. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS One 5:e15466 http://dx.doi.org/10.1371/journal.pone.0015466. [PubMed]
51. Zhang YJ, Rubin EJ. 2013. Feast or famine: the host-pathogen battle over amino acids. Cell Microbiol 15:1079–1087 http://dx.doi.org/10.1111/cmi.12140. [PubMed]
52. Wong KW. 2017. The role of ESX-1 in Mycobacterium tuberculosis pathogenesis. Microbiol Spectr 5:TBTB2-0001-2015 http://dx.doi.org/10.1128/microbiolspec.TBTB2-0001-2015. [PubMed]
53. Wong KW, Jacobs WR Jr. 2011. Critical role for NLRP3 in necrotic death triggered by Mycobacterium tuberculosis. Cell Microbiol 13:1371–1384 http://dx.doi.org/10.1111/j.1462-5822.2011.01625.x. [PubMed]
54. Augenstreich J, Arbues A, Simeone R, Haanappel E, Wegener A, Sayes F, Le Chevalier F, Chalut C, Malaga W, Guilhot C, Brosch R, Astarie-Dequeker C. 2017. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell Microbiol 19:e12726 http://dx.doi.org/10.1111/cmi.12726. [PubMed]
55. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152 http://dx.doi.org/10.4049/jimmunol.178.5.3143. [PubMed]
56. Hagedorn M, Rohde KH, Russell DG, Soldati T. 2009. Infection by tubercular mycobacteria is spread by nonlytic ejection from their amoeba hosts. Science 323:1729–1733 http://dx.doi.org/10.1126/science.1169381. [PubMed]
57. Stamm LM, Brown EJ. 2004. Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium. Microbes Infect 6:1418–1428 http://dx.doi.org/10.1016/j.micinf.2004.10.003. [PubMed]
58. Orme IM. 2014. A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis (Edinb) 94:8–14 http://dx.doi.org/10.1016/j.tube.2013.07.004. [PubMed]
59. Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR. 2003. Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1. J Immunol 170:430–437 http://dx.doi.org/10.4049/jimmunol.170.1.430. [PubMed]
60. Dallenga T, Repnik U, Corleis B, Eich J, Reimer R, Griffiths GW, Schaible UE. 2017. M. tuberculosis-induced necrosis of infected neutrophils promotes bacterial growth following phagocytosis by nacrophages. Cell Host Microbe 22:519–530.e3. [PubMed]
61. Bermudez LE, Sangari FJ, Kolonoski P, Petrofsky M, Goodman J. 2002. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70:140–146 http://dx.doi.org/10.1128/IAI.70.1.140-146.2002. [PubMed]
62. Sasindran SJ, Torrelles JB. 2011. Mycobacterium tuberculosis infection and inflammation: what is beneficial for the host and for the bacterium? Front Microbiol 2:2 http://dx.doi.org/10.3389/fmicb.2011.00002. [PubMed]
63. Dobos KM, Spotts EA, Quinn FD, King CH. 2000. Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun 68:6300–6310 http://dx.doi.org/10.1128/IAI.68.11.6300-6310.2000. [PubMed]
64. Scordo JM, Knoell DL, Torrelles JB. 2016. Alveolar epithelial cells in Mycobacterium tuberculosis infection: active players or innocent bystanders? J Innate Immun 8:3–14 http://dx.doi.org/10.1159/000439275. [PubMed]
65. Krishnan N, Robertson BD, Thwaites G. 2010. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis (Edinb) 90:361–366 http://dx.doi.org/10.1016/j.tube.2010.08.005. [PubMed]
66. Cohen SB, Gern BH, Delahave JL, Adams KN, Plumlee CR, Winkler JK, Sherman DR, Gerner MY, Urdahl KB. 2018. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24:439–446.e4. [PubMed]
67. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ. 1997. A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644 http://dx.doi.org/10.1038/385640a0. [PubMed]
68. Hingley-Wilson SM, Connell D, Pollock K, Hsu T, Tchilian E, Sykes A, Grass L, Potiphar L, Bremang S, Kon OM, Jacobs WR Jr, Lalvani A. 2014. ESX1-dependent fractalkine mediates chemotaxis and Mycobacterium tuberculosis infection in humans. Tuberculosis (Edinb) 94:262–270 http://dx.doi.org/10.1016/j.tube.2014.01.004. [PubMed]
69. Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. 2010. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–469 http://dx.doi.org/10.1126/science.1179663. [PubMed]
70. Brand S, Hofbauer K, Dambacher J, Schnitzler F, Staudinger T, Pfennig S, Seiderer J, Tillack C, Konrad A, Göke B, Ochsenkühn T, Lohse P. 2006. Increased expression of the chemokine fractalkine in Crohn’s disease and association of the fractalkine receptor T280M polymorphism with a fibrostenosing disease phenotype. Am J Gastroenterol 101:99–106 http://dx.doi.org/10.1111/j.1572-0241.2005.00361.x. [PubMed]
71. Zhang W, Choi Y, Haynes LM, Harcourt JL, Anderson LJ, Jones LP, Tripp RA. 2010. Vaccination to induce antibodies blocking the CX3C-CX3CR1 interaction of respiratory syncytial virus G protein reduces pulmonary inflammation and virus replication in mice. J Virol 84:1148–1157 http://dx.doi.org/10.1128/JVI.01755-09. [PubMed]
72. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. 1982. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis 125:740–745.
73. Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. 2017. The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 25:192–204 http://dx.doi.org/10.1016/j.tim.2016.11.004. [PubMed]
74. Lopez MS, Tan IS, Yan D, Kang J, McCreary M, Modrusan Z, Austin CD, Xu M, Brown EJ. 2017. Host-derived fatty acids activate type VII secretion in Staphylococcus aureus. Proc Natl Acad Sci USA 114:11223–11228 http://dx.doi.org/10.1073/pnas.1700627114. [PubMed]
75. Kneuper H, Cao ZP, Twomey KB, Zoltner M, Jäger F, Cargill JS, Chalmers J, van der Kooi-Pol MM, van Dijl JM, Ryan RP, Hunter WN, Palmer T. 2014. Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 93:928–943 http://dx.doi.org/10.1111/mmi.12707. [PubMed]
76. Burts ML, Williams WA, DeBord K, Missiakas DM. 2005. EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci USA 102:1169–1174 http://dx.doi.org/10.1073/pnas.0405620102. [PubMed]
77. Wang Y, Hu M, Liu Q, Qin J, Dai Y, He L, Li T, Zheng B, Zhou F, Yu K, Fang J, Liu X, Otto M, Li M. 2016. Role of the ESAT-6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Sci Rep 6:25163 http://dx.doi.org/10.1038/srep25163. [PubMed]
78. Pinheiro J, Reis O, Vieira A, Moura IM, Zanolli Moreno L, Carvalho F, Pucciarelli MG, García-Del Portillo F, Sousa S, Cabanes D. 2017. Listeria monocytogenes encodes a functional ESX-1 secretion system whose expression is detrimental to in vivo infection. Virulence 8:993–1004 http://dx.doi.org/10.1080/21505594.2016.1244589. [PubMed]
79. Millington KA, Fortune SM, Low J, Garces A, Hingley-Wilson SM, Wickremasinghe M, Kon OM, Lalvani A. 2011. Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 108:5730–5735 http://dx.doi.org/10.1073/pnas.1015153108. [PubMed]
