No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Antifungal Drugs: The Current Armamentarium and Development of New Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    5.05 MB
  • XML
    188.55 Kb
  • HTML
    194.54 Kb
  • Authors: Nicole Robbins1, Gerard D. Wright2, Leah E. Cowen3
  • Editor: Joseph Heitman4
    Affiliations: 1: Michael G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; 2: Michael G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; 3: Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; 4: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0002-2016
  • Received 01 March 2016 Accepted 20 April 2016 Published 21 October 2016
  • Leah E. Cowen, [email protected]
image of Antifungal Drugs: The Current Armamentarium and Development of New Agents
    Preview this microbiology spectrum article:
    Zoom in

    Antifungal Drugs: The Current Armamentarium and Development of New Agents, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/5/FUNK-0002-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/5/FUNK-0002-2016-2.gif
  • Abstract:

    Invasive fungal infections are becoming an increasingly important cause of human mortality and morbidity, particularly for immunocompromised populations. The fungal pathogens , , and collectively contribute to over 1 million human deaths annually. Hence, the importance of safe and effective antifungal therapeutics for the practice of modern medicine has never been greater. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for drug development remains limited. Only three classes of molecules are currently approved for the treatment of invasive mycoses. The efficacy of these agents is compromised by host toxicity, fungistatic activity, or the emergence of drug resistance in pathogen populations. Here we describe our current arsenal of antifungals and highlight current strategies that are being employed to improve the therapeutic safety and efficacy of these drugs. We discuss state-of-the-art approaches to discover novel chemical matter with antifungal activity and highlight some of the most promising new targets for antifungal drug development. We feature the benefits of combination therapy as a strategy to expand our current repertoire of antifungals and discuss the antifungal combinations that have shown the greatest potential for clinical development. Despite the paucity of new classes of antifungals that have come to market in recent years, it is clear that by leveraging innovative approaches to drug discovery and cultivating collaborations between academia and industry, there is great potential to bolster the antifungal armamentarium.

  • Citation: Robbins N, Wright G, Cowen L. 2016. Antifungal Drugs: The Current Armamentarium and Development of New Agents. Microbiol Spectrum 4(5):FUNK-0002-2016. doi:10.1128/microbiolspec.FUNK-0002-2016.


1. Pfaller MA, Diekema DJ. 2010. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53 http://dx.doi.org/10.3109/10408410903241444. [PubMed][CrossRef]
2. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13 http://dx.doi.org/10.1126/scitranslmed.3004404. [PubMed][CrossRef]
3. Armstrong-James D, Meintjes G, Brown GD. 2014. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22:120–127 http://dx.doi.org/10.1016/j.tim.2014.01.001. [PubMed][CrossRef]
4. CDC. 2013. Antibiotic Resistance Threats in the United States, 2013. CDC, Atlanta, GA. [PubMed]
5. Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, Macdougall L, Boekhout T, Kwon-Chung KJ, Meyer W. 2004. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci USA 101:17258–17263 http://dx.doi.org/10.1073/pnas.0402981101. [CrossRef]
6. Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. 2010. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6:e1000850. http://dx.doi.org/10.1371/journal.ppat.1000850. [CrossRef]
7. Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267 http://dx.doi.org/10.1128/MMBR.00045-10. [PubMed][CrossRef]
8. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. 2010. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9:719–727 http://dx.doi.org/10.1038/nrd3074. [PubMed][CrossRef]
9. Gruszecki WI, Gagoś M, Hereć M, Kernen P. 2003. Organization of antibiotic amphotericin B in model lipid membranes. A mini review. Cell Mol Biol Lett 8:161–170. https://www.ncbi.nlm.nih.gov/pubmed/12655370?dopt=Abstract [PubMed]
10. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10:400–406 http://dx.doi.org/10.1038/nchembio.1496. [PubMed][CrossRef]
11. Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. 2013. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol 11:e1001692. doi:10.1371/journal.pbio.1001692 http://dx.doi.org/10.1371/journal.pbio.1001692. [PubMed][CrossRef]
12. Day JN, Chau TT, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong ND, Thai CQ, Thai H, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell JI, Sieu TP, Baker SG, Chau NV, Hien TT, Lalloo DG, Farrar JJ. 2013. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302 http://dx.doi.org/10.1056/NEJMoa1110404. [CrossRef]
13. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. 2013. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal. J Antimicrob Chemother 68:2435–2444 http://dx.doi.org/10.1093/jac/dkt221. [CrossRef]
