No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.


MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    218.22 Kb
  • HTML
    211.15 Kb
  • PDF
    401.17 Kb
  • Authors: Sean X. Zhang1, Nathan P. Wiederhold2
  • Editors: Randall T. Hayden3, Donna M. Wolk4, Karen C. Carroll5, Yi-Wei Tang6
    Affiliations: 1: Division of Medical Microbiology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21287; 2: Departments of Pathology and Medicine/Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; 3: St. Jude’s Children’s Research Hospital, Memphis, TN; 4: Geisinger Clinic, Danville, PA; 5: Johns Hopkins University Hospital, Baltimore, MD; 6: Memorial Sloan-Kettering Institute, New York, NY
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0030-2016
  • Received 22 April 2016 Accepted 25 April 2016 Published 01 July 2016
  • Sean X. Zhang, [email protected]
image of Yeasts
    Preview this microbiology spectrum article:
    Zoom in

    Yeasts, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0030-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/4/DMIH2-0030-2016-2.gif
  • Abstract:

    Yeasts are unicellular organisms that reproduce mostly by budding and less often by fission. Most medically important yeasts originate from Ascomycota or Basidiomycota. Here, we review taxonomy, epidemiology, disease spectrum, antifungal drug susceptibility patterns of medically important yeast, laboratory diagnosis, and diagnostic strategies.

  • Citation: Zhang S, Wiederhold N. 2016. Yeasts. Microbiol Spectrum 4(4):DMIH2-0030-2016. doi:10.1128/microbiolspec.DMIH2-0030-2016.


1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. 2004. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317. [CrossRef]
2. Oude Lashof AM, Rothova A, Sobel JD, Ruhnke M, Pappas PG, Viscoli C, Schlamm HT, Oborska IT, Rex JH, Kullberg BJ. 2011. Ocular manifestations of candidemia. Clin Infect Dis 53:262–268. [CrossRef]
3. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group; European Confederation of Medical Mycology. 2014. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect 20(Suppl 3) :76–98. [CrossRef]
4. Chowdhary A, Sharma C, Duggal S, Agarwal K, Prakash A, Singh PK, Jain S, Kathuria S, Randhawa HS, Hagen F, Meis JF. 2013. New clonal strain of Candida auris, Delhi, India. Emerg Infect Dis 19:1670–1673. [CrossRef]
5. Magobo RE, Corcoran C, Seetharam S, Govender NP. 2014. Candida auris-associated candidemia, South Africa. Emerg Infect Dis 20:1250–1251. [CrossRef]
6. Alexander BD, Johnson MD, Pfeiffer CD, Jiménez-Ortigosa C, Catania J, Booker R, Castanheira M, Messer SA, Perlin DS, Pfaller MA. 2013. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724–1732. [CrossRef]
7. Pottier I, Gente S, Vernoux JP, Guéguen M. 2008. Safety assessment of dairy microorganisms: Geotrichum candidum. Int J Food Microbiol 126:327–332. [CrossRef]
8. Bonifaz A, Vázquez-González D, Macías B, Paredes-Farrera F, Hernández MA, Araiza J, Ponce RM. 2010. Oral geotrichosis: report of 12 cases. J Oral Sci 52:477–483. [CrossRef]
9. Sfakianakis A, Krasagakis K, Stefanidou M, Maraki S, Koutsopoulos A, Kofteridis D, Samonis G, Tosca A. 2007. Invasive cutaneous infection with Geotrichum candidum: sequential treatment with amphotericin B and voriconazole. Med Mycol 45:81–84. [CrossRef]
10. Hrdy DB, Nassar NN, Rinaldi MG. 1995. Traumatic joint infection due to Geotrichum candidum. Clin Infect Dis 20:468–469. [CrossRef]
11. Henrich TJ, Marty FM, Milner DA Jr, Thorner AR. 2009. Disseminated Geotrichum candidum infection in a patient with relapsed acute myelogenous leukemia following allogeneic stem cell transplantation and review of the literature. Transpl Infect Dis 11:458–462. [CrossRef]
12. Girmenia C, Pagano L, Martino B, D’Antonio D, Fanci R, Specchia G, Melillo L, Buelli M, Pizzarelli G, Venditti M, Martino P; GIMEMA Infection Program. 2005. Invasive infections caused by Trichosporon species and Geotrichum capitatum in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature. J Clin Microbiol 43:1818–1828. [CrossRef]
13. Girmenia C, Pizzarelli G, D’Antonio D, Cristini F, Martino P. 2003. In vitro susceptibility testing of Geotrichum capitatum: comparison of the E-test, disk diffusion, and Sensititre colorimetric methods with the NCCLS M27-A2 broth microdilution reference method. Antimicrob Agents Chemother 47:3985–3988. [CrossRef]
14. Miceli MH, Díaz JA, Lee SA. 2011. Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151. [CrossRef]
15. Döğen A, Kaplan E, Oksüz Z, Serin MS, Ilkit M, de Hoog GS. 2013. Dishwashers are a major source of human opportunistic yeast-like fungi in indoor environments in Mersin, Turkey. Med Mycol 51:493–498. [CrossRef]
16. Bouza E, Muñoz P. 2004. Invasive infections caused by Blastoschizomyces capitatus and Scedosporium spp. Clin Microbiol Infect 10(Suppl 1) :76–85. [CrossRef]
17. Gadea I, Cuenca-Estrella M, Prieto E, Diaz-Guerra TM, Garcia-Cia JI, Mellado E, Tomas JF, Rodriguez-Tudela JL. 2004. Genotyping and antifungal susceptibility profile of Dipodascus capitatus isolates causing disseminated infection in seven hematological patients of a tertiary hospital. J Clin Microbiol 42:1832–1836. [CrossRef]
18. Celik AD, Ozaras R, Kantarcioglu S, Mert A, Tabak F, Ozturk R. 2009. Spondylodiscitis due to an emergent fungal pathogen: Blastoschizomyces capitatus, a case report and review of the literature. Rheumatol Int 29:1237–1241. [CrossRef]
19. Mazzocato S, Marchionni E, Fothergill AW, Sutton DA, Staffolani S, Gesuita R, Skrami E, Fiorentini A, Manso E, Barchiesi F. 2015. Epidemiology and outcome of systemic infections due to Saprochaete capitata: case report and review of the literature. Infection 43:211–215. [CrossRef]
20. Gurgui M, Sanchez F, March F, Lopez-Contreras J, Martino R, Cotura A, Galvez ML, Roig C, Coll P. 2011. Nosocomial outbreak of Blastoschizomyces capitatus associated with contaminated milk in a haematological unit. J Hosp Infect 78:274–278. [CrossRef]
21. Vaux S, Criscuolo A, Desnos-Ollivier M, Diancourt L, Tarnaud C, Vandenbogaert M, Brisse S, Coignard B, Dromer F; Geotrichum Investigation Group. 2014. Multicenter outbreak of infections by Saprochaete clavata, an unrecognized opportunistic fungal pathogen. MBio 5:e02309–02314. [CrossRef]
22. Schuermans C, van Bergen M, Coorevits L, Verhaegen J, Lagrou K, Surmont I, Jeurissen A. 2011. Breakthrough Saprochaete capitata infections in patients receiving echinocandins: case report and review of the literature. Med Mycol 49:414–418. [CrossRef]
23. Chittick P, Palavecino EL, Delashmitt B, Evans J, Peacock JE Jr. 2009. Case of fatal Blastoschizomyces capitatus infection occurring in a patient receiving empiric micafungin therapy. Antimicrob Agents Chemother 53:5306–5307. [CrossRef]
24. Bonini A, Capatti C, Parmeggiani M, Gugliotta L, Micozzi A, Gentile G, Capria S, Girmenia C. 2008. Galactomannan detection in Geotrichum capitatum invasive infections: report of 2 new cases and review of diagnostic options. Diagn Microbiol Infect Dis 62:450–452. [CrossRef]
25. Giacchino M, Chiapello N, Bezzio S, Fagioli F, Saracco P, Alfarano A, Martini V, Cimino G, Martino P, Girmenia C. 2006. Aspergillus galactomannan enzyme-linked immunosorbent assay cross-reactivity caused by invasive Geotrichum capitatum. J Clin Microbiol 44:3432–3434. [CrossRef]
26. Desnos-Ollivier M, Blanc C, Garcia-Hermoso D, Hoinard D, Alanio A, Dromer F. 2014. Misidentification of Saprochaete clavata as Magnusiomyces capitatus in clinical isolates: utility of internal transcribed spacer sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry and importance of reliable databases. J Clin Microbiol 52:2196–2198. [CrossRef]
27. Guého E, de Hoog GS, Smith MT, Meyer SA. 1987. DNA relatedness, taxonomy, and medical significance of Geotrichum capitatum. J Clin Microbiol 25:1191–1194.
