No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    146.39 Kb
  • PDF
    1.93 MB
  • HTML
    155.35 Kb
  • Authors: Jessica I. Rivera-Perez1, Tasha M. Santiago-Rodriguez2, Gary A. Toranzos3
  • Editors: Raúl J. Cano4, Gary A. Toranzos5
    Affiliations: 1: University of Puerto Rico, San Juan, Puerto Rico 00933; 2: California Polytechnic State University, San Luis Obispo, CA 93407; 3: University of Puerto Rico, San Juan, Puerto Rico 00933; 4: California Polytechnic State University, San Luis Obispo, CA; 5: University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.EMF-0006-2015
  • Received 15 October 2015 Accepted 22 October 2015 Published 29 July 2016
  • Jessica I. Rivera-Perez, [email protected]
image of Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology
    Preview this microbiology spectrum article:
    Zoom in

    Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/EMF-0006-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/EMF-0006-2015-2.gif
  • Abstract:

    Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.

  • Citation: Rivera-Perez J, Santiago-Rodriguez T, Toranzos G. 2016. Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiol Spectrum 4(4):EMF-0006-2015. doi:10.1128/microbiolspec.EMF-0006-2015.


1. Dalton R. 2010. Ancient DNA set to rewrite human history. Nature 465:148–149. [PubMed][CrossRef]
2. Kolman CJ, Tuross N. 2000. Ancient DNA analysis of human populations. Am J Phys Anthropol 111:5–23.
3. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillén S, Vilà C. 2002. Ancient DNA evidence for Old World origin of New World dogs. Science 298:1613–1616. [PubMed][CrossRef]
4. Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tänzer M, Villems R, Renfrew C, Gronenborn D, Alt KW, Burger J. 2005. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310:1016–1018. [PubMed]
5. Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, Goyache F, Royo LJ, Conti S, Lari M, Martini A, Ouragh L, Magid A, Atash A, Zsolnai A, Boscato P, Triantaphylidis C, Ploumi K, Sineo L, Mallegni F, Taberlet P, Erhardt G, Sampietro L, Bertranpetit J, Barbujani G, Luikart G, Bertorelle G. 2006. The origin of European cattle: evidence from modern and ancient DNA. Proc Natl Acad Sci U S A 103:8113–8118. [PubMed][CrossRef]
6. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, Vigne JD, Edwards CJ, Schlumbaum A, Dinu A, Balaçsescu A, Dolman G, Tagliacozzo A, Manaseryan N, Miracle P, Van Wijngaarden-Bakker L, Masseti M, Bradley DG, Cooper A. 2007. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci U S A 104:15276–15281. [PubMed][CrossRef]
7. Jaenicke-Després V, Buckler ES, Smith BD, Gilbert MT, Cooper A, Doebley J, Pääbo S. 2003. Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208. [PubMed][CrossRef]
8. Mitchell D, Willerslev E, Hansen A. 2005. Damage and repair of ancient DNA. Mutat Res 571:265–276. [PubMed][CrossRef]
9. Wayne RK, Leonard JA, Cooper A. 1999. Full of sound and fury: the recent history of ancient DNA. Annu Rev Econ 30:457–477. [CrossRef]
10. Lipman CB. 1931. Living microörganisms in ancient rocks. J Bacteriol 22:183–198. [PubMed]
11. Lipman CB. 1928. The discovery of living microrganisms in ancient rocks. Science 68:272–273. [PubMed][CrossRef]
12. Swain FM. 1969. Paleomicrobiology. Annu Rev Microbiol 23:455–472. [PubMed][CrossRef]
13. García-Descalzo L, García-López E, Postigo M, Baquero F, Alcazar A, Cid C. 2013. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers. Front Microbiol 4:55. [PubMed][CrossRef]
14. Coolen MJ. 2011. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science 333:451–452. [PubMed][CrossRef]
15. Coolen MJ, van de Giessen J, Zhu EY, Wuchter C. 2011. Bioavailability of soil organic matter and microbial community dynamics upon permafrost thaw. Environ Microbiol 13:2299–2314. [PubMed][CrossRef]
16. Appelt S, Armougom F, Le Bailly M, Robert C, Drancourt M. 2014. Polyphasic analysis of a middle ages coprolite microbiota, Belgium. PLoS One 9:e88376. [PubMed][CrossRef]
17. Appelt S, Fancello L, Le Bailly M, Raoult D, Drancourt M, Desnues C. 2014. Viruses in a 14th-century coprolite. Appl Environ Microbiol 80:2648–2655. [PubMed][CrossRef]
18. Smith CI, Chamberlain AT, Riley MS, Stringer C, Collins MJ. 2003. The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217. [PubMed][CrossRef]