14. Roemer T, Krysan DJ. 2014. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 4:a019703. http://dx.doi.org/10.1101/cshperspect.a019703. [PubMed][CrossRef]
15. Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, Haas A, Ruhnke M, Lode H. 2002. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571 http://dx.doi.org/10.1086/324620. [PubMed][CrossRef]
16. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B, Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. 2002. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415 http://dx.doi.org/10.1056/NEJMoa020191. [CrossRef]
17. Miceli MH, Kauffman CA. 2015. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 61:1558–1565 http://dx.doi.org/10.1093/cid/civ571. [PubMed][CrossRef]
18. Denning DW. 2003. Echinocandin antifungal drugs. Lancet 362:1142–1151 http://dx.doi.org/10.1016/S0140-6736(03)14472-8. [PubMed][CrossRef]
19. Hamill RJ. 2013. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934 http://dx.doi.org/10.1007/s40265-013-0069-4. [PubMed][CrossRef]
20. Simitsopoulou M, Roilides E, Dotis J, Dalakiouridou M, Dudkova F, Andreadou E, Walsh TJ. 2005. Differential expression of cytokines and chemokines in human monocytes induced by lipid formulations of amphotericin B. Antimicrob Agents Chemother 49:1397–1403 http://dx.doi.org/10.1128/AAC.49.4.1397-1403.2005. [CrossRef]
21. Groll AH, Giri N, Petraitis V, Petraitiene R, Candelario M, Bacher JS, Piscitelli SC, Walsh TJ. 2000. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis 182:274–282 http://dx.doi.org/10.1086/315643. [CrossRef]
22. Timmers GJ, Zweegman S, Simoons-Smit AM, van Loenen AC, Touw D, Huijgens PC. 2000. Amphotericin B colloidal dispersion (Amphocil) vs fluconazole for the prevention of fungal infections in neutropenic patients: data of a prematurely stopped clinical trial. Bone Marrow Transplant 25:879–884 http://dx.doi.org/10.1038/sj.bmt.1702243. [CrossRef]
23. Herbrecht R, Letscher V, Andres E, Cavalier A. 1999. Safety and efficacy of amphotericin B colloidal dispersion. An overview. Chemotherapy 45(Suppl 1) :67–76 http://dx.doi.org/10.1159/000048472. [PubMed][CrossRef]
24. Delmas G, Park S, Chen ZW, Tan F, Kashiwazaki R, Zarif L, Perlin DS. 2002. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46:2704–2707 http://dx.doi.org/10.1128/AAC.46.8.2704-2707.2002. [CrossRef]
25. Zarif L, Graybill JR, Perlin D, Najvar L, Bocanegra R, Mannino RJ. 2000. Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–1469 http://dx.doi.org/10.1128/AAC.44.6.1463-1469.2000. [CrossRef]
26. Santangelo R, Paderu P, Delmas G, Chen ZW, Mannino R, Zarif L, Perlin DS. 2000. Efficacy of oral cochleate-amphotericin B in a mouse model of systemic candidiasis. Antimicrob Agents Chemother 44:2356–2360 http://dx.doi.org/10.1128/AAC.44.9.2356-2360.2000. [CrossRef]
27. Paquet V, Carreira EM. 2006. Significant improvement of antifungal activity of polyene macrolides by bisalkylation of the mycosamine. Org Lett 8:1807–1809 http://dx.doi.org/10.1021/ol060353o. [PubMed][CrossRef]
28. Wilcock BC, Endo MM, Uno BE, Burke MD. 2013. C2′-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc 135:8488–8491 http://dx.doi.org/10.1021/ja403255s. [CrossRef]
29. Davis SA, Vincent BM, Endo MM, Whitesell L, Marchillo K, Andes DR, Lindquist S, Burke MD. 2015. Nontoxic antimicrobials that evade drug resistance. Nat Chem Biol 11:481–487 http://dx.doi.org/10.1038/nchembio.1821. [PubMed][CrossRef]
30. Pasqualotto AC, Denning DW. 2008. New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1) :i19–i30 http://dx.doi.org/10.1093/jac/dkm428. [PubMed][CrossRef]
31. Slavin MA, Thursky KA. 2016. Isavuconazole: a role for the newest broad-spectrum triazole. Lancet 387:726–728 http://dx.doi.org/10.1016/S0140-6736(15)01218-0. [PubMed][CrossRef]
32. Cornely OA, Böhme A, Schmitt-Hoffmann A, Ullmann AJ. 2015. Safety and pharmacokinetics of isavuconazole as antifungal prophylaxis in acute myeloid leukemia patients with neutropenia: results of a phase 2, dose escalation study. Antimicrob Agents Chemother 59:2078–2085 http://dx.doi.org/10.1128/AAC.04569-14. [CrossRef]
33. Warn PA, Sharp A, Morrissey G, Denning DW. 2010. Activity of aminocandin (IP960; HMR3270) compared with amphotericin B, itraconazole, caspofungin and micafungin in neutropenic murine models of disseminated infection caused by itraconazole-susceptible and -resistant strains of Aspergillus fumigatus. Int J Antimicrob Agents 35:146–151 http://dx.doi.org/10.1016/j.ijantimicag.2009.09.029. [CrossRef]
34. Warn PA, Sharp A, Morrissey G, Denning DW. 2005. Activity of aminocandin (IP960) compared with amphotericin B and fluconazole in a neutropenic murine model of disseminated infection caused by a fluconazole-resistant strain of Candida tropicalis. J Antimicrob Chemother 56:590–593 http://dx.doi.org/10.1093/jac/dki268. [CrossRef]
35. James K, Laudeman C, Malkar N, Krishnan R, Polowy K. 2015. Structure-activity relationship of a series of echinocandins and the discovery of CD101, a highly stable and soluble, once-weekly novel echinocandin. Cidara Therapeutics. Abstr ICAAC/ICC, San Diego, abstr F-750.
36. Zhao Y, Kolesnikova I, Dolgov E, Perlin D. 2015. Efficacy of CD101 to treat echinocandin-resistant Candida albicans in a murine model of invasive Candidiasis. Cidara Therapeutics. Abstr ICAAC/ICC, San Diego, abstr F-748.