80. Donovan ML, Schultz TE, Duke TJ, Blumenthal A. 2017. Type I interferons in the pathogenesis of tuberculosis: molecular drivers and immunological consequences. Front Immunol 8:1633 http://dx.doi.org/10.3389/fimmu.2017.01633. [PubMed]
81. Barczak AK, Avraham R, Singh S, Luo SS, Zhang WR, Bray MA, Hinman AE, Thompson M, Nietupski RM, Golas A, Montgomery P, Fitzgerald M, Smith RS, White DW, Tischler AD, Carpenter AE, Hung DT. 2017. Systematic, multiparametric analysis of Mycobacterium tuberculosis intracellular infection offers insight into coordinated virulence. PLoS Pathog 13:e1006363 http://dx.doi.org/10.1371/journal.ppat.1006363. [PubMed]
82. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE III, Freedman VH, Kaplan G. 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc Natl Acad Sci USA 98:5752–5757 http://dx.doi.org/10.1073/pnas.091096998. [PubMed]
83. Antonelli LR, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A. 2010. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682 http://dx.doi.org/10.1172/JCI40817. [PubMed]
84. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103 http://dx.doi.org/10.1038/nature13489. [PubMed]
85. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977 http://dx.doi.org/10.1038/nature09247. [PubMed]
86. Singhania A, Verma R, Graham CM, Lee J, Tran T, Richardson M, Lecine P, Leissner P, Berry MPR, Wilkinson RJ, Kaiser K, Rodrigue M, Woltmann G, Haldar P, O’Garra A. 2018. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun 9:2308 http://dx.doi.org/10.1038/s41467-018-04579-w. [PubMed]
87. Pourakbari B, Mamishi S, Marjani M, Rasulinejad M, Mariotti S, Mahmoudi S. 2015. Novel T-cell assays for the discrimination of active and latent tuberculosis infection: the diagnostic value of PPE family. Mol Diagn Ther 19:309–316 http://dx.doi.org/10.1007/s40291-015-0157-0. [PubMed]
88. Abdallah AM, Bestebroer J, Savage ND, de Punder K, van Zon M, Wilson L, Korbee CJ, van der Sar AM, Ottenhoff TH, van der Wel NN, Bitter W, Peters PJ. 2011. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J Immunol 187:4744–4753 http://dx.doi.org/10.4049/jimmunol.1101457. [PubMed]
89. Voss G, Casimiro D, Neyrolles O, Williams A, Kaufmann SHE, McShane H, Hatherill M, Fletcher HA. 2018. Progress and challenges in TB vaccine development. F1000 Res 7:199 http://dx.doi.org/10.12688/f1000research.13588.1. [PubMed]
90. Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. 2017. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 16:565–576 http://dx.doi.org/10.1080/14760584.2017.1324303. [PubMed]
91. Grode L, Ganoza CA, Brohm C, Weiner J III, Eisele B, Kaufmann SH. 2013. Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31:1340–1348 http://dx.doi.org/10.1016/j.vaccine.2012.12.053. [PubMed]
92. Penn-Nicholson A, Tameris M, Smit E, Day TA, Musvosvi M, Jayashankar L, Vergara J, Mabwe S, Bilek N, Geldenhuys H, Luabeya AK, Ellis R, Ginsberg AM, Hanekom WA, Reed SG, Coler RN, Scriba TJ, Hatherill M, TBVPX-114 study team. 2018. Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6:287–298 http://dx.doi.org/10.1016/S2213-2600(18)30077-8.
93. Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, Mabwe S, Makhethe L, Erasmus M, Toefy A, Mulenga H, Hanekom WA, Self SG, Bekker LG, Ryall R, Gurunathan S, DiazGranados CA, Andersen P, Kromann I, Evans T, Ellis RD, Landry B, Hokey DA, Hopkins R, Ginsberg AM, Scriba TJ, Hatherill M, C-040-404 Study Team. 2018. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med 379:138–149 http://dx.doi.org/10.1056/NEJMoa1714021. [PubMed]
94. Suliman S, Luabeya AKK, Geldenhuys H, Tameris M, Hoff ST, Shi Z, Tait D, Kromann I, Ruhwald M, Rutkowski KT, Shepherd B, Hokey D, Ginsberg AM, Hanekom WA, Andersen P, Scriba TJ, Hatherill M, Oelofse RE, Stone L, Swarts AM, Onrust R, Jacobs G, Coetzee L, Khomba G, Diamond B, Companie A, Veldsman A, Mulenga H, Cloete Y, Steyn M, Africa H, Nkantsu L, Smit E, Botes J, Bilek N, Mabwe S, H56-035 Trial Group. 2019. Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199:220–231 http://dx.doi.org/10.1164/rccm.201802-0366OC. [PubMed]
95. Penn-Nicholson A, Geldenhuys H, Burny W, van der Most R, Day CL, Jongert E, Moris P, Hatherill M, Ofori-Anyinam O, Hanekom W, Bollaerts A, Demoitie MA, Kany Luabeya AK, De Ruymaeker E, Tameris M, Lapierre D, Scriba TJ, Vaccine Study Team. 2015. Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 33:4025–4034 http://dx.doi.org/10.1016/j.vaccine.2015.05.088. [PubMed]
96. Gonzalo-Asensio J, Marinova D, Martin C, Aguilo N. 2017. MTBVAC: attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol 8:1803 http://dx.doi.org/10.3389/fimmu.2017.01803. [PubMed]
97. Loxton AG, Knaul JK, Grode L, Gutschmidt A, Meller C, Eisele B, Johnstone H, van der Spuy G, Maertzdorf J, Kaufmann SHE, Hesseling AC, Walzl G, Cotton MF. 2017. Safety and immunogenicity of the recombinant Mycobacterium bovis BCG vaccine VPM1002 in HIV-unexposed newborn infants in South Africa. Clin Vaccine Immunol 24:e00439-16 http://dx.doi.org/10.1128/CVI.00439-16. [PubMed]
98. Bertholet S, Ireton GC, Kahn M, Guderian J, Mohamath R, Stride N, Laughlin EM, Baldwin SL, Vedvick TS, Coler RN, Reed SG. 2008. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J Immunol 181:7948–7957 http://dx.doi.org/10.4049/jimmunol.181.11.7948. [PubMed]
99. Shah S, Briken V. 2016. Modular organization of the ESX-5 secretion system in Mycobacterium tuberculosis. Front Cell Infect Microbiol 6:49 http://dx.doi.org/10.3389/fcimb.2016.00049. [PubMed]
100. Copin R, Coscollá M, Efstathiadis E, Gagneux S, Ernst JD. 2014. Impact of in vitro evolution on antigenic diversity of Mycobacterium bovis bacillus Calmette-Guerin (BCG). Vaccine 32:5998–6004 http://dx.doi.org/10.1016/j.vaccine.2014.07.113. [PubMed]
101. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. 2003. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882 http://dx.doi.org/10.1073/pnas.1130426100. [PubMed]
102. Coler RN, Day TA, Ellis R, Piazza FM, Beckmann AM, Vergara J, Rolf T, Lu L, Alter G, Hokey D, Jayashankar L, Walker R, Snowden MA, Evans T, Ginsberg A, Reed SG, TBVPX-113 Study Team. 2018. The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines 3:34 http://dx.doi.org/10.1038/s41541-018-0057-5. [PubMed]
103. Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, Ayles HM, Henostroza G, Thienemann F, Scriba TJ, Diacon A, Blatner GL, Demoitié MA, Tameris M, Malahleha M, Innes JC, Hellström E, Martinson N, Singh T, Akite EJ, Khatoon Azam A, Bollaerts A, Ginsberg AM, Evans TG, Gillard P, Tait DR. 2018. Phase 2b controlled trial of M72/AS01 E vaccine to prevent tuberculosis. N Engl J Med 379:1621–1634 http://dx.doi.org/10.1056/NEJMoa1803484. [PubMed]
104. Parasa VR, Rahman MJ, Ngyuen Hoang AT, Svensson M, Brighenti S, Lerm M. 2014. Modeling Mycobacterium tuberculosis early granuloma formation in experimental human lung tissue. Dis Model Mech 7:281–288 http://dx.doi.org/10.1242/dmm.013854. [PubMed]