19. Hansen AJ, Mitchell DL, Wiuf C, Paniker L, Brand TB, Binladen J, Gilichinsky DA, Rønn R, Willerslev E. 2006. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173:1175–1179. [PubMed][CrossRef]
20. Hebsgaard MB, Phillips MJ, Willerslev E. 2005. Geologically ancient DNA: fact or artefact? Trends Microbiol 13:212–220. [PubMed][CrossRef]
21. Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MT, Willerslev E, Zhang G, Scofield RP, Holdaway RN, Bunce M. 2012. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc Biol Sci 279:4724–4733. [PubMed][CrossRef]
22. Gilbert MT, Bandelt HJ, Hofreiter M, Barnes I. 2005. Assessing ancient DNA studies. Trends Ecol Evol 20:541–544. [PubMed][CrossRef]
23. Cano RJ, Toranzos GA, Santiago-Rodriguez TM, Patricio AR, Rivera JI. 2014. Data on ancient microorganisms causes skepticism. FEMS Microbiol Lett 353:87–88. [PubMed][CrossRef]
24. Malmström H, Svensson EM, Gilbert MT, Willerslev E, Götherström A, Holmlund G. 2007. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol Biol Evol 24:998–1004. [PubMed][CrossRef]
25. Handt O, Höss M, Krings M, Pääbo S. 1994. Ancient DNA: methodological challenges. Experientia 50:524–529. [PubMed][CrossRef]
26. Willerslev E, Cooper A. 2005. Ancient DNA. Proc Biol Sci 272:3–16. [PubMed][CrossRef]
27. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. [PubMed][CrossRef]
28. Austin JJ, Smith AB, Thomas RH. 1997. Palaeontology in a molecular world: the search for authentic ancient DNA. Trends Ecol Evol 12:303–306. [PubMed][CrossRef]
29. Sidow A, Wilson AC, Paabo S. 1991. Bacterial DNA in Clarkia fossils. Philos Trans R Soc Lond B Biol Sci 333:429–432; discussion, 432–433. [PubMed][CrossRef]
30. Jenkins DL, Davis LG, Stafford TW, Jr, Campos PF, Hockett B, Jones GT, Cummings LS, Yost C, Connolly TJ, Yohe RM, II, Gibbons SC, Raghavan M, Rasmussen M, Paijmans JL, Hofreiter M, Kemp BM, Barta JL, Monroe C, Gilbert MT, Willerslev E. 2012. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337:223–228. [PubMed][CrossRef]
31. Poinar H, Fiedel S, King CE, Devault AM, Bos K, Kuch M, Debruyne R. 2009. Comment on “DNA from pre-Clovis human coprolites in Oregon, North America.” Science 325:148; author reply, 148. [PubMed][CrossRef]
32. Fiedel SJ. 2014. Did pre-Clovis people inhabit the Paisley Caves (and why does it matter)? Hum Biol 86:69–74. [PubMed][CrossRef]
33. Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715. [PubMed][CrossRef]
34. Dell’Anno A, Corinaldesi C. 2004. Degradation and turnover of extracellular DNA in marine sediments: ecological and methodological considerations. Appl Environ Microbiol 70:4384–4386. [PubMed][CrossRef]
35. Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich AG, Zink AR. 2004. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 4:584–592. [PubMed][CrossRef]
36. Schouten S, Middelburg JJ, Hopmans EC, Sinninghe Damsté JS. 2010. Fossilization and degradation of intact polar lipids in deep subsurface sediments: a theoretical approach. Geochim Cosmochim Acta 74:3806–3814. [CrossRef]
37. Fischer W, Summons R, Pearson A. 2005. Targeted genomic detection of biosynthetic pathways: anaerobic production of hopanoid biomarkers by a common sedimentary microbe. Geobiology 3:33–40. [CrossRef]
38. Rohmer M, Bouvier-Nave P, Ourisson G. 1984. Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150. [CrossRef]
39. Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036. [PubMed][CrossRef]
40. Krajewski-Bertrand MA, Milon A, Nakatani Y, Ourisson G. 1992. The interaction of various cholesterol ‘ancestors’ with lipid membranes: a 2H-NMR study on oriented bilayers. Biochim Biophys Acta 1105:213–220. [PubMed][CrossRef]
41. Benz R, Hallmann D, Poralla K, Eibl H. 1983. Interaction of hopanoids with phosphatidylcholines containing oleic and omega-cyclohexyldodecanoic acid in lipid bilayer membranes. Chem Phys Lipids 34:7–24. [PubMed][CrossRef]
42. Summons RE, Jahnke LL. 1992. Hopenes and hopanes methylated in ring-A: correlation of the hopanoids of extant methylotrophic bacteria with their fossil analogues, p 182–200. In Moldowan JM, Albrecht P, Philp RP (ed), Biological Markers in Sediments and Petroleum. Prentice Hall, Englewood Cliffs, NJ.