37. Ong V, Hough G, Schlosser M, Bartizal K, Balkovec J, James K, Krishnan R. 2015. Preclinical evaluation shows CD101, a novel echinocandin, is highly stable with no hepatotoxicity in rats. Cidara Therapeutics. Abstr ICAAC/ICC, San Diego, abstr A015.
38. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB. 2000. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377 http://dx.doi.org/10.1128/AAC.44.2.368-377.2000. [CrossRef]
39. Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. 2013. In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 57:1065–1068 http://dx.doi.org/10.1128/AAC.01588-12. [CrossRef]
40. Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M. 2013. Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother 68:858–863 http://dx.doi.org/10.1093/jac/dks466. [CrossRef]
41. Pouliot M, Jeanmart S. 2016. Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59:497–503 http://dx.doi.org/10.1021/acs.jmedchem.5b00361. [CrossRef]
42. Lipinski CA. 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341 http://dx.doi.org/10.1016/j.ddtec.2004.11.007. [PubMed][CrossRef]
43. Wassermann AM, Lounkine E, Hoepfner D, Le Goff G, King FJ, Studer C, Peltier JM, Grippo ML, Prindle V, Tao J, Schuffenhauer A, Wallace IM, Chen S, Krastel P, Cobos-Correa A, Parker CN, Davies JW, Glick M. 2015. Dark chemical matter as a promising starting point for drug lead discovery. Nat Chem Biol 11:958–966 http://dx.doi.org/10.1038/nchembio.1936. [CrossRef]
44. Roemer T, Xu D, Singh SB, Parish CA, Harris G, Wang H, Davies JE, Bills GF. 2011. Confronting the challenges of natural product-based antifungal discovery. Chem Biol 18:148–164 http://dx.doi.org/10.1016/j.chembiol.2011.01.009. [PubMed][CrossRef]
45. Jiang B, Xu D, Allocco J, Parish C, Davison J, Veillette K, Sillaots S, Hu W, Rodriguez-Suarez R, Trosok S, Zhang L, Li Y, Rahkhoodaee F, Ransom T, Martel N, Wang H, Gauvin D, Wiltsie J, Wisniewski D, Salowe S, Kahn JN, Hsu MJ, Giacobbe R, Abruzzo G, Flattery A, Gill C, Youngman P, Wilson K, Bills G, Platas G, Pelaez F, Diez MT, Kauffman S, Becker J, Harris G, Liberator P, Roemer T. 2008. PAP inhibitor with in vivo efficacy identified by Candida albicans genetic profiling of natural products. Chem Biol 15:363–374 http://dx.doi.org/10.1016/j.chembiol.2008.02.016. [PubMed][CrossRef]
46. Xu D, Ondeyka J, Harris GH, Zink D, Kahn JN, Wang H, Bills G, Platas G, Wang W, Szewczak AA, Liberator P, Roemer T, Singh SB. 2011. Isolation, structure, and biological activities of Fellutamides C and D from an undescribed Metulocladosporiella (Chaetothyriales) using the genome-wide Candida albicans fitness test. J Nat Prod 74:1721–1730 http://dx.doi.org/10.1021/np2001573. [CrossRef]
47. Hopkins AL, Groom CR. 2002. The druggable genome. Nat Rev Drug Discov 1:727–730 http://dx.doi.org/10.1038/nrd892. [PubMed][CrossRef]
48. Thevissen K, Kristensen HH, Thomma BP, Cammue BP, François IE. 2007. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12:966–971 http://dx.doi.org/10.1016/j.drudis.2007.07.016. [PubMed][CrossRef]
49. Rittershaus PC, Kechichian TB, Allegood JC, Merrill AH Jr, Hennig M, Luberto C, Del Poeta M. 2006. Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116:1651–1659 http://dx.doi.org/10.1172/JCI27890. [CrossRef]
50. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598 http://dx.doi.org/10.1038/ng.605. [CrossRef]
51. Mor V, Rella A, Farnoud AM, Singh A, Munshi M, Bryan A, Naseem S, Konopka JB, Ojima I, Bullesbach E, Ashbaugh A, Linke MJ, Cushion M, Collins M, Ananthula HK, Sallans L, Desai PB, Wiederhold NP, Fothergill AW, Kirkpatrick WR, Patterson T, Wong LH, Sinha S, Giaever G, Nislow C, Flaherty P, Pan X, Cesar GV, de Melo Tavares P, Frases S, Miranda K, Rodrigues ML, Luberto C, Nimrichter L, Del Poeta M. 2015. Identification of a new class of antifungals targeting the synthesis of fungal sphingolipids. MBio 6:e00647-15. http://dx.doi.org/10.1128/mBio.00647-15. [CrossRef]
52. Rodrigues ML, Shi L, Barreto-Bergter E, Nimrichter L, Farias SE, Rodrigues EG, Travassos LR, Nosanchuk JD. 2007. Monoclonal antibody to fungal glucosylceramide protects mice against lethal Cryptococcus neoformans infection. Clin Vaccine Immunol 14:1372–1376 http://dx.doi.org/10.1128/CVI.00202-07. [CrossRef]
53. Rhome R, Singh A, Kechichian T, Drago M, Morace G, Luberto C, Del Poeta M. 2011. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal. PLoS One 6:e15572. http://dx.doi.org/10.1371/journal.pone.0015572. [CrossRef]
54. Tafesse FG, Rashidfarrokhi A, Schmidt FI, Freinkman E, Dougan S, Dougan M, Esteban A, Maruyama T, Strijbis K, Ploegh HL. 2015. Disruption of sphingolipid biosynthesis blocks phagocytosis of Candida albicans. PLoS Pathog 11:e1005188. http://dx.doi.org/10.1371/journal.ppat.1005188.
55. Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE. 1999. Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 380:503–523 http://dx.doi.org/10.1515/BC.1999.066. [PubMed][CrossRef]
56. Richard M, Ibata-Ombetta S, Dromer F, Bordon-Pallier F, Jouault T, Gaillardin C. 2002. Complete glycosylphosphatidylinositol anchors are required in Candida albicans for full morphogenesis, virulence and resistance to macrophages. Mol Microbiol 44:841–853 http://dx.doi.org/10.1046/j.1365-2958.2002.02926.x. [CrossRef]
57. Yan J, Du T, Zhao W, Hartmann T, Lu H, Lü Y, Ouyang H, Jiang X, Sun L, Jin C. 2013. Transcriptome and biochemical analysis reveals that suppression of GPI-anchor synthesis leads to autophagy and possible necroptosis in Aspergillus fumigatus. PLoS One 8:e59013. http://dx.doi.org/10.1371/journal.pone.0059013. [CrossRef]
58. Li H, Zhou H, Luo Y, Ouyang H, Hu H, Jin C. 2007. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol 64:1014–1027 http://dx.doi.org/10.1111/j.1365-2958.2007.05709.x. [PubMed][CrossRef]
59. Romano J, Nimrod G, Ben-Tal N, Shadkchan Y, Baruch K, Sharon H, Osherov N. 2006. Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 152:1919–1928 http://dx.doi.org/10.1099/mic.0.28936-0. [PubMed][CrossRef]
60. Tsukahara K, Hata K, Nakamoto K, Sagane K, Watanabe NA, Kuromitsu J, Kai J, Tsuchiya M, Ohba F, Jigami Y, Yoshimatsu K, Nagasu T. 2003. Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly. Mol Microbiol 48:1029–1042 http://dx.doi.org/10.1046/j.1365-2958.2003.03481.x. [CrossRef]
61. Hata K, Horii T, Miyazaki M, Watanabe NA, Okubo M, Sonoda J, Nakamoto K, Tanaka K, Shirotori S, Murai N, Inoue S, Matsukura M, Abe S, Yoshimatsu K, Asada M. 2011. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother 55:4543–4551 http://dx.doi.org/10.1128/AAC.00366-11. [CrossRef]
62. McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S. 2012. Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 7:1520–1528 http://dx.doi.org/10.1021/cb300235m. [CrossRef]
63. Shen H, Chen SM, Liu W, Zhu F, He LJ, Zhang JD, Zhang SQ, Yan L, Xu Z, Xu GT, An MM, Jiang YY. 2015. Abolishing cell wall glycosylphosphatidylinositol-anchored proteins in Candida albicans enhances recognition by host dectin-1. Infect Immun 83:2694–2704 http://dx.doi.org/10.1128/IAI.00097-15. [CrossRef]
64. Berndt N, Hamilton AD, Sebti SM. 2011. Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11:775–791 http://dx.doi.org/10.1038/nrc3151. [PubMed][CrossRef]
65. Bahn YS, Jung KW. 2013. Stress signaling pathways for the pathogenicity of Cryptococcus. Eukaryot Cell 12:1564–1577 http://dx.doi.org/10.1128/EC.00218-13. [PubMed][CrossRef]
66. Hogan DA, Sundstrom P. 2009. The Ras/cAMP/PKA signaling pathway and virulence in Candida albicans. Future Microbiol 4:1263–1270 http://dx.doi.org/10.2217/fmb.09.106. [PubMed][CrossRef]
67. He B, Chen P, Chen SY, Vancura KL, Michaelis S, Powers S. 1991. RAM2, an essential gene of yeast, and RAM1 encode the two polypeptide components of the farnesyltransferase that prenylates a-factor and Ras proteins. Proc Natl Acad Sci USA 88:11373–11377 http://dx.doi.org/10.1073/pnas.88.24.11373. [CrossRef]
68. Vallim MA, Fernandes L, Alspaugh JA. 2004. The RAM1 gene encoding a protein-farnesyltransferase beta-subunit homologue is essential in Cryptococcus neoformans. Microbiology 150:1925–1935 http://dx.doi.org/10.1099/mic.0.27030-0. [CrossRef]
69. Song JL, White TC. 2003. RAM2: an essential gene in the prenylation pathway of Candida albicans. Microbiology 149:249–259 http://dx.doi.org/10.1099/mic.0.25887-0. [PubMed][CrossRef]
70. Fortwendel JR, Juvvadi PR, Rogg LE, Asfaw YG, Burns KA, Randell SH, Steinbach WJ. 2012. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. Eukaryot Cell 11:966–977 http://dx.doi.org/10.1128/EC.00091-12. [CrossRef]
71. Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, Beese LS. 2011. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem 286:35149–35162 http://dx.doi.org/10.1074/jbc.M111.250506. [CrossRef]
72. Qiao J, Gao P, Jiang X, Fang H. 2013. In vitro antifungal activity of farnesyltransferase inhibitors against clinical isolates of Aspergillus and Candida. Ann Clin Microbiol Antimicrob 12:37. http://dx.doi.org/10.1186/1476-0711-12-37. [CrossRef]
73. McGeady P, Logan DA, Wansley DL. 2002. A protein-farnesyl transferase inhibitor interferes with the serum-induced conversion of Candida albicans from a cellular yeast form to a filamentous form. FEMS Microbiol Lett 213:41–44 http://dx.doi.org/10.1111/j.1574-6968.2002.tb11283.x. [CrossRef]
74. Mabanglo MF, Hast MA, Lubock NB, Hellinga HW, Beese LS. 2014. Crystal structures of the fungal pathogen Aspergillus fumigatus protein farnesyltransferase complexed with substrates and inhibitors reveal features for antifungal drug design. Protein Sci 23:289–301 http://dx.doi.org/10.1002/pro.2411. [CrossRef]
75. Panepinto JC, Oliver BG, Fortwendel JR, Smith DL, Askew DS, Rhodes JC. 2003. Deletion of the Aspergillus fumigatus gene encoding the Ras-related protein RhbA reduces virulence in a model of invasive pulmonary aspergillosis. Infect Immun 71:2819–2826 http://dx.doi.org/10.1128/IAI.71.5.2819-2826.2003. [CrossRef]
76. Fox DS, Heitman J. 2002. Good fungi gone bad: the corruption of calcineurin. BioEssays 24:894–903 http://dx.doi.org/10.1002/bies.10157. [PubMed][CrossRef]