105. Hingley-Wilson SM, Casey R, Connell D, Bremang S, Evans JT, Hawkey PM, Smith GE, Jepson A, Philip S, Kon OM, Lalvani A. 2013. Undetected multidrug-resistant tuberculosis amplified by first-line therapy in mixed infection. Emerg Infect Dis 19:1138–1141 http://dx.doi.org/10.3201/eid1907.130313. [PubMed]
106. McIvor A, Koornhof H, Kana BD. 2017. Relapse, re-infection and mixed infections in tuberculosis disease. Pathog Dis 75:ftx020 http://dx.doi.org/10.1093/femspd/ftx020. [PubMed]
107. Yeboah-Manu D, Asare P, Asante-Poku A, Otchere ID, Osei-Wusu S, Danso E, Forson A, Koram KA, Gagneux S. 2016. Spatio-temporal distribution of Mycobacterium tuberculosis complex strains in Ghana. PLoS One 11:e0161892 http://dx.doi.org/10.1371/journal.pone.0161892. [PubMed]
108. Bitter W, Houben EN, Bottai D, Brodin P, Brown EJ, Cox JS, Derbyshire K, Fortune SM, Gao LY, Liu J, Gey van Pittius NC, Pym AS, Rubin EJ, Sherman DR, Cole ST, Brosch R. 2009. Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5:e1000507 http://dx.doi.org/10.1371/journal.ppat.1000507. [PubMed]
109. Houben EN, Bestebroer J, Ummels R, Wilson L, Piersma SR, Jiménez CR, Ottenhoff TH, Luirink J, Bitter W. 2012. Composition of the type VII secretion system membrane complex. Mol Microbiol 86:472–484 http://dx.doi.org/10.1111/j.1365-2958.2012.08206.x. [PubMed]
110. Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A, Finer-Moore J, Holton J, Cheng Y, Stroud RM, Cox JS. 2015. Substrates control multimerization and activation of the multi-domain ATPase motor of type VII secretion. Cell 161:501–512 http://dx.doi.org/10.1016/j.cell.2015.03.040. [PubMed]
111. Das C, Ghosh TS, Mande SS. 2011. Computational analysis of the ESX-1 region of Mycobacterium tuberculosis: insights into the mechanism of type VII secretion system. PLoS One 6:e27980 http://dx.doi.org/10.1371/journal.pone.0027980. [PubMed]
112. Daleke MH, van der Woude AD, Parret AH, Ummels R, de Groot AM, Watson D, Piersma SR, Jiménez CR, Luirink J, Bitter W, Houben EN. 2012. Specific chaperones for the type VII protein secretion pathway. J Biol Chem 287:31939–31947 http://dx.doi.org/10.1074/jbc.M112.397596. [PubMed]
113. Ekiert DC, Cox JS. 2014. Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci USA 111:14758–14763 http://dx.doi.org/10.1073/pnas.1409345111. [PubMed]
114. Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC, Evans TJ, Wilmanns M, Bitter W, Parret AH, Houben EN, Korotkov KV. 2014. Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol 94:367–382 http://dx.doi.org/10.1111/mmi.12770. [PubMed]
115. Korotkova N, Piton J, Wagner JM, Boy-Röttger S, Japaridze A, Evans TJ, Cole ST, Pojer F, Korotkov KV. 2015. Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J Struct Biol 191:236–244 http://dx.doi.org/10.1016/j.jsb.2015.06.003. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.BAI-0024-2019
2019-06-07
2019-08-18

Abstract:

is an ancient master of the art of causing human disease. One important weapon within its fully loaded arsenal is the type VII secretion system. has five of them: ESAT-6 secretion systems (ESX) 1 to 5. ESX-1 has long been recognized as a major cause of attenuation of the FDA-licensed vaccine BCG, but its importance in disease progression and transmission has recently been elucidated in more detail. This review summarizes the recent advances in (i) the understanding of the ESX-1 structure and components, (ii) our knowledge of ESX-1’s role in hijacking macrophage function to set a path for infection and dissemination, and (iii) the development of interventions that utilize ESX-1 for diagnosis, drug interventions, host-directed therapies, and vaccines.