28. Enache-Angoulvant A, Hennequin C. 2005. Invasive Saccharomyces infection: a comprehensive review. Clin Infect Dis 41:1559–1568. [CrossRef]
29. Posteraro B, Sanguinetti M, D’Amore G, Masucci L, Morace G, Fadda G. 1999. Molecular and epidemiological characterization of vaginal Saccharomyces cerevisiae isolates. J Clin Microbiol 37:2230–2235.
30. McCullough MJ, Clemons KV, Farina C, McCusker JH, Stevens DA. 1998. Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method. J Clin Microbiol 36:557–562.
31. Salonen JH, Richardson MD, Gallacher K, Issakainen J, Helenius H, Lehtonen OP, Nikoskelainen J. 2000. Fungal colonization of haematological patients receiving cytotoxic chemotherapy: emergence of azole-resistant Saccharomyces cerevisiae. J Hosp Infect 45:293–301. [CrossRef]
32. Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J. 2001. Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73(2 Suppl) :430S–436S.
33. Muñoz P, Bouza E, Cuenca-Estrella M, Eiros JM, Pérez MJ, Sánchez-Somolinos M, Rincón C, Hortal J, Peláez T. 2005. Saccharomyces cerevisiae fungemia: an emerging infectious disease. Clin Infect Dis 40:1625–1634. [CrossRef]
34. Herbrecht R, Nivoix Y. 2005. Saccharomyces cerevisiae fungemia: an adverse effect of Saccharomyces boulardii probiotic administration. Clin Infect Dis 40:1635–1637. [CrossRef]
35. Thygesen JB, Glerup H, Tarp B. 2012. Saccharomyces boulardii fungemia caused by treatment with a probioticum. BMJ Case Rep pii:bcr0620114412. [CrossRef]
36. Graf C, Gavazzi G. 2007. Saccharomyces cerevisiae fungemia in an immunocompromised patient not treated with Saccharomyces boulardii preparation. J Infect 54:310–311. [CrossRef]
37. Tiballi RN, Spiegel JE, Zarins LT, Kauffman CA. 1995. Saccharomyces cerevisiae infections and antifungal susceptibility studies by colorimetric and broth macrodilution methods. Diagn Microbiol Infect Dis 23:135–140. [CrossRef]
38. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Pappas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC. 2010. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 50:291–322. [CrossRef]
39. Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong ND, Thai CQ, Thai le H, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell JI, Sieu TP, Baker SG, Chau NV, Hien TT, Lalloo DG, Farrar JJ. 2013. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302. [CrossRef]
40. Byrnes EJ III, Marr KA. 2011. The outbreak of Cryptococcus gattii in western North America: epidemiology and clinical issues. Curr Infect Dis Rep 13:256–261. [CrossRef]
41. Datta K, Bartlett KH, Baer R, Byrnes E, Galanis E, Heitman J, Hoang L, Leslie MJ, MacDougall L, Magill SS, Morshed MG, Marr KA; Cryptococcus gattie Working Group of the Pacific Northwest. 2009. Spread of Cryptococcus gattii into Pacific Northwest region of the United States. Emerg Infect Dis 15:1185–1191. [CrossRef]
42. Chen SC, Meyer W, Sorrell TC. 2014. Cryptococcus gattii infections. Clin Microbiol Rev 27:980–1024. [CrossRef]
43. Franco-Paredes C, Womack T, Bohlmeyer T, Sellers B, Hays A, Patel K, Lizarazo J, Lockhart SR, Siddiqui W, Marr KA. 2015. Management of Cryptococcus gattii meningoencephalitis. Lancet Infect Dis 15:348–355. [CrossRef]
44. Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S, Cuenca-Estrella M, Fothergill A, Fuller J, Govender N, Hagen F, Illnait-Zaragozi MT, Johnson E, Kidd S, Lass-Flörl C, Lockhart SR, Martins MA, Meis JF, Melhem MS, Ostrosky-Zeichner L, Pelaez T, Pfaller MA, Schell WA, St-Germain G, Trilles L, Turnidge J. 2012. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 56:5898–5906. [CrossRef]
45. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T. 2015. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48. [CrossRef]
46. Khawcharoenporn T, Apisarnthanarak A, Mundy LM. 2007. Non-neoformans cryptococcal infections: a systematic review. Infection 35:51–58. [CrossRef]
47. Pan W, Liao W, Hagen F, Theelen B, Shi W, Meis JF, Boekhout T. 2012. Meningitis caused by Filobasidium uniguttulatum: case report and overview of the literature. Mycoses 55:105–109.