77. Steinbach WJ, Reedy JL, Cramer RA Jr, Perfect JR, Heitman J. 2007. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5:418–430 http://dx.doi.org/10.1038/nrmicro1680. [PubMed][CrossRef]
78. Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589 http://dx.doi.org/10.1093/emboj/16.10.2576. [PubMed][CrossRef]
79. Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. 2002. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21:546–559 http://dx.doi.org/10.1093/emboj/21.4.546. [PubMed][CrossRef]
80. Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE. 2005. Attenuation of the activity of caspofungin at high concentrations against Candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother 49:5146–5148 http://dx.doi.org/10.1128/AAC.49.12.5146-5148.2005. [CrossRef]
81. Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5:e1000532. http://dx.doi.org/10.1371/journal.ppat.1000532. [CrossRef]
82. Cowen LE, Lindquist S. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309:2185–2189 http://dx.doi.org/10.1126/science.1118370. [PubMed][CrossRef]
83. Cowen LE, Carpenter AE, Matangkasombut O, Fink GR, Lindquist S. 2006. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell 5:2184–2188 http://dx.doi.org/10.1128/EC.00274-06. [PubMed][CrossRef]
84. Onyewu C, Blankenship JR, Del Poeta M, Heitman J. 2003. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47:956–964 http://dx.doi.org/10.1128/AAC.47.3.956-964.2003. [CrossRef]
85. Uppuluri P, Nett J, Heitman J, Andes D. 2008. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132 http://dx.doi.org/10.1128/AAC.01397-07. [CrossRef]
86. Kontoyiannis DP, Lewis RE, Osherov N, Albert ND, May GS. 2003. Combination of caspofungin with inhibitors of the calcineurin pathway attenuates growth in vitro in Aspergillus species. J Antimicrob Chemother 51:313–316 http://dx.doi.org/10.1093/jac/dkg090. [CrossRef]
87. Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 48:1664–1669 http://dx.doi.org/10.1128/AAC.48.5.1664-1669.2004. [CrossRef]
88. Lamoth F, Juvvadi PR, Gehrke C, Steinbach WJ. 2013. In vitro activity of calcineurin and heat shock protein 90 inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrob Agents Chemother 57:1035–1039 http://dx.doi.org/10.1128/AAC.01857-12. [CrossRef]
89. Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. 2015. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 97:844–865 http://dx.doi.org/10.1111/mmi.13071. [CrossRef]
90. Lee SC, Li A, Calo S, Heitman J. 2013. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 9:e1003625. http://dx.doi.org/10.1371/journal.ppat.1003625. [CrossRef]
91. Odom A, Del Poeta M, Perfect J, Heitman J. 1997. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob Agents Chemother 41:156–161. [PubMed]
92. Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH. 2001. Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47-66)-derived peptide. J Biol Chem 276:35875–35882 http://dx.doi.org/10.1074/jbc.M104670200. [PubMed][CrossRef]
93. Pearl LH, Prodromou C. 2006. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294 http://dx.doi.org/10.1146/annurev.biochem.75.103004.142738. [PubMed][CrossRef]
94. Taipale M, Jarosz DF, Lindquist S. 2010. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528 http://dx.doi.org/10.1038/nrm2918. [PubMed][CrossRef]
95. Queitsch C, Sangster TA, Lindquist S. 2002. Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624 http://dx.doi.org/10.1038/nature749. [PubMed][CrossRef]
96. Rutherford SL, Lindquist S. 1998. Hsp90 as a capacitor for morphological evolution. Nature 396:336–342 http://dx.doi.org/10.1038/24550. [PubMed][CrossRef]
97. Jarosz DF, Lindquist S. 2010. Hsp90 and environmental stress transform the adaptive value of natural genetic variation. Science 330:1820–1824 http://dx.doi.org/10.1126/science.1195487. [PubMed][CrossRef]
98. Cowen LE. 2013. The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Curr Opin Microbiol 16:377–384 http://dx.doi.org/10.1016/j.mib.2013.03.005. [PubMed][CrossRef]
99. Veri A, Cowen LE. 2014. Progress and prospects for targeting Hsp90 to treat fungal infections. Parasitology 141:1127–1137 http://dx.doi.org/10.1017/S0031182013002072. [PubMed][CrossRef]
100. Lamoth F, Juvvadi PR, Steinbach WJ. 2016. Heat shock protein 90 (Hsp90): a novel antifungal target against Aspergillus fumigatus. Crit Rev Microbiol 42:310–321. https://www.ncbi.nlm.nih.gov/pubmed/25243616?dopt=Abstract [PubMed]
101. Cordeiro RA, Evangelista AJ, Serpa R, Marques FJ, de Melo CV, de Oliveira JS, Franco JS, de Alencar LP, Bandeira TJ, Brilhante RS, Sidrim JJ, Rocha MF. 2016. Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/Cryptococcus gattii species complex. Microbiology 162:309–317 http://dx.doi.org/10.1099/mic.0.000222. [CrossRef]
102. Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ. 2012. Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11:1324–1332 http://dx.doi.org/10.1128/EC.00032-12. [PubMed][CrossRef]
103. Singh-Babak SD, Babak T, Diezmann S, Hill JA, Xie JL, Chen YL, Poutanen SM, Rennie RP, Heitman J, Cowen LE. 2012. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog 8:e1002718. http://dx.doi.org/10.1371/journal.ppat.1002718.