43. Schmerk CL, Bernards MA, Valvano MA. 2011. Hopanoid production is required for low-pH tolerance, antimicrobial resistance, and motility in Burkholderia cenocepacia. J Bacteriol 193:6712–6723. [PubMed][CrossRef]
44. Price PB, Sowers T. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A 101:4631–4636. [PubMed][CrossRef]
45. Roszak DB, Colwell RR. 1987. Survival strategies of bacteria in the natural environment. Microbiol Rev 51:365–379. [PubMed]
46. Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM. 2006. Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414. [PubMed][CrossRef]
47. Kriazhevskikh NA, Demkina EV, Manucharova NA, Soina VA, Gal’chenko VF, El’-Registan GI. 2012. Reactivation of dormant and nonculturable bacterial forms from paleosoils and subsoil permafrost. Mikrobiologiia 81:474–485. (In Russian.) [PubMed][CrossRef]
48. Vishnivetskaya TA, Erokhina LG, Spirina EV, Shatilovich AV, Vorobyova EA, Gilichinsky DA. 2001. Ancient viable phototrophs within the permafrost. Nova Hedwigia Beih 123:427–442.
49. Lennon JT, Jones SE. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. [PubMed][CrossRef]
50. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Couté Y, Rivkina E, Abergel C, Claverie JM. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 111:4274–4279. [PubMed][CrossRef]
51. Zhang DC, Brouchkov A, Griva G, Schinner F, Margesin R. 2013. Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology (Basel) 2:85–106. [PubMed][CrossRef]
52. Jansson JK, Taş N. 2014. The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425. [PubMed][CrossRef]
53. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D. 2004. Microbial life in permafrost. Adv Space Res 33:1215–1221. [PubMed][CrossRef]
54. Steven B, Leveille R, Pollard WH, Whyte LG. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267. [PubMed][CrossRef]
55. Kudryashova EB, Chernousova EY, Suzina NE, Ariskina EV, Gilichinsky DA. 2013. Microbial diversity of Late Pleistocene Siberian permafrost samples. Microbiology 82:341–351. [PubMed][CrossRef]
56. Dan D, Zhang DP, Liu WC, Lu CG, Zhang TT. 2014. Diversity analysis of bacterial community from permafrost soil of Mo-he in China. Indian J Microbiol 54:111–113. [PubMed][CrossRef]
57. Fish SA, Shepherd TJ, McGenity TJ, Grant WD. 2002. Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436. [PubMed][CrossRef]
58. Cano RJ. 1996. Characterizing ancient bacteria. Anal Chem 68:609A–611A. [CrossRef]
59. Cano RJ. 1997. Isolation, characterization, and diversity of microorganisms from amber. SPIE Proc 3111:444–451. [CrossRef]
60. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol 15:172–180. [PubMed][CrossRef]
61. Lambert LH, Cox T, Mitchell K, Rosselló-Mora RA, Del Cueto C, Dodge DE, Orkand P, Cano RJ. 1998. Staphylococcus succinus sp. nov., isolated from Dominican amber. Int J Syst Bacteriol 48:511–518. [PubMed][CrossRef]
62. Greenblatt CL, Baum J, Klein BY, Nachshon S, Koltunov V, Cano RJ. 2004. Micrococcus luteus—survival in amber. Microb Ecol 48:120–127. [PubMed][CrossRef]
63. Cano RJ, Borucki MK. 1995. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064. [CrossRef]
64. Santiago-Rodriguez TM, Patrício AR, Rivera JI, Coradin M, Gonzalez A, Tirado G, Cano RJ, Toranzos GA. 2014. luxS in bacteria isolated from 25- to 40-million-year-old amber. FEMS Microbiol Lett 350:117–124. [PubMed][CrossRef]
65. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A 95:12637–12640. [PubMed][CrossRef]
66. Papagrigorakis MJ, Synodinos PN, Yapijakis C. 2007. Ancient typhoid epidemic reveals possible ancestral strain of Salmonella enterica serovar Typhi. Infect Genet Evol 7:126–127. [PubMed][CrossRef]
67. Papagrigorakis MJ, Yapijakis C, Synodinos PN, Baziotopoulou-Valavani E. 2006. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens. Int J Infect Dis 10:206–214. [PubMed][CrossRef]
68. Ubaldi M, Luciani S, Marota I, Fornaciari G, Cano RJ, Rollo F. 1998. Sequence analysis of bacterial DNA in the colon of an Andean mummy. Am J Phys Anthropol 107:285–295. [PubMed][CrossRef]
69. Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. 2010. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol 44:354–360. [PubMed]
70. Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S, Cox T, Orkand P, Künzel KH, Rollo F. 2000. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol 112:297–309. [PubMed][CrossRef]
71. Poinar H, Kuch M, McDonald G, Martin P, Pääbo S. 2003. Nuclear gene sequences from a late pleistocene sloth coprolite. Curr Biol 13:1150–1152. [PubMed][CrossRef]
72. Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte L, Crespo-Torres E, Toranzos GA, Jimenez-Flores R, Hamrick A, Cano RJ. 2013. Microbial communities in pre-columbian coprolites. PLoS One 8:e65191. [PubMed][CrossRef]
73. Ferreira LF, de Araújo AJ, Confalonieri UE, Nuñez L. 1984. The finding of eggs of Diphyllobothrium in human coprolites (4,100–1,950 B.C.) from northern Chile. Mem Inst Oswaldo Cruz 79:175–180. [PubMed][CrossRef]
74. Reinhard KJ, Hevly RH, Anderson GA. 1987. Helminth remains from prehistoric Indian coprolites on the Colorado Plateau. J Parasitol 73:630–639. [PubMed][CrossRef]
75. Iñiguez AM, Reinhard KJ, Araújo A, Ferreira LF, Vicente AC. 2003. Enterobius vermicularis: ancient DNA from North and South American human coprolites. Mem Inst Oswaldo Cruz 98(Suppl 1) :67–69. [PubMed]
76. Cano RJ, Rivera-Perez J, Toranzos GA, Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte-Baik L, García-Roldán E, Bunkley-Williams L, Massey SE. 2014. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 9:e106833. [PubMed][CrossRef]
77. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227. [PubMed][CrossRef]
78. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, Najar F, Roe B, Reinhard K, Sobolik K, Belknap S, Foster M, Spicer P, Knight R, Lewis CM, Jr. 2012. Insights from characterizing extinct human gut microbiomes. PLoS One 7:e51146. [PubMed][CrossRef]
79. Sistiaga A, Mallol C, Galván B, Summons RE. 2014. The Neanderthal meal: a new perspective using faecal biomarkers. PLoS One 9:e101045. [PubMed][CrossRef]
80. Cohen-Gonsaud M, Barthe P, Bagnéris C, Henderson B, Ward J, Roumestand C, Keep NH. 2005. The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes. Nat Struct Mol Biol 12:270–273. [PubMed][CrossRef]
81. Kana BD, Gordhan BG, Downing KJ, Sung N, Vostroktunova G, Machowski EE, Tsenova L, Young M, Kaprelyants A, Kaplan G, Mizrahi V. 2008. The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684. [PubMed][CrossRef]
82. Reinhard KJ, Confalonieri UE, Herrmann B, Ferreira LF, de Araujo AJG. 1986. Recovery of parasite remains from coprolites and latrines: aspects of paleoparasitological technique. University of Nebraska-Lincoln Anthropology Faculty Publications. http://digitalcommons.unl.edu/anthropologyfacpub/29/.