48. Tintelnot K, Losert H. 2005. Isolation of Cryptococcus adeliensis from clinical samples and the environment in Germany. J Clin Microbiol 43:1007. [CrossRef]
49. Rimek D, Haase G, Lück A, Casper J, Podbielski A. 2004. First report of a case of meningitis caused by Cryptococcus adeliensis in a patient with acute myeloid leukemia. J Clin Microbiol 42:481–483. [CrossRef]
50. Gullo FP, Rossi SA, Sardi Jde C, Teodoro VL, Mendes-Giannini MJ, Fusco-Almeida AM. 2013. Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis 32:1377–1391. [CrossRef]
51. Manfredi R, Fulgaro C, Sabbatani S, Legnani G, Fasulo G. 2006. Emergence of amphotericin B-resistant Cryptococcus laurentii meningoencephalitis shortly after treatment for Cryptococcus neoformans meningitis in a patient with AIDS. AIDS Patient Care STDS 20:227–232. [CrossRef]
52. Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, Fu W, Colombo AL, Rodriguez-Noriega E; Global Antifungal Surveillance Study. 2007. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45:1735–1745. [CrossRef]
53. Bernal-Martinez L, Gomez-Lopez A, Castelli MV, Mesa-Arango AC, Zaragoza O, Rodriguez-Tudela JL, Cuenca-Estrella M. 2010. Susceptibility profile of clinical isolates of non- Cryptococcus neoformans/non- Cryptococcus gattii Cryptococcus species and literature review. Med Mycol 48:90–96. [CrossRef]
54. Colombo AL, Padovan AC, Chaves GM. 2011. Current knowledge of Trichosporon spp. and trichosporonosis. Clin Microbiol Rev 24:682–700. [CrossRef]
55. Ando M, Suga M, Nishiura Y, Miyajima M. 1995. Summer-type hypersensitivity pneumonitis. Intern Med 34:707–712. [CrossRef]
56. Shah AV, McColley SA, Weil D, Zheng X. 2014. Trichosporon mycotoxinivorans infection in patients with cystic fibrosis. J Clin Microbiol 52:2242–2244. [CrossRef]
57. Hickey PW, Sutton DA, Fothergill AW, Rinaldi MG, Wickes BL, Schmidt HJ, Walsh TJ. 2009. Trichosporon mycotoxinivorans, a novel respiratory pathogen in patients with cystic fibrosis. J Clin Microbiol 47:3091–3097. [CrossRef]
58. Matsue K, Uryu H, Koseki M, Asada N, Takeuchi M. 2006. Breakthrough trichosporonosis in patients with hematologic malignancies receiving micafungin. Clin Infect Dis 42:753–757. [CrossRef]
59. Suzuki K, Nakase K, Kyo T, Kohara T, Sugawara Y, Shibazaki T, Oka K, Tsukada T, Katayama N. 2010. Fatal Trichosporon fungemia in patients with hematologic malignancies. Eur J Haematol 84:441–447. [CrossRef]
60. Bayramoglu G, Sonmez M, Tosun I, Aydin K, Aydin F. 2008. Breakthrough Trichosporon asahii fungemia in neutropenic patient with acute leukemia while receiving caspofungin. Infection 36:68–70. [CrossRef]
61. Fleming RV, Walsh TJ, Anaissie EJ. 2002. Emerging and less common fungal pathogens. Infect Dis Clin North Am 16:915–933, vi–vii. [CrossRef]
62. Ruan SY, Chien JY, Hsueh PR. 2009. Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin Infect Dis 49:e11–e17. [CrossRef]
63. Denning DW. 2003. Echinocandin antifungal drugs. Lancet 362:1142–1151. [CrossRef]
64. Pfaller MA, Diekema DJ. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431. [CrossRef]
65. Rodriguez-Tudela JL, Diaz-Guerra TM, Mellado E, Cano V, Tapia C, Perkins A, Gomez-Lopez A, Rodero L, Cuenca-Estrella M. 2005. Susceptibility patterns and molecular identification of Trichosporon species. Antimicrob Agents Chemother 49:4026–4034. [CrossRef]
66. Asada N, Uryu H, Koseki M, Takeuchi M, Komatsu M, Matsue K. 2006. Successful treatment of breakthrough Trichosporon asahii fungemia with voriconazole in a patient with acute myeloid leukemia. Clin Infect Dis 43:e39–e41. [CrossRef]
67. Gaitanis G, Magiatis P, Hantschke M, Bassukas ID, Velegraki A. 2012. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141. [CrossRef]
68. Morrison VA, Weisdorf DJ. 2000. The spectrum of Malassezia infections in the bone marrow transplant population. Bone Marrow Transplant 26:645–648. [CrossRef]
69. Chang HJ, Miller HL, Watkins N, Arduino MJ, Ashford DA, Midgley G, Aguero SM, Pinto-Powell R, von Reyn CF, Edwards W, McNeil MM, Jarvis WR. 1998. An epidemic of Malassezia pachydermatis in an intensive care nursery associated with colonization of health care workers’ pet dogs. N Engl J Med 338:706–711. [CrossRef]
70. Chryssanthou E, Broberger U, Petrini B. 2001. Malassezia pachydermatis fungaemia in a neonatal intensive care unit. Acta Paediatr 90:323–327. [CrossRef]
71. Mickelsen PA, Viano-Paulson MC, Stevens DA, Diaz PS. 1988. Clinical and microbiological features of infection with Malassezia pachydermatis in high-risk infants. J Infect Dis 157:1163–1168. [CrossRef]
72. Velegraki A, Alexopoulos EC, Kritikou S, Gaitanis G. 2004. Use of fatty acid RPMI 1640 media for testing susceptibilities of eight Malassezia species to the new triazole posaconazole and to six established antifungal agents by a modified NCCLS M27-A2 microdilution method and Etest. J Clin Microbiol 42:3589–3593. [CrossRef]
73. Iatta R, Figueredo LA, Montagna MT, Otranto D, Cafarchia C. 2014. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. J Med Microbiol 63:1467–1473. [CrossRef]
74. Cafarchia C, Figueredo LA, Iatta R, Colao V, Montagna MT, Otranto D. 2012. In vitro evaluation of Malassezia pachydermatis susceptibility to azole compounds using E-test and CLSI microdilution methods. Med Mycol 50:795–801. [CrossRef]
75. Gupta AK, Kohli Y, Li A, Faergemann J, Summerbell RC. 2000. In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol 142:758–765. [CrossRef]
76. Ashbee HR. 2007. Update on the genus Malassezia. Med Mycol 45:287–303. [CrossRef]
77. De Almeida GM, Costa SF, Melhem M, Motta AL, Szeszs MW, Miyashita F, Pierrotti LC, Rossi F, Burattini MN. 2008. Rhodotorula spp. isolated from blood cultures: clinical and microbiological aspects. Med Mycol 46:547–556. [CrossRef]
78. Wirth F, Goldani LZ. 2012. Epidemiology of Rhodotorula: an emerging pathogen. Interdiscip Perspect Infect Dis 2012:465717. [CrossRef]
79. Chitasombat MN, Kofteridis DP, Jiang Y, Tarrand J, Lewis RE, Kontoyiannis DP. 2012. Rare opportunistic (non- Candida, non- Cryptococcus) yeast bloodstream infections in patients with cancer. J Infect 64:68–75. [CrossRef]
80. Tuon FF, Costa SF. 2008. Rhodotorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol 25:135–140. [CrossRef]
81. García-Suárez J, Gómez-Herruz P, Cuadros JA, Burgaleta C. 2011. Epidemiology and outcome of Rhodotorula infection in haematological patients. Mycoses 54:318–324. [CrossRef]
82. Tuon FF, de Almeida GM, Costa SF. 2007. Central venous catheter-associated fungemia due to Rhodotorula spp.—A systematic review. Med Mycol 45:441–447. [CrossRef]
83. Lunardi LW, Aquino VR, Zimerman RA, Goldani LZ. 2006. Epidemiology and outcome of Rhodotorula fungemia in a tertiary care hospital. Clin Infect Dis 43:e60–e63. [CrossRef]
84. Forés R, Ramos A, Orden B, de Laiglesia A, Bautista G, Cabero M, Muñez E, Sánchez-Romero I, Navarro B, Bravo J, Cabrera R. 2012. Rhodotorula species fungaemia causes low mortality in haematopoietic stem-cell transplantation. A case report and review. Mycoses 55:e158–e162. [CrossRef]
85. Perniola R, Faneschi ML, Manso E, Pizzolante M, Rizzo A, Sticchi Damiani A, Longo R. 2006. Rhodotorula mucilaginosa outbreak in neonatal intensive care unit: microbiological features, clinical presentation, and analysis of related variables. Eur J Clin Microbiol Infect Dis 25:193–196. [CrossRef]
86. Khodavaisy S, Nabili M, Davari B, Vahedi M. 2011. Evaluation of bacterial and fungal contamination in the health care workers’ hands and rings in the intensive care unit. J Prev Med Hyg 52:215–218.