104. Lamoth F, Juvvadi PR, Gehrke C, Asfaw YG, Steinbach WJ. 2014. Transcriptional activation of heat shock protein 90 mediated via a proximal promoter region as trigger of caspofungin resistance in Aspergillus fumigatus. J Infect Dis 209:473–481 http://dx.doi.org/10.1093/infdis/jit530.
105. LaFayette SL, Collins C, Zaas AK, Schell WA, Betancourt-Quiroz M, Gunatilaka AA, Perfect JR, Cowen LE. 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6:e1001069. http://dx.doi.org/10.1371/journal.ppat.1001069. [CrossRef]
106. Hill JA, O’Meara TR, Cowen LE. 2015. Fitness trade-offs associated with the evolution of resistance to antifungal drug combinations. Cell Rep 10:809–819 http://dx.doi.org/10.1016/j.celrep.2015.01.009. [CrossRef]
107. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J. 2007. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135 http://dx.doi.org/10.1016/j.cell.2007.07.036. [CrossRef]
108. Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, Boone C, Emili A, Houry WA. 2005. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120:715–727 http://dx.doi.org/10.1016/j.cell.2004.12.024. [CrossRef]
109. Diezmann S, Michaut M, Shapiro RS, Bader GD, Cowen LE. 2012. Mapping the Hsp90 genetic interaction network in Candida albicans reveals environmental contingency and rewired circuitry. PLoS Genet 8:e1002562. http://dx.doi.org/10.1371/journal.pgen.1002562. [CrossRef]
110. Shapiro RS, Uppuluri P, Zaas AK, Collins C, Senn H, Perfect JR, Heitman J, Cowen LE. 2009. Hsp90 orchestrates temperature-dependent Candida albicans morphogenesis via Ras1-PKA signaling. Curr Biol 19:621–629 http://dx.doi.org/10.1016/j.cub.2009.03.017. [CrossRef]
111. Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE. 2012. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7:e44734. http://dx.doi.org/10.1371/journal.pone.0044734. [PubMed][CrossRef]
112. Shapiro RS, Cowen L. 2010. Coupling temperature sensing and development: Hsp90 regulates morphogenetic signalling in Candida albicans. Virulence 1:45–48 http://dx.doi.org/10.4161/viru.1.1.10320. [CrossRef]
113. Senn H, Shapiro RS, Cowen LE. 2012. Cdc28 provides a molecular link between Hsp90, morphogenesis, and cell cycle progression in Candida albicans. Mol Biol Cell 23:268–283 http://dx.doi.org/10.1091/mbc.E11-08-0729. [PubMed][CrossRef]
114. Shapiro RS, Sellam A, Tebbji F, Whiteway M, Nantel A, Cowen LE. 2012. Pho85, Pcl1, and Hms1 signaling governs Candida albicans morphogenesis induced by high temperature or Hsp90 compromise. Curr Biol 22:461–470 http://dx.doi.org/10.1016/j.cub.2012.01.062. [CrossRef]
115. Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S. 2009. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 106:2818–2823 http://dx.doi.org/10.1073/pnas.0813394106. [CrossRef]
116. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257. http://dx.doi.org/10.1371/journal.ppat.1002257. [PubMed][CrossRef]
117. Shahbazian MD, Grunstein M. 2007. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100 http://dx.doi.org/10.1146/annurev.biochem.76.052705.162114. [PubMed][CrossRef]
118. Yang XJ, Seto E. 2008. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218 http://dx.doi.org/10.1038/nrm2346. [PubMed][CrossRef]
119. Smith WL, Edlind TD. 2002. Histone deacetylase inhibitors enhance Candida albicans sensitivity to azoles and related antifungals: correlation with reduction in CDR and ERG upregulation. Antimicrob Agents Chemother 46:3532–3539 http://dx.doi.org/10.1128/AAC.46.11.3532-3539.2002. [CrossRef]
120. Robbins N, Leach MD, Cowen LE. 2012. Lysine deacetylases Hda1 and Rpd3 regulate Hsp90 function thereby governing fungal drug resistance. Cell Rep 2:878–888 http://dx.doi.org/10.1016/j.celrep.2012.08.035. [CrossRef]
121. Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J, Drogaris P, Lee EH, Thibault P, Verreault A, Raymond M. 2010. Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16:774–780 http://dx.doi.org/10.1038/nm.2175. [PubMed][CrossRef]
122. Pfaller MA, Messer SA, Georgopapadakou N, Martell LA, Besterman JM, Diekema DJ. 2009. Activity of MGCD290, a Hos2 histone deacetylase inhibitor, in combination with azole antifungals against opportunistic fungal pathogens. J Clin Microbiol 47:3797–3804 http://dx.doi.org/10.1128/JCM.00618-09. [CrossRef]
123. Pfaller MA, Rhomberg PR, Messer SA, Castanheira M. 2015. In vitro activity of a Hos2 deacetylase inhibitor, MGCD290, in combination with echinocandins against echinocandin-resistant Candida species. Diagn Microbiol Infect Dis 81:259–263 http://dx.doi.org/10.1016/j.diagmicrobio.2014.11.008. [CrossRef]
124. Besterman J, Nguyen DT, Ste-Croix H. 2012. MGCD290, an oral fungal Hos2 inhibitor, enhances the antifungal properties of fluconazole following multiple- or single-dose oral administration in pre-and post-infection settings. MethylGene, Inc. Abstr ICAAC/ICC 2015, San Diego, abstr M-1711.