83. Kuchta R, Brabec J, Kubáčková P, Scholz T. 2013. Tapeworm Diphyllobothrium dendriticum (Cestoda)—neglected or emerging human parasite? PLoS Negl Trop Dis 7:e2535. [PubMed][CrossRef]
84. Brondz I. 2002. Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques. Anal Chim Acta 465:1–37. [CrossRef]
85. Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC. 1988. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb Ecol 16:73–84. [PubMed][CrossRef]
86. Whittaker P, Fry FS, Curtis SK, Al-Khaldi SF, Mossoba MM, Yurawecz MP, Dunkel VC. 2005. Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. J Agric Food Chem 53:3735–3742. [PubMed][CrossRef]
87. Barnett R, Larson G. 2012. A phenol-chloroform protocol for extracting DNA from ancient samples. Methods Mol Biol 840:13–19. [PubMed][CrossRef]
88. Rohland N, Hofreiter M. 2007. Ancient DNA extraction from bones and teeth. Nat Protoc 2:1756–1762. [PubMed][CrossRef]
89. Rohland N, Hofreiter M. 2007. Comparison and optimization of ancient DNA extraction. Biotechniques 42:343–352. [PubMed][CrossRef]
90. Pääbo S, Higuchi RG, Wilson AC. 1989. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem 264:9709–9712. [PubMed]
91. Pääbo S. 1989. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci USA 86:1939–1943. [PubMed][CrossRef]
92. Handt O, Krings M, Ward RH, Pääbo S. 1996. The retrieval of ancient human DNA sequences. Am J Hum Genet 59:368–376. [PubMed]
93. Baron H, Hummel S, Herrmann B. 1996. Mycobacterium tuberculosis complex DNA in ancient human bones. J Archaeol Sci 23:667–671. [CrossRef]
94. Rafi A, Spigelman M, Stanford J, Lemma E, Donoghue H, Zias J. 1994. Mycobacterium leprae DNA from ancient bone detected by PCR. Lancet 343:1360–1361. [PubMed][CrossRef]
95. Falkinham JO, III. 2002. Nontuberculous mycobacteria in the environment. Clin Chest Med 23:529–551. [PubMed][CrossRef]
96. Alvarez AJ, Buttner MP, Toranzos GA, Dvorsky EA, Toro A, Heikes TB, Mertikas-Pifer LE, Stetzenbach LD. 1994. Use of solid-phase PCR for enhanced detection of airborne microorganisms. Appl Environ Microbiol 60:374–376. [PubMed]
97. Toranzos GA, Alvarez AJ. 1992. Solid-phase polymerase chain reaction: applications for direct detection of enteric pathogens in waters. Can J Microbiol 38:365–369. [CrossRef]
98. Schütte UM, Abdo Z, Bent SJ, Shyu C, Williams CJ, Pierson JD, Forney LJ. 2008. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities. Appl Microbiol Biotechnol 80:365–380. [PubMed][CrossRef]
99. Fulton TL, Stiller M. 2012. PCR amplification, cloning, and sequencing of ancient DNA. Methods Mol Biol 840:111–119. [PubMed][CrossRef]
100. Nair P. 2014. Sequencing ancient DNA. Proc Natl Acad Sci U S A 111:2401. [PubMed][CrossRef]
101. Millar CD, Huynen L, Subramanian S, Mohandesan E, Lambert DM. 2008. New developments in ancient genomics. Trends Ecol Evol 23:386–393. [PubMed][CrossRef]
102. Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM, Jr. 2008. Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3:e3703. [PubMed][CrossRef]
103. Greenblatt C, Spigelman M, Vernon K. 2003. The impact of “ancient pathogen” studies on the practice of public health. Public Health Rev 31:81–91. [PubMed]
104. Monot M, Honoré N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, Matsuoka M, Taylor GM, Donoghue HD, Bouwman A, Mays S, Watson C, Lockwood D, Khamesipour A, Dowlati Y, Jianping S, Rea TH, Vera-Cabrera L, Stefani MM, Banu S, Macdonald M, Sapkota BR, Spencer JS, Thomas J, Harshman K, Singh P, Busso P, Gattiker A, Rougemont J, Brennan PJ, Cole ST. 2009. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41:1282–1289. [PubMed][CrossRef]
105. Drewe JA, Mwangi D, Donoghue HD, Cromie RL. 2009. PCR analysis of the presence and location of Mycobacterium avium in a constructed reed bed, with implications for avian tuberculosis control. FEMS Microbiol Ecol 67:320–328. [PubMed][CrossRef]
106. Salo WL, Aufderheide AC, Buikstra J, Holcomb TA. 1994. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A 91:2091–2094. [PubMed][CrossRef]
107. Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jäger G, Bos KI, Herbig A, Economou C, Benjak A, Busso P, Nebel A, Boldsen JL, Kjellström A, Wu H, Stewart GR, Taylor GM, Bauer P, Lee OY, Wu HH, Minnikin DE, Besra GS, Tucker K, Roffey S, Sow SO, Cole ST, Nieselt K, Krause J. 2013. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–183. [PubMed][CrossRef]
108. Mendum TA, Schuenemann VJ, Roffey S, Taylor GM, Wu H, Singh P, Tucker K, Hinds J, Cole ST, Kierzek AM, Nieselt K, Krause J, Stewart GR. 2014. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics 15:270. [PubMed][CrossRef]
109. Robbins G, Tripathy VM, Misra VN, Mohanty RK, Shinde VS, Gray KM, Schug MD. 2009. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One 4:e5669. [PubMed][CrossRef]
110. Spigelman M, Lemma E. 1993. The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol 3:137–143. [CrossRef]
111. Tsangaras K, Greenwood AD. 2012. Museums and disease: using tissue archive and museum samples to study pathogens. Ann Anat 194:58–73. [PubMed][CrossRef]
112. Zink AR, Grabner W, Reischl U, Wolf H, Nerlich AG. 2003. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol Infect 130:239–249. [PubMed][CrossRef]
113. Grange JM, Zumla A. 2002. The global emergency of tuberculosis: what is the cause? J R Soc Promot Health 122:78–81. [PubMed][CrossRef]
114. Swaminathan S. 2000. Tuberculosis, the only infectious disease to be declared a “global emergency” by the WHO, is a major cause of death in adults and children worldwide. Indian J Pediatr 67(Suppl) :S1–S2. [PubMed]
115. Grange JM, Zumla A. 1999. Paradox of the global emergency of tuberculosis. Lancet 353:996. [PubMed][CrossRef]
116. Rock D. 1997. Tuberculosis: a global emergency. Work 8:93–105. [CrossRef]
117. Kochi A. 1996. Tuberculosis as a global emergency. Kekkaku 71:319–327. (In Japanese.) [PubMed]
118. Plant AJ. 1995. Tuberculosis, Australia and the global emergency. Aust J Public Health 19:328–329. [PubMed][CrossRef]
119. Spelman D. 1995. Tuberculosis: a global emergency. Aust Fam Physician 24:480. [PubMed]
120. World Health Organization. 1993. WHO declares tuberculosis a global emergency. Soz Praventivmed 38:251–252. [PubMed][CrossRef]
121. World Health Organization. 1993. Tuberculosis: a global emergency. World Health Forum 14:438. [PubMed]
122. Ziskind B, Halioua B. 2007. Occupational medicine in ancient Egypt. Med Hypotheses 69:942–945. [PubMed][CrossRef]
123. Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D. 2001. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33:305–311. [PubMed][CrossRef]
124. Zink A, Nerlich AG. 2003. Molecular analyses of the “Pharaos:” feasibility of molecular studies in ancient Egyptian material. Am J Phys Anthropol 121:109–111. [PubMed][CrossRef]
125. Murphy EM, Chistov YK, Hopkins R, Rutland P, Taylor GM. 2009. Tuberculosis among Iron Age individuals from Tyva, South Siberia: palaeopathological and biomolecular findings. J Archaeol Sci 36:2029–2038. [CrossRef]
126. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. 2014. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497. [PubMed][CrossRef]
127. World Health Organization. 2014. World health statistics 2014. World Health Organization, Geneva, Switzerland. http://www.who.int/gho/publications/world_health_statistics/2014/en/
128. Economou C, Kjellström A, Lidén K, Panagopoulos I. 2013. Ancient-DNA reveals an Asian type of Mycobacterium leprae in medieval Scandinavia. J Archaeol Sci 40:465–470. [CrossRef]
129. Taylor GM, Tucker K, Butler R, Pike AW, Lewis J, Roffey S, Marter P, Lee OY, Wu HH, Minnikin DE, Besra GS, Singh P, Cole ST, Stewart GR. 2013. Detection and strain typing of ancient Mycobacterium leprae from a medieval leprosy hospital. PLoS One 8:e62406. [PubMed][CrossRef]
130. Matheson CD, Vernon KK, Lahti A, Fratpietro R, Spigelman M, Gibson S, Greenblatt CL, Donoghue HD, Zissu B. 2009. Molecular exploration of the first-century Tomb of the Shroud in Akeldama, Jerusalem. PLoS One 4:e8319. [PubMed][CrossRef]
131. Robbins G, Tripathy VM, Misra VN, Mohanty RK, Shinde VS, Gray KM, Schug MD. 2009. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One 4:e5669. [PubMed][CrossRef]
132. Frothingham R. 1999. Evolutionary bottlenecks in the agents of tuberculosis, leprosy, and paratuberculosis. Med Hypotheses 52:95–99. [PubMed][CrossRef]