87. Nunes JM, Bizerra FC, Ferreira RC, Colombo AL. 2013. Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother 57:382–389. [CrossRef]
88. Diekema DJ, Petroelje B, Messer SA, Hollis RJ, Pfaller MA. 2005. Activities of available and investigational antifungal agents against Rhodotorula species. J Clin Microbiol 43:476–478. [CrossRef]
89. Mori T, Nakamura Y, Kato J, Sugita K, Murata M, Kamei K, Okamoto S. 2012. Fungemia due to Rhodotorula mucilaginosa after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 14:91–94. [CrossRef]
90. García-Suárez J, Gómez-Herruz P, Cuadros JA, Guillén H, Burgaleta C. 2011. Rhodotorula mucilaginosa catheter-related fungaemia in a patient with multiple myeloma. Mycoses 54:e214–e216. [CrossRef]
91. Preney L, Théraud M, Guiguen C, Gangneux JP. 2003. Experimental evaluation of antifungal and antiseptic agents against Rhodotorula spp. Mycoses 46:492–495. [CrossRef]
92. Gomez-Lopez A, Mellado E, Rodriguez-Tudela JL, Cuenca-Estrella M. 2005. Susceptibility profile of 29 clinical isolates of Rhodotorula spp. and literature review. J Antimicrob Chemother 55:312–316. [CrossRef]
93. Ghelardi E, Pichierri G, Castagna B, Barnini S, Tavanti A, Campa M. 2008. Efficacy of chromogenic Candida agar for isolation and presumptive identification of pathogenic yeast species. Clin Microbiol Infect 14:141–147. [CrossRef]
94. Sendid B, François N, Standaert A, Dehecq E, Zerimech F, Camus D, Poulain D. 2007. Prospective evaluation of the new chromogenic medium CandiSelect 4 for differentiation and presumptive identification of the major pathogenic Candida species. J Med Microbiol 56:495–499. [CrossRef]
95. Larone DH. 2011. Medical Important Fungi: a Guide to Identification, 5th ed. ASM Press, Washington, DC.
96. Fenn JP, Segal H, Blevins L, Fawson S, Newcomb-Gayman P, Carroll KC. 1996. Comparison of the Murex Candida albicans CA50 test with germ tube production for identification of C. albicans. Diagn Microbiol Infect Dis 24:31–35. [CrossRef]
97. Posteraro B, Efremov L, Leoncini E, Amore R, Posteraro P, Ricciardi W, Sanguinetti M. 2015. Are the conventional commercial yeast identification methods still helpful in the era of new clinical microbiology diagnostics? A meta-analysis of their accuracy. J Clin Microbiol 53:2439–2450. [CrossRef]
98. Piens MA, Perry JD, Raberin H, Parant F, Freydière AM. 2003. Routine use of a one minute trehalase and maltase test for the identification of Candida glabrata in four laboratories. J Clin Pathol 56:687–689. [CrossRef]
99. Freydière AM, Parant F, Noel-Baron F, Crepy M, Treny A, Raberin H, Davidson A, Odds FC. 2002. Identification of Candida glabrata by a 30-second trehalase test. J Clin Microbiol 40:3602–3605. [CrossRef]
100. Hoppe JE, Frey P. 1999. Evaluation of six commercial tests and the germ-tube test for presumptive identification of Candida albicans. Eur J Clin Microbiol Infect Dis 18:188–191. [CrossRef]
101. Won EJ, Shin JH, Kim MN, Choi MJ, Joo MY, Kee SJ, Shin MG, Suh SP, Ryang DW. 2014. Evaluation of the BD Phoenix system for identification of a wide spectrum of clinically important yeast species: a comparison with Vitek 2-YST. Diagn Microbiol Infect Dis 79:477–480. [CrossRef]
102. Posteraro B, Ruggeri A, De Carolis E, Torelli R, Vella A, De Maio F, Ricciardi W, Posteraro P, Sanguinetti M. 2013. Comparative evaluation of BD Phoenix and Vitek 2 systems for species identification of common and uncommon pathogenic yeasts. J Clin Microbiol 51:3841–3845. [CrossRef]
103. Seifert KA, Samuels GJ. 2000. How should we look at anamorphs? Stud Mycol 45:5–18.
104. Irinyi L, Lackner M, de Hoog GS, Meyer W. 2016. DNA barcoding of fungi causing infections in humans and animals. Fungal Biol 120:125–136. [CrossRef]
105. Hajibabaei M, Singer GA, Hebert PD, Hickey DA. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23:167–172. [CrossRef]
106. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, Mitchell TG, Vainstein MH, Meyer W. 2009. Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One 4:e5862. doi:10.1371/journal.pone.00005862
107. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. 2000. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol 50:1351–1371. [CrossRef]
108. Scorzetti G, Fell JW, Fonseca A, Statzell-Tallman A. 2002. Systematics of basidiomycetous yeasts: a comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res 2:495–517. [CrossRef]
109. Kwiatkowski NP, Babiker WM, Merz WG, Carroll KC, Zhang SX. 2012. Evaluation of nucleic acid sequencing of the D1/D2 region of the large subunit of the 28S rDNA and the internal transcribed spacer region using SmartGene IDNS [corrected] software for identification of filamentous fungi in a clinical laboratory. J Mol Diagn 14:393–401. [CrossRef]
110. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246. [CrossRef]
111. Kiss L. 2012. Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for fungi. Proc Natl Acad Sci U S A 109:E1811; author reply E1812.
112. Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59. doi:10.1371/journal.pone.0000059 [CrossRef]
113. Ratnasingham S, Hebert PD. 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes 7:355–364. [CrossRef]
114. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martin MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH. 2013. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277. [CrossRef]
115. Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G, Irinyi L, Meyer W, Nilsson RH, Hughes K, Miller AN, Kirk PM, Abarenkov K, Aime MC, Ariyawansa HA, Bidartondo M, Boekhout T, Buyck B, Cai Q, Chen J, Crespo A, Crous PW, Damm U, De Beer ZW, Dentinger BT, Divakar PK, Dueñas M, Feau N, Fliegerova K, García MA, Ge ZW, Griffith GW, Groenewald JZ, Groenewald M, Grube M, Gryzenhout M, Gueidan C, Guo L, Hambleton S, Hamelin R, Hansen K, Hofstetter V, Hong SB, Houbraken J, Hyde KD, Inderbitzin P, Johnston PR, Karunarathna SC, Kõljalg U, Kovács GM, Kraichak E, Krizsan K, Kurtzman CP, Larsson KH, Leavitt S, Letcher PM, Liimatainen K, Liu JK, Lodge DJ, Luangsa-ard JJ, Lumbsch HT, Maharachchikumbura SS, Manamgoda D, Martín MP, Minnis AM, Moncalvo JM, Mulè G, Nakasone KK, Niskanen T, Olariaga I, Papp T, Petkovits T, Pino-Bodas R, Powell MJ, Raja HA, Redecker D, Sarmiento-Ramirez JM, Seifert KA, Shrestha B, Stenroos S, Stielow B, Suh SO, Tanaka K, Tedersoo L, Telleria MT, Udayanga D, Untereiner WA, Diéguez Uribeondo J, Subbarao KV, Vágvölgyi C, Visagie C, Voigt K, Walker DM, Weir BS, Weiß M, Wijayawardene NN, Wingfield MJ, Xu JP, Yang ZL, Zhang N, Zhuang WY, Federhen S. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database (Oxford) pii:bau061. [CrossRef]
116. Park B, Park J, Cheong KC, Choi J, Jung K, Kim D, Lee YH, Ward TJ, O’Donnell K, Geiser DM, Kang S. 2011. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucleic Acids Res 39:D640–D646. [CrossRef]
117. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR. 2014. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42:D705–710. [CrossRef]
118. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, Cardinali G, Arthur I, Normand AC, Giraldo A, da Cunha KC, Sandoval-Denis M, Hendrickx M, Nishikaku AS, de Azevedo Melo AS, Merseguel KB, Khan A, Parente Rocha JA, Sampaio P, da Silva Briones MR, e Ferreira RC, de Medeiros Muniz M, Castañón-Olivares LR, Estrada-Barcenas D, Cassagne C, Mary C, Duan SY, Kong F, Sun AY, Zeng X, Zhao Z, Gantois N, Botterel F, Robbertse B, Schoch C, Gams W, Ellis D, Halliday C, Chen S, Sorrell TC, Piarroux R, Colombo AL, Pais C, de Hoog S, Zancopé-Oliveira RM, Taylor ML, Toriello C, de Almeida Soares CM, Delhaes L, Stubbe D, Dromer F, Ranque S, Guarro J, Cano-Lira JF, Robert V, Velegraki A, Meyer W. 2015. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337. [CrossRef]
119. Saenz AJ, Petersen CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, Wahl KL. 1999. Reproducibility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 13:1580–1585. [CrossRef]
120. Walker J, Fox AJ, Edwards-Jones V, Gordon DB. 2002. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility. J Microbiol Methods 48:117–126. [CrossRef]
121. Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, Hünger F, Krönke M. 2002. Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2:747–753. [CrossRef]
122. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D. 2009. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551. [CrossRef]
123. Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. [CrossRef]
124. Nomura F. 2015. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology. Biochim Biophys Acta 1854:528–537. [CrossRef]
125. Croxatto A, Prod’hom G, Greub G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. Fems Microbiology Reviews 36:380–407. [CrossRef]
126. Shea Y. 2014. Successful validation and clearance of MALDI-ToF MS for microorganism identification. FDA, Proteomics in the Clinic Public Workshop. http://www.fda.gov/downloads/MedicalDevices/NewsEvents/WorkshopsConferences/UCM401483.pdf
127. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. 2011. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:1359–1365. [CrossRef]
128. Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SC. 2011. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS One 6:e25712. doi:10.1371/journal.pone.0025712 [CrossRef]
129. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, Sanguinetti M, Tortorano AM. 2012. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol 50:2472–2476. [CrossRef]
130. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX. 2011. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:3050–3053. [CrossRef]
131. Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG. 2009. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917. [CrossRef]
132. Bizzini A, Greub G. 2010. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–1619. [CrossRef]
133. van Veen SQ, Claas EC, Kuijper EJ. 2010. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907. [CrossRef]
134. Westblade LF, Jennemann R, Branda JA, Bythrow M, Ferraro MJ, Garner OB, Ginocchio CC, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Rychert JA, Sercia L, Burnham CA. 2013. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol 51:2267–2272. [CrossRef]
135. Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA. 2014. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis 33:1703–1712. [CrossRef]
136. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, Vaccaro L, Ruggeri A, Posteraro B, Burioni R, Clementi M, Sanguinetti M. 2013. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol 51:2453–2457. [CrossRef]
137. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. 2010. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486. [CrossRef]
138. Barton RC, Ashbee HR. 2010. Microscopic clinical specimen examination. In Garcia LS, Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 3rd ed. ASM Press, Washington, DC.
139. Dromer F, Mathoulin-Pélissier S, Launay O, Lortholary O; French Cryptococcosis Study Group. 2007. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med 4:e21. doi:10.1371/journal.pmed.0000021
140. Brouwer AE, Teparrukkul P, Pinpraphaporn S, Larsen RA, Chierakul W, Peacock S, Day N, White NJ, Harrison TS. 2005. Baseline correlation and comparative kinetics of cerebrospinal fluid colony-forming unit counts and antigen titers in cryptococcal meningitis. J Infect Dis 192:681–684. [CrossRef]
141. Diamond RD, Bennett JE. 1974. Prognostic factors in cryptococcal meningitis. a study in 111 cases. Ann Intern Med 80:176–181. [CrossRef]
142. Kabanda T, Siedner MJ, Klausner JD, Muzoora C, Boulware DR. 2014. Point-of-care diagnosis and prognostication of cryptococcal meningitis with the cryptococcal antigen lateral flow assay on cerebrospinal fluid. Clin Infect Dis 58:113–116. [CrossRef]
143. Lortholary O, Poizat G, Zeller V, Neuville S, Boibieux A, Alvarez M, Dellamonica P, Botterel F, Dromer F, Chêne G. 2006. Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. AIDS 20:2183–2191. [CrossRef]
144. Boulware DR, Meya DB, Bergemann TL, Wiesner DL, Rhein J, Musubire A, Lee SJ, Kambugu A, Janoff EN, Bohjanen PR. 2010. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med 7:e1000384. doi:10.1371/journal.pmed.1000384 [CrossRef]
145. Jaye DL, Waites KB, Parker B, Bragg SL, Moser SA. 1998. Comparison of two rapid latex agglutination tests for detection of cryptococcal capsular polysaccharide. Am J Clin Pathol 109:634–641. [CrossRef]
146. Kiska DL, Orkiszewski DR, Howell D, Gilligan PH. 1994. Evaluation of new monoclonal antibody-based latex agglutination test for detection of cryptococcal polysaccharide antigen in serum and cerebrospinal fluid. J Clin Microbiol 32:2309–2311.
147. Tanner DC, Weinstein MP, Fedorciw B, Joho KL, Thorpe JJ, Reller L. 1994. Comparison of commercial kits for detection of cryptococcal antigen. J Clin Microbiol 32:1680–1684.
148. Gade W, Hinnefeld SW, Babcock LS, Gilligan P, Kelly W, Wait K, Greer D, Pinilla M, Kaplan RL. 1991. Comparison of the PREMIER cryptococcal antigen enzyme immunoassay and the latex agglutination assay for detection of cryptococcal antigens. J Clin Microbiol 29:1616–1619.
149. McMullan BJ, Halliday C, Sorrell TC, Judd D, Sleiman S, Marriott D, Olma T, Chen SC. 2012. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS One 7:e49541. doi:10.1371/journal.pone.0049541 [CrossRef]
150. Boulware DR, Rolfes MA, Rajasingham R, von Hohenberg M, Qin Z, Taseera K, Schutz C, Kwizera R, Butler EK, Meintjes G, Muzoora C, Bischof JC, Meya DB. 2014. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg Infect Dis 20:45–53. [CrossRef]
151. Lindsley MD, Mekha N, Baggett HC, Surinthong Y, Autthateinchai R, Sawatwong P, Harris JR, Park BJ, Chiller T, Balajee SA, Poonwan N. 2011. Evaluation of a newly developed lateral flow immunoassay for the diagnosis of cryptococcosis. Clin Infect Dis 53:321–325. [CrossRef]
152. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, Longley N, Harrison TS, Kozel TR. 2011. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis 53:1019–1023. [CrossRef]
153. WHO. 2011. Rapid advice: diagnosis, prevention and management of cryptococcal disease in HIV-infected adults, adolescents and children. WHO Document Production Services, Geneva, Switzerland.