125. Lamoth F, Juvvadi PR, Soderblom EJ, Moseley MA, Asfaw YG, Steinbach WJ. 2014. Identification of a key lysine residue in heat shock protein 90 required for azole and echinocandin resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 58:1889–1896 http://dx.doi.org/10.1128/AAC.02286-13. [CrossRef]
126. Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A. 2009. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol Biol Cell 20:2389–2400 http://dx.doi.org/10.1091/mbc.E08-11-1093. [PubMed][CrossRef]
127. Lopes da Rosa J, Boyartchuk VL, Zhu LJ, Kaufman PD. 2010. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA 107:1594–1599 http://dx.doi.org/10.1073/pnas.0912427107. [PubMed][CrossRef]
128. Schmelzle T, Hall MN. 2000. TOR, a central controller of cell growth. Cell 103:253–262 http://dx.doi.org/10.1016/S0092-8674(00)00117-3.
129. De Virgilio C, Loewith R. 2006. Cell growth control: little eukaryotes make big contributions. Oncogene 25:6392–6415 http://dx.doi.org/10.1038/sj.onc.1209884. [PubMed][CrossRef]
130. Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471–484 http://dx.doi.org/10.1016/j.cell.2006.01.016. [PubMed][CrossRef]
131. Vézina C, Kudelski A, Sehgal SN. 1975. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28:721–726 http://dx.doi.org/10.7164/antibiotics.28.721. [PubMed][CrossRef]
132. Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909 http://dx.doi.org/10.1126/science.1715094. [PubMed][CrossRef]
133. Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J. 1999. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19:4101–4112 http://dx.doi.org/10.1128/MCB.19.6.4101. [PubMed][CrossRef]
134. Wong GK, Griffith S, Kojima I, Demain AL. 1998. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. J Antibiot (Tokyo) 51:487–491 http://dx.doi.org/10.7164/antibiotics.51.487. [CrossRef]
135. Robbins N, Collins C, Morhayim J, Cowen LE. 2010. Metabolic control of antifungal drug resistance. Fungal Genet Biol 47:81–93 http://dx.doi.org/10.1016/j.fgb.2009.07.004. [PubMed][CrossRef]
136. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45:3162–3170 http://dx.doi.org/10.1128/AAC.45.11.3162-3170.2001. [CrossRef]
137. Rock FL, Mao W, Yaremchuk A, Tukalo M, Crépin T, Zhou H, Zhang YK, Hernandez V, Akama T, Baker SJ, Plattner JJ, Shapiro L, Martinis SA, Benkovic SJ, Cusack S, Alley MR. 2007. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science 316:1759–1761 http://dx.doi.org/10.1126/science.1142189. [CrossRef]
138. Seiradake E, Mao W, Hernandez V, Baker SJ, Plattner JJ, Alley MR, Cusack S. 2009. Crystal structures of the human and fungal cytosolic leucyl-tRNA synthetase editing domains: a structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol 390:196–207 http://dx.doi.org/10.1016/j.jmb.2009.04.073. [CrossRef]
139. Wright GD. 2015. Solving the antibiotic crisis. ACS Infect Dis 1:80–84 http://dx.doi.org/10.1021/id500052s. [PubMed][CrossRef]
140. Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature 529:336–343 http://dx.doi.org/10.1038/nature17042. [PubMed][CrossRef]
141. Zimmermann GR, Lehár J, Keith CT. 2007. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42 http://dx.doi.org/10.1016/j.drudis.2006.11.008. [PubMed][CrossRef]
142. Hill JA, Cowen LE. 2015. Using combination therapy to thwart drug resistance. Future Microbiol 10:1719–1726 http://dx.doi.org/10.2217/fmb.15.68. [PubMed][CrossRef]
143. Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351:aad3292. http://dx.doi.org/10.1126/science.aad3292. [PubMed][CrossRef]
144. Bock C, Lengauer T. 2012. Managing drug resistance in cancer: lessons from HIV therapy. Nat Rev Cancer 12:494–501 http://dx.doi.org/10.1038/nrc3297. [PubMed][CrossRef]
145. Zumla A, Hafner R, Lienhardt C, Hoelscher M, Nunn A. 2012. Advancing the development of tuberculosis therapy. Nat Rev Drug Discov 11:171–172 http://dx.doi.org/10.1038/nrd3694. [PubMed][CrossRef]