133. Sell S, Baker-Zander S, Powell HC. 1982. Experimental syphilitic orchitis in rabbits: ultrastructural appearance of Treponema pallidum during phagocytosis and dissolution by macrophages in vivo. Lab Invest 46:355–364. [PubMed]
134. Bakthavatchalu V, Meka A, Sathishkumar S, Lopez MC, Verma RK, Wallet SM, Bhattacharyya I, Boyce BF, Mans JJ, Lamont RJ, Baker HV, Ebersole JL, Kesavalu L. 2010. Molecular characterization of Treponema denticola infection-induced bone and soft tissue transcriptional profiles. Mol Oral Microbiol 25:260–274. [PubMed][CrossRef]
135. Santos AL, Gardner MT, Allsworth-Jones P. 2013. Treponematosis in pre-Columbian Jamaica: a biocultural approach to the human cranium found in Bull Savannah. J Archaeol Sci 40:490–496. [CrossRef]
136. Mitchell PD. 2003. Pre-Columbian treponemal disease from 14th century AD Safed, Israel, and implications for the medieval eastern Mediterranean. Am J Phys Anthropol 121:117–124. [PubMed][CrossRef]
137. Palfi G, Dutour O, Berato J, Brun JP. 2000. Syphilis in Europe in antiquity: the fetus of Costebelle and other new gifts from osteoarchaeology. Vesalius 6:55–63. (In French.) [PubMed]
138. Gaula JS, Grossschmidta K. 2014. A probable case of congenital syphilis from 18th century Vienna. Int J Paleopathol 6:34–43. [CrossRef]
139. Harper KN, Fyumagwa RD, Hoare R, Wambura PN, Coppenhaver DH, Sapolsky RM, Alberts SC, Tung J, Rogers J, Kilewo M, Batamuzi EK, Leendertz FH, Armelagos GJ, Knauf S. 2012. Treponema pallidum infection in the wild baboons of East Africa: distribution and genetic characterization of the strains responsible. PLoS One 7:e50882. [PubMed][CrossRef]
140. Armelagos GJ, Zuckerman MK, Harper KN. 2012. The science behind pre-Columbian evidence of syphilis in Europe: research by documentary. Evol Anthropol 21:50–57. [PubMed][CrossRef]
141. Montiel R, Solórzano E, Díaz N, Álvarez-Sandoval BA, González-Ruiz M, Cañadas MP, Simões N, Isidro A, Malgosa A. 2012. Neonate human remains: a window of opportunity to the molecular study of ancient syphilis. PLoS One 7:e36371. [PubMed][CrossRef]
142. Kolman CJ, Centurion-Lara A, Lukehart SA, Owsley DW, Tuross N. 1999. Identification of Treponema pallidum subspecies pallidum in a 200-year-old skeletal specimen. J Infect Dis 180:2060–2063. [PubMed][CrossRef]
143. von Hunnius TE, Yang D, Eng B, Waye JS, Saunders SR. 2007. Digging deeper into the limits of ancient DNA research on syphilis. J Archaeol Sci 34:2091–2100. [CrossRef]
144. Bouwman AS, Kennedy SL, Müller R, Stephens RH, Holst M, Caffell AC, Roberts CA, Brown TA. 2012. Genotype of a historic strain of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 109:18511–18516. [PubMed][CrossRef]
145. Bouwman AS, Chilvers ER, Brown KA, Brown TA. 2006. Brief communication: identification of the authentic ancient DNA sequence in a human bone contaminated with modern DNA. Am J Phys Anthropol 131:428–431. [PubMed][CrossRef]
146. Zink A, Reischl U, Wolf H, Nerlich AG. 2000. Molecular evidence of bacteremia by gastrointestinal pathogenic bacteria in an infant mummy from ancient Egypt. Arch Pathol Lab Med 124:1614–1618. [PubMed]
147. Rollo F, Marota I. 1999. How microbial ancient DNA, found in association with human remains, can be interpreted. Philos Trans R Soc Lond B Biol Sci 354:111–119. [PubMed][CrossRef]
148. Angel JL. 1966. Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric Eastern Mediterranean. Science 153:760–763. [PubMed][CrossRef]
149. Li HC, Fujiyoshi T, Lou H, Yashiki S, Sonoda S, Cartier L, Nunez L, Munoz I, Horai S, Tajima K. 1999. The presence of ancient human T-cell lymphotropic virus type I provirus DNA in an Andean mummy. Nat Med 5:1428–1432. [PubMed][CrossRef]
150. Haensch S, Bianucci R, Signoli M, Rajerison M, Schultz M, Kacki S, Vermunt M, Weston DA, Hurst D, Achtman M, Carniel E, Bramanti B. 2010. Distinct clones of Yersinia pestis caused the Black Death. PLoS Pathog 6:e1001134. [PubMed][CrossRef]
151. Cui Y, Yang X, Xiao X, Anisimov AP, Li D, Yan Y, Zhou D, Rajerison M, Carniel E, Achtman M, Yang R, Song Y. 2014. Genetic variations of live attenuated plague vaccine strains ( Yersinia pestis EV76 lineage) during laboratory passages in different countries. Infect Genet Evol 26:172–179. [PubMed][CrossRef]
152. Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, Zöller L, Bramanti B, Riehm JM, Scholz HC. 2013. Yersinia pestis DNA from skeletal remains from the 6(th) century AD reveals insights into Justinianic Plague. PLoS Pathog 9:e1003349. [PubMed][CrossRef]
153. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D, Pearson T, Fourment M, Golding B, Riehm JM, Earn DJ, Dewitte S, Rouillard JM, Grupe G, Wiechmann I, Bliska JB, Keim PS, Scholz HC, Holmes EC, Poinar H. 2014. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis 14:319–326. [CrossRef]
154. Callaway E. 2011. Plague genome: the Black Death decoded. Nature 478:444–446. [PubMed][CrossRef]
155. Lemma E, Zimhony O, Greenblatt CL, Koltunov V, Zylber MI, Vernon K, Spigelman M. 2008. Attempts to revive Mycobacterium tuberculosis from 300-year-old human mummies. FEMS Microbiol Lett 283:54–61. [PubMed][CrossRef]
156. D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding GB, Poinar HN, Wright GD. 2011. Antibiotic resistance is ancient. Nature 477:457–461. [PubMed][CrossRef]
157. Katzourakis A, Aiewsakun P, Jia H, Wolfe ND, LeBreton M, Yoder AD, Switzer WM. 2014. Discovery of prosimian and afrotherian foamy viruses and potential cross species transmissions amidst stable and ancient mammalian co-evolution. Retrovirology 11:61. [PubMed][CrossRef]
158. Desnues C, Raoult D. 2010. Inside the lifestyle of the virophage. Intervirology 53:293–303. [PubMed][CrossRef]
159. Sagulenko E, Morgan GP, Webb RI, Yee B, Lee KC, Fuerst JA. 2014. Structural studies of planctomycete Gemmata obscuriglobus support cell compartmentalisation in a bacterium. PLoS One 9:e91344. [PubMed][CrossRef]
160. Fuerst JA, Webb RI. 1991. Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proc Natl Acad Sci U S A 88:8184–8188. [PubMed][CrossRef]
161. Forterre P, Gribaldo S. 2010. Bacteria with a eukaryotic touch: a glimpse of ancient evolution? Proc Natl Acad Sci U S A 107:12739–12740. [PubMed][CrossRef]
162. Pilhofer M, Ladinsky MS, McDowall AW, Petroni G, Jensen GJ. 2011. Microtubules in bacteria: ancient tubulins build a five-protofilament homolog of the eukaryotic cytoskeleton. PLoS Biol 9:e1001213. [PubMed][CrossRef]
163. McCord B, Opel K, Funes M, Zoppis S, Meadows Jantz L. 2011. An investigation of the effect of DNA degradation and inhibition on PCR amplification of single source and mixed forensic samples. https://www.ncjrs.gov/pdffiles1/nij/grants/236692.pdf.
164. Damann FE. 2012. Biomarkers of human decomposition ecology and the relationship to postmortem interval. https://www.ncjrs.gov/pdffiles1/nij/grants/241440.pdf.
165. Brocks J, Summons R. 2005. Biomarkers for Early Life. Biogeochemistry 8:63.
166. Pearson A, Flood Page SR, Jorgenson TL, Fischer WW, Higgins MB. 2007. Novel hopanoid cyclases from the environment. Environ Microbiol 9:2175–2188. [PubMed][CrossRef]
167. Nguyen-Hieu T, Aboudharam G, Drancourt M. 2012. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology. BMC Res Notes 5:528. [PubMed][CrossRef]

Article metrics loading...



Paleomicrobiology, or the study of ancient microorganisms, has raised both fascination and skepticism for many years. While paleomicrobiology is not a recent field, the application of emerging techniques, such as DNA sequencing, is proving essential and has provided novel information regarding the evolution of viruses, antibiotic resistance, saprophytes, and pathogens, as well as ancient health and disease status, cultural customs, ethnic diets, and historical events. In this review, we highlight the importance of studying ancient microbial DNA, its contributions to current knowledge, and the role that forensic paleomicrobiology has played in deciphering historical enigmas. We also discuss the emerging techniques used to study the microbial composition of ancient samples as well as major concerns that accompany ancient DNA analyses.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Sources of ancient DNA. Bee entrapped in amber; plant material entrapped in amber; bone; teeth; tissue; coprolites.

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.EMF-0006-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error