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic of the ESX-1 secretion system. Gene map of the locus and the operon in H37Rv. The locus includes genes encoding the secreted effector proteins EsxA and EsxB alongside genes encoding ESX-conserved proteins and genes encoding ESX secretion-associated proteins ( 108 ). The operon is at a locus distinct from the locus but shares sequence homology with , , and of (dashed lines). The spontaneous deletion (Rv3871 to Rv3878) from found in the vaccine strains of BCG is known as region of difference 1 (RD1) and is indicated by the gray box. Model of the ESX-1 secretion system in the mycobacterial cell envelope. In common with all ESX systems, the core structure of the ESX-1 secretion apparatus starts with the inner membrane-spanning conserved components EccB, EccC, EccD, and EccE ( 109 ). EccC is an ATP-driven translocase consisting of two subunits (a and b) that are assembled following EccB binding of target substrate, in this case, the heterodimer EsxAB, where EccCb interacts with the carboxyl-terminal signal sequence of EsxB (labeled “C”) ( 21 , 110 ). EsxAB secretion is codependent on the secretion of EspC/EspA, which is also dependent on interaction with the cytosolic ATPase EccA ( 20 , 111 ). EspC polymerizes during secretion, indicating a role for EccA and EspA as cytosolic chaperones ( 18 ), and forms a filamentous structure thought to provide a channel for secretion of ESX-1 substrates ( 18 ). Other important ESX-1 substrates include the PE and PPE families of proteins, which form heterodimers and are recruited by the putative cytosolic chaperone EspG to initiate interaction with the core complex of proteins within the inner membrane ( 112 114 ). EspB is also secreted by ESX-1 and forms a PE-PPE-like fold, containing a C-terminal domain that is processed by the MycP protease during secretion ( 26 , 115 ). EspD to -F and EspH proteins are cytosolic and were recently shown to be stabilized by the cytosolic chaperone EspL ( 24 26 ).

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0024-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

ESX-1-related disease progression within the lung. Steps involved in progression of disease are represented with the numbers 1 to 9. (1) Infection of alveolar macrophages with (wild type) or ESX-1 mutant. (2) Lysis of the phagosomal and cellular macrophage membranes is carried out by EsxA from wild-type (2a), while the ESX-1 mutant remains trapped in the alveolar macrophages in the alveolar space (2b). (3) Infection of type II pneumocytes in the alveolar epithelium (AE) by , with resulting ESAT-6-mediated lysis, allowing passage into the interstitial tissue or (3a) translocation of infected alveolar macrophage to lung interstitial tissue. (4) Translocated bacteria are ingested by and replicate within macrophages, which produce cytokines such as fractalkine. (5) Release of bacilli by necrosis of infection-dependent macrophages. (6) Recruitment of neutrophils and naive macrophages by fractalkine and infection of new macrophages and other cells by phagocytosis. (7) Intracellular replication of bacilli in recruited infected macrophages. (8) Continuation of the cycle, leading to egress of from the host cells into deeper interstitial tissue and dissemination within the lungs. (9) Establishment of granulomas and necrosis. (Insets) (a) Electron micrograph of EsxAB. (b) Electron micrograph of the ESX-1 mutant (blue arrow) trapped within the phagosome of an alveolar macrophage in alveolar space in a murine model. (c) Electron micrograph showing wild-type (red arrow) following egress to the cytoplasm and interstitial spaces in the murine lung.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0024-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

TB vaccines in the pipeline, undergoing phase 1 to 3 clinical trials. Current vaccine candidates in the pipeline include protein/adjuvant-based, attenuated/killed or cell extract-based, and viral vector-based vaccines.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.BAI-0024-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error