146. Eastman RT, Fidock DA. 2009. Artemisinin-based combination therapies: a vital tool in efforts to eliminate malaria. Nat Rev Microbiol 7:864–874. https://www.ncbi.nlm.nih.gov/pubmed/19881520 [PubMed][CrossRef]
147. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C. 2004. Global mapping of the yeast genetic interaction network. Science 303:808–813 http://dx.doi.org/10.1126/science.1091317. [CrossRef]
148. Costanzo M, et al. 2010. The genetic landscape of a cell. Science 327:425–431 http://dx.doi.org/10.1126/science.1180823. [CrossRef]
149. Winzeler EA, et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906 http://dx.doi.org/10.1126/science.285.5429.901. [CrossRef]
150. Roemer T, Boone C. 2013. Systems-level antimicrobial drug and drug synergy discovery. Nat Chem Biol 9:222–231 http://dx.doi.org/10.1038/nchembio.1205. [PubMed][CrossRef]
151. Sandovsky-Losica H, Shwartzman R, Lahat Y, Segal E. 2008. Antifungal activity against Candida albicans of nikkomycin Z in combination with caspofungin, voriconazole or amphotericin B. J Antimicrob Chemother 62:635–637 http://dx.doi.org/10.1093/jac/dkn216. [CrossRef]
152. Verwer PE, van Duijn ML, Tavakol M, Bakker-Woudenberg IA, van de Sande WW. 2012. Reshuffling of Aspergillus fumigatus cell wall components chitin and β-glucan under the influence of caspofungin or nikkomycin Z alone or in combination. Antimicrob Agents Chemother 56:1595–1598 http://dx.doi.org/10.1128/AAC.05323-11. [CrossRef]
153. Wildenhain J, Spitzer M, Dolma S, Jarvik N, White R, Roy M, Griffiths E, Bellows DS, Wright GD, Tyers M. 2015. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst 1:383–395 http://dx.doi.org/10.1016/j.cels.2015.12.003. [PubMed][CrossRef]
154. Epp E, Vanier G, Harcus D, Lee AY, Jansen G, Hallett M, Sheppard DC, Thomas DY, Munro CA, Mullick A, Whiteway M. 2010. Reverse genetics in Candida albicans predicts ARF cycling is essential for drug resistance and virulence. PLoS Pathog 6:e1000753. http://dx.doi.org/10.1371/journal.ppat.1000753. [PubMed][CrossRef]
155. Zhai B, Wu C, Wang L, Sachs MS, Lin X. 2012. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother 56:3758–3766 http://dx.doi.org/10.1128/AAC.00212-12. [CrossRef]
156. Butts A, DiDone L, Koselny K, Baxter BK, Chabrier-Rosello Y, Wellington M, Krysan DJ. 2013. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis. Eukaryot Cell 12:278–287 http://dx.doi.org/10.1128/EC.00314-12. [CrossRef]
157. Robbins N, Spitzer M, Yu T, Cerone RP, Averette AK, Bahn YS, Heitman J, Sheppard DC, Tyers M, Wright GD. 2015. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens. Cell Rep 13:1481–1492 http://dx.doi.org/10.1016/j.celrep.2015.10.018. [CrossRef]
158. Butts A, Koselny K, Chabrier-Roselló Y, Semighini CP, Brown JC, Wang X, Annadurai S, DiDone L, Tabroff J, Childers WE Jr, Abou-Gharbia M, Wellington M, Cardenas ME, Madhani HD, Heitman J, Krysan DJ. 2014. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. MBio 5:e00765–e13. http://dx.doi.org/10.1128/mBio.00765-13. [CrossRef]
159. Nishikawa JL, Boeszoermenyi A, Vale-Silva LA, Torelli R, Posteraro B, Sohn YJ, Ji F, Gelev V, Sanglard D, Sanguinetti M, Sadreyev RI, Mukherjee G, Bhyravabhotla J, Buhrlage SJ, Gray NS, Wagner G, Näär AM, Arthanari H. 2016. Inhibiting fungal multidrug resistance by disrupting an activator-mediator interaction. Nature 530:485–489 http://dx.doi.org/10.1038/nature16963. [CrossRef]
160. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR, Keith CT. 2003. Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 100:7977–7982 http://dx.doi.org/10.1073/pnas.1337088100. [CrossRef]
161. Zhang L, Yan K, Zhang Y, Huang R, Bian J, Zheng C, Sun H, Chen Z, Sun N, An R, Min F, Zhao W, Zhuo Y, You J, Song Y, Yu Z, Liu Z, Yang K, Gao H, Dai H, Zhang X, Wang J, Fu C, Pei G, Liu J, Zhang S, Goodfellow M, Jiang Y, Kuai J, Zhou G, Chen X. 2007. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. Proc Natl Acad Sci USA 104:4606–4611 http://dx.doi