154. Binnicker MJ, Jespersen DJ, Bestrom JE, Rollins LO. 2012. Comparison of four assays for the detection of cryptococcal antigen. Clin Vaccine Immunol 19:1988–1990. [CrossRef]
155. Suwantarat N, Dalton JB, Lee R, Green R, Memon W, Carroll KC, Riedel S, Zhang SX. 2015. Large-scale clinical validation of a lateral flow immunoassay for detection of cryptococcal antigen in serum and cerebrospinal fluid specimens. Diagn Microbiol Infect Dis 82:54–56. [CrossRef]
156. Hansen J, Slechta ES, Gates-Hollingsworth MA, Neary B, Barker AP, Bauman S, Kozel TR, Hanson KE. 2013. Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol 20:52–55. [CrossRef]
157. Rajasingham R, Meya DB, Boulware DR. 2012. Integrating cryptococcal antigen screening and pre-emptive treatment into routine HIV care. J Acquir Immune Defic Syndr 59:e85–e91. [CrossRef]
158. Fungitell. 2008. Assay for (1,3)-beta-D-glucan in serum. Associates of Cape Cod Incorporated, E. Falmouth, MA.
159. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE; European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. 2008. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821. [CrossRef]
160. Del Bono V, Delfino E, Furfaro E, Mikulska M, Nicco E, Bruzzi P, Mularoni A, Bassetti M, Viscoli C. 2011. Clinical performance of the (1,3)-β-D-glucan assay in early diagnosis of nosocomial Candida bloodstream infections. Clin Vaccine Immunol 18:2113–2117. [CrossRef]
161. León C, Ruiz-Santana S, Saavedra P, Castro C, Ubeda A, Loza A, Martín-Mazuelos E, Blanco A, Jerez V, Ballús J, Alvarez-Rocha L, Utande-Vázquez A, Fariñas O. 2012. Value of β-D-glucan and Candida albicans germ tube antibody for discriminating between Candida colonization and invasive candidiasis in patients with severe abdominal conditions. Intensive Care Med 38:1315–1325. [CrossRef]
162. Mohr JF, Sims C, Paetznick V, Rodriguez J, Finkelman MA, Rex JH, Ostrosky-Zeichner L. 2011. Prospective survey of (1→3)-beta-D-glucan and its relationship to invasive candidiasis in the surgical intensive care unit setting. J Clin Microbiol 49:58–61. [CrossRef]
163. Posteraro B, De Pascale G, Tumbarello M, Torelli R, Pennisi MA, Bello G, Maviglia R, Fadda G, Sanguinetti M, Antonelli M. 2011. Early diagnosis of candidemia in intensive care unit patients with sepsis: a prospective comparison of (1→3)-β-D-glucan assay, Candida score, and colonization index. Crit Care 15:R249. [CrossRef]
164. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. 2011. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis 52:750–770. [CrossRef]
165. Jaijakul S, Vazquez JA, Swanson RN, Ostrosky-Zeichner L. 2012. (1,3)-β-D-glucan as a prognostic marker of treatment response in invasive candidiasis. Clin Infect Dis 55:521–526. [CrossRef]
166. Pazos C, Moragues MD, Quindós G, Pontón J, del Palacio A. 2006. Diagnostic potential of (1,3)-beta-D-glucan and anti- Candida albicans germ tube antibodies for the diagnosis and therapeutic monitoring of invasive candidiasis in neutropenic adult patients. Rev Iberoam Micol 23:209–215. [CrossRef]
167. Senn L, Robinson JO, Schmidt S, Knaup M, Asahi N, Satomura S, Matsuura S, Duvoisin B, Bille J, Calandra T, Marchetti O. 2008. 1,3-beta-D-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. Clin Infect Dis 46:878–885. [CrossRef]
168. Del Palacio A, Llenas-García J, Soledad Cuétara M, Pulido F, Rubio R, Pontón J, Del Palacio-Pérez-Medel A. 2010. Serum (1→3) beta-D-glucan as a noninvasive adjunct marker for the diagnosis and follow-up of Pneumocystis jiroveci pneumonia in patients with HIV infection. Clin Infect Dis 50:451–452; author reply 452–453. [CrossRef]
169. Odabasi Z, Paetznick VL, Rodriguez JR, Chen E, McGinnis MR, Ostrosky-Zeichner L. 2006. Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol 44:267–272. [CrossRef]
170. Pickering JW, Sant HW, Bowles CA, Roberts WL, Woods GL. 2005. Evaluation of a (1→3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol 43:5957–5962. [CrossRef]
171. Ostrosky-Zeichner L, Alexander BD, Kett DH, Vazquez J, Pappas PG, Saeki F, Ketchum PA, Wingard J, Schiff R, Tamura H, Finkelman MA, Rex JH. 2005. Multicenter clinical evaluation of the (1→3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis 41:654–659. [CrossRef]
172. Odabasi Z, Mattiuzzi G, Estey E, Kantarjian H, Saeki F, Ridge RJ, Ketchum PA, Finkelman MA, Rex JH, Ostrosky-Zeichner L. 2004. Beta-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis 39:199–205. [CrossRef]
173. Albert O, Toubas D, Strady C, Cousson J, Delmas C, Vernet V, Villena I. 2011. Reactivity of (1→3)-β-d-glucan assay in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 30:1453–1460. [CrossRef]
174. Mennink-Kersten MA, Warris A, Verweij PE. 2006. 1,3-beta-D-glucan in patients receiving intravenous amoxicillin-clavulanic acid. N Engl J Med 354:2834–2835. [CrossRef]
175. Mennink-Kersten MA, Ruegebrink D, Verweij PE. 2008. Pseudomonas aeruginosa as a cause of 1,3-beta-D-glucan assay reactivity. Clin Infect Dis 46:1930–1931. [CrossRef]
176. Hall L, Le Febre KM, Deml SM, Wohlfiel SL, Wengenack NL. 2012. Evaluation of the Yeast Traffic Light PNA FISH probes for identification of Candida species from positive blood cultures. J Clin Microbiol 50:1446–1448. [CrossRef]
177. Abdelhamed AM, Zhang SX, Watkins T, Morgan MA, Wu F, Buckner RJ, Fuller DD, Davis TE, Salimnia H, Fairfax MR, Lephart PR, Poulter MD, Regi SB, Jacobs MR. 2015. Multicenter evaluation of Candida QuickFISH BC for identification of Candida species directly from blood culture bottles. J Clin Microbiol 53:1672–1676. [CrossRef]
178. Arvanitis M, Anagnostou T, Fuchs BB, Caliendo AM, Mylonakis E. 2014. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 27:490–526. [CrossRef]
179. Tirodker UH, Nataro JP, Smith S, LasCasas L, Fairchild KD. 2003. Detection of fungemia by polymerase chain reaction in critically ill neonates and children. J Perinatol 23:117–122. [CrossRef]
180. Trovato L, Betta P, Romeo MG, Oliveri S. 2012. Detection of fungal DNA in lysis-centrifugation blood culture for the diagnosis of invasive candidiasis in neonatal patients. Clin Microbiol Infect 18:E63–E65. [CrossRef]
181. Ahmad S, Mustafa AS, Khan Z, Al-Rifaiy AI, Khan ZU. 2004. PCR-enzyme immunoassay of rDNA in the diagnosis of candidemia and comparison with amplicon detection by agarose gel electrophoresis. Int J Med Microbiol 294:45–51. [CrossRef]
182. Morrell M, Fraser VJ, Kollef MH. 2005. Delaying the empiric treatment of Candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49:3640–3645. [CrossRef]
183. Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, Bearden DT. 2006. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43:25–31. [CrossRef]
184. Khot PD, Fredricks DN. 2009. PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 7:1201–1221. [CrossRef]
185. Vollmer T, Störmer M, Kleesiek K, Dreier J. 2008. Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J Clin Microbiol 46:1919–1926. [CrossRef]
186. Imhof A, Schaer C, Schoedon G, Schaer DJ, Walter RB, Schaffner A, Schneemann M. 2003. Rapid detection of pathogenic fungi from clinical specimens using LightCycler real-time fluorescence PCR. Eur J Clin Microbiol Infect Dis 22:558–560. [CrossRef]
187. Rickerts V, Just-Nübling G, Konrad F, Kern J, Lambrecht E, Böhme A, Jacobi V, Bialek R. 2006. Diagnosis of invasive aspergillosis and mucormycosis in immunocompromised patients by seminested PCR assay of tissue samples. Eur J Clin Microbiol Infect Dis 25:8–13. [CrossRef]
188. Rickerts V, Mousset S, Lambrecht E, Tintelnot K, Schwerdtfeger R, Presterl E, Jacobi V, Just-Nübling G, Bialek R. 2007. Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin Infect Dis 44:1078–1083. [CrossRef]
189. Avni T, Leibovici L, Paul M. 2011. PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 49:665–670. [CrossRef]
190. Lau A, Halliday C, Chen SC, Playford EG, Stanley K, Sorrell TC. 2010. Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J Clin Microbiol 48:811–816. [CrossRef]
191. Zhang SX. 2013. Enhancing molecular approaches for diagnosis of fungal infections. Future Microbiol 8:1599–1611. [CrossRef]
192. Khot PD, Ko DL, Fredricks DN. 2009. Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol 75:1559–1565. [CrossRef]
193. Miyajima Y, Satoh K, Umeda Y, Makimura K. 2009. Quantitation of fungal DNA contamination in commercial zymolyase and lyticase used in the preparation of fungi. Nihon Ishinkin Gakkai Zasshi 50:259–262. [CrossRef]
194. Harrison E, Stalhberger T, Whelan R, Sugrue M, Wingard JR, Alexander BD, Follett SA, Bowyer P, Denning DW; Aspergillus Technology Consortium (AsTeC). 2010. Aspergillus DNA contamination in blood collection tubes. Diagn Microbiol Infect Dis 67:392–394. [CrossRef]
195. Metwally L, Fairley DJ, Coyle PV, Hay RJ, Hedderwick S, McCloskey B, O’Neill HJ, Webb CH, McMullan R. 2008. Comparison of serum and whole-blood specimens for the detection of Candida DNA in critically ill, non-neutropenic patients. J Med Microbiol 57:1269–1272. [CrossRef]
196. Neely LA, Audeh M, Phung NA, Min M, Suchocki A, Plourde D, Blanco M, Demas V, Skewis LR, Anagnostou T, Coleman JJ, Wellman P, Mylonakis E, Lowery TJ. 2013. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood. Sci Transl Med 5:182ra54. [CrossRef]
197. Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, Groeger JS, Judson MA, Vinagre YM, Heard SO, Zervou FN, Zacharioudakis IM, Kontoyiannis DP, Pappas PG. 2015. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis 60:892–899. [CrossRef]
198. Beyda ND, Alam MJ, Garey KW. 2013. Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis 77:324–326. [CrossRef]
199. Idelevich EA, Grunewald CM, Wüllenweber J, Becker K. 2014. Rapid identification and susceptibility testing of Candida spp. from positive blood cultures by combination of direct MALDI-TOF mass spectrometry and direct inoculation of Vitek 2. PLoS One 9:e114834. doi:10.1371/journal.pone.0114834 [CrossRef]
200. Spanu T, Posteraro B, Fiori B, D’Inzeo T, Campoli S, Ruggeri A, Tumbarello M, Canu G, Trecarichi EM, Parisi G, Tronci M, Sanguinetti M, Fadda G. 2012. Direct MALDI-TOF mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories. J Clin Microbiol 50:176–179. [CrossRef]
201. Yan Y, He Y, Maier T, Quinn C, Shi G, Li H, Stratton CW, Kostrzewa M, Tang YW. 2011. Improved identification of yeast species directly from positive blood culture media by combining Sepsityper specimen processing and Microflex analysis with the matrix-assisted laser desorption ionization Biotyper system. J Clin Microbiol 49:2528–2532. [CrossRef]
202. Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J, Collins CD, Nagel JL. 2013. Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 57:1237–1245. [CrossRef]
203. Ferreira L, Sánchez-Juanes F, Porras-Guerra I, García-García MI, García-Sánchez JE, González-Buitrago JM, Muñoz-Bellido JL. 2011. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:546–551. [CrossRef]
204. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, Bougnoux ME, Alanio A, Berche P, Nassif X. 2010. Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:1542–1548. [CrossRef]
205. Marinach-Patrice C, Fekkar A, Atanasova R, Gomes J, Djamdjian L, Brossas JY, Meyer I, Buffet P, Snounou G, Datry A, Hennequin C, Golmard JL, Mazier D. 2010. Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One 5:e8862. doi:10.1371/journal.pone.0008862 [CrossRef]
206. Pfaller MA, Diekema DJ. 2012. Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J Clin Microbiol 50:2846–2856. [CrossRef]
207. Pfaller MA, Rex JH, Rinaldi MG. 1997. Antifungal susceptibility testing: technical advances and potential clinical applications. Clin Infect Dis 24:776–784. [CrossRef]
208. Rex JH, Pfaller MA. 2002. Has antifungal susceptibility testing come of age? Clin Infect Dis 35:982–989. [CrossRef]
209. Baddley JW, Patel M, Bhavnani SM, Moser SA, Andes DR. 2008. Association of fluconazole pharmacodynamics with mortality in patients with candidemia. Antimicrob Agents Chemother 52:3022–3028. [CrossRef]
210. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE; Infectious Diseases Society of America. 2004. Guidelines for treatment of candidiasis. Clin Infect Dis 38:161–189. [CrossRef]
211. Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, Lancaster M, Odds FC, Rinaldi MG, Walsh TJ, Barry AL. 1997. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis 24:235–247. [CrossRef]
212. Eschenauer GA, Carver PL. 2013. The evolving role of antifungal susceptibility testing. Pharmacotherapy 33:465–475. [CrossRef]
213. CLSI. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard - Third Edition. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
214. Arendrup MC, Cuenca-Estrella M, Lass-Flörl C, Hope W; EUCAST AFST. 2012. EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin Microbiol Infect 18:E246–E247. [CrossRef]
215. CLSI. 2012. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Fourth Informational Supplement. CLSI document M27-S4. Clinical and Laboratory Standards Institute, Wayne, PA.
216. The European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2014. Antifungal agents - breakpoint tables for interpretation of MICs, Version 7.0. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Antifungal_breakpoints_v_7.0.pdf
217. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN. 2010. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J Clin Microbiol 48:1592–1599. [CrossRef]
218. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D; CLSI Subcommittee for Antifungal Susceptibility Testing. 2010. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13:180–195. [CrossRef]
219. Arendrup MC, Garcia-Effron G, Lass-Flörl C, Lopez AG, Rodriguez-Tudela JL, Cuenca-Estrella M, Perlin DS. 2010. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSI M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media. Antimicrob Agents Chemother 54:426–439. [CrossRef]
220. Arendrup MC, Rodriguez-Tudela JL, Park S, Garcia-Effron G, Delmas G, Cuenca-Estrella M, Gomez-Lopez A, Perlin DS. 2011. Echinocandin susceptibility testing of Candida spp. using EUCAST EDef 7.1 and CLSI M27-A3 standard procedures: analysis of the influence of bovine serum albumin supplementation, storage time, and drug lots. Antimicrob Agents Chemother 55:1580–1587. [CrossRef]
221. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, Chryssanthou E, Cuenca-Estrella M, Dannaoui E, Fothergill A, Fuller J, Gaustad P, Gonzalez GM, Guarro J, Lass-Flörl C, Lockhart SR, Meis JF, Moore CB, Ostrosky-Zeichner L, Pelaez T, Pukinskas SR, St-Germain G, Szeszs MW, Turnidge J. 2013. Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob Agents Chemother 57:5836–5842. [CrossRef]
222. Arendrup MC, Garcia-Effron G, Buzina W, Mortensen KL, Reiter N, Lundin C, Jensen HE, Lass-Flörl C, Perlin DS, Bruun B. 2009. Breakthrough Aspergillus fumigatus and Candida albicans double infection during caspofungin treatment: laboratory characteristics and implication for susceptibility testing. Antimicrob Agents Chemother 53:1185–1193. [CrossRef]
223. Pfaller MA, Diekema DJ, Jones RN, Castanheira M. 2014. Use of anidulafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 4,290 clinical isolates of Candida by using CLSI methods and interpretive criteria. J Clin Microbiol 52:3223–3229. [CrossRef]
224. Pfaller MA, Messer SA, Diekema DJ, Jones RN, Castanheira M. 2014. Use of micafungin as a surrogate marker to predict susceptibility and resistance to caspofungin among 3,764 clinical isolates of Candida by use of CLSI methods and interpretive criteria. J Clin Microbiol 52:108–114. [CrossRef]
225. Alexander BD, Byrne TC, Smith KL, Hanson KE, Anstrom KJ, Perfect JR, Reller LB. 2007. Comparative evaluation of Etest and sensititre yeastone panels against the Clinical and Laboratory Standards Institute M27-A2 reference broth microdilution method for testing Candida susceptibility to seven antifungal agents. J Clin Microbiol 45:698–706. [CrossRef]
226. Cuenca-Estrella M, Gomez-Lopez A, Alastruey-Izquierdo A, Bernal-Martinez L, Cuesta I, Buitrago MJ, Rodriguez-Tudela JL. 2010. Comparison of the Vitek 2 antifungal susceptibility system with the clinical and laboratory standards institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) Broth Microdilution Reference Methods and with the Sensititre YeastOne and Etest techniques for in vitro detection of antifungal resistance in yeast isolates. J Clin Microbiol 48:1782–1786. [CrossRef]
227. Espinel-Ingroff A, Pfaller M, Messer SA, Knapp CC, Holliday N, Killian SB. 2004. Multicenter comparison of the Sensititre YeastOne colorimetric antifungal panel with the NCCLS M27-A2 reference method for testing new antifungal agents against clinical isolates of Candida spp. J Clin Microbiol 42:718–721. [CrossRef]
228. Espinel-Ingroff A, Pfaller M, Messer SA, Knapp CC, Killian S, Norris HA, Ghannoum MA. 1999. Multicenter comparison of the sensititre YeastOne Colorimetric Antifungal Panel with the National Committee for Clinical Laboratory standards M27-A reference method for testing clinical isolates of common and emerging Candida spp., Cryptococcus spp., and other yeasts and yeast-like organisms. J Clin Microbiol 37:591–595.
229. Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian SB, Knapp CC, Messer SA, Miskou A, Ramani R. 2012. Comparison of the Sensititre YeastOne colorimetric antifungal panel with CLSI microdilution for antifungal susceptibility testing of the echinocandins against Candida spp., using new clinical breakpoints and epidemiological cutoff values. Diagn Microbiol Infect Dis 73:365–368. [CrossRef]
230. Pfaller MA, Chaturvedi V, Diekema DJ, Ghannoum MA, Holliday NM, Killian SB, Knapp CC, Messer SA, Miskov A, Ramani R. 2008. Clinical evaluation of the Sensititre YeastOne colorimetric antifungal panel for antifungal susceptibility testing of the echinocandins anidulafungin, caspofungin, and micafungin. J Clin Microbiol 46:2155–2159. [CrossRef]
231. Pfaller MA, Espinel-Ingroff A, Jones RN. 2004. Clinical evaluation of the Sensititre YeastOne colorimetric antifungal plate for antifungal susceptibility testing of the new triazoles voriconazole, posaconazole, and ravuconazole. J Clin Microbiol 42:4577–4580. [CrossRef]
232. Pfaller MA, Jones RN; Microbiology Resource Committee, College of American Pathologists. 2006. Performance accuracy of antibacterial and antifungal susceptibility test methods: report from the College of American Pathologists Microbiology Surveys Program (2001–2003). Arch Pathol Lab Med 130:767–778.
233. Arendrup MC, Pfaller MA; Danish Fungaemia Study Group. 2012. Caspofungin Etest susceptibility testing of Candida species: risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob Agents Chemother 56:3965–3968. [CrossRef]
234. Bourgeois N, Laurens C, Bertout S, Balard Y, Krasteva D, Rispail P, Lachaud L. 2014. Assessment of caspofungin susceptibility of Candida glabrata by the Etest(R), CLSI, and EUCAST methods, and detection of FKS1 and FKS2 mutations. Eur J Clin Microbiol Infect Dis 33:1247–1252. [CrossRef]
235. Borghi E, Iatta R, Sciota R, Biassoni C, Cuna T, Montagna MT, Morace G. 2010. Comparative evaluation of the Vitek 2 yeast susceptibility test and CLSI broth microdilution reference method for testing antifungal susceptibility of invasive fungal isolates in Italy: the GISIA3 study. J Clin Microbiol 48:3153–3157. [CrossRef]
236. Bourgeois N, Dehandschoewercker L, Bertout S, Bousquet PJ, Rispail P, Lachaud L. 2010. Antifungal susceptibility of 205 Candida spp. isolated primarily during invasive candidiasis and comparison of the Vitek 2 system with the CLSI broth microdilution and Etest methods. J Clin Microbiol 48:154–161. [CrossRef]
237. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. 2007. Multicenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine, and voriconazole against Candida spp. J Clin Microbiol 45:3522–3528. [CrossRef]
238. Pfaller MA, Diekema DJ, Procop GW, Rinaldi MG. 2007. Multicenter comparison of the VITEK 2 yeast susceptibility test with the CLSI broth microdilution reference method for testing fluconazole against Candida spp. J Clin Microbiol 45:796–802. [CrossRef]
239. Posteraro B, Martucci R, La Sorda M, Fiori B, Sanglard D, De Carolis E, Florio AR, Fadda G, Sanguinetti M. 2009. Reliability of the Vitek 2 yeast susceptibility test for detection of in vitro resistance to fluconazole and voriconazole in clinical isolates of Candida albicans and Candida glabrata. J Clin Microbiol 47:1927–1930. [CrossRef]
240. Pfaller MA, Diekema DJ, Procop GW, Wiederhold NP. 2014. Multicenter evaluation of the new Vitek 2 yeast susceptibility test using new CLSI clinical breakpoints for fluconazole. J Clin Microbiol 52:2126–2130. [CrossRef]
241. Turnidge J, Paterson DL. 2007. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408. [CrossRef]
242. Pfaller MA. 2012. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125(2 Suppl) :S3–S13. [CrossRef]
243. Pfeiffer CD, Garcia-Effron G, Zaas AK, Perfect JR, Perlin DS, Alexander BD. 2010. Breakthrough invasive candidiasis in patients on micafungin. J Clin Microbiol 48:2373–2380. [CrossRef]
244. Beyda ND, John J, Kilic A, Alam MJ, Lasco TM, Garey KW. 2014. FKS mutant Candida glabrata: risk factors and outcomes in patients with candidemia. Clin Infect Dis 59:819–825. [CrossRef]
245. Pham CD, Bolden CB, Kuykendall RJ, Lockhart SR. 2014. Development of a Luminex-based multiplex assay for detection of mutations conferring resistance to echinocandins in Candida glabrata. J Clin Microbiol 52:790–795. [CrossRef]
246. Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN. 2012. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50:1199–1203. [CrossRef]

Article metrics loading...



Yeasts are unicellular organisms that reproduce mostly by budding and less often by fission. Most medically important yeasts originate from Ascomycota or Basidiomycota. Here, we review taxonomy, epidemiology, disease spectrum, antifungal drug susceptibility patterns of medically important yeast, laboratory diagnosis, and diagnostic strategies.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Generic image for table

Click to view


CLSI clinical breakpoints against spp.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0030-2016
Generic image for table

Click to view


EUCAST clinical breakpoints against spp.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.DMIH2-0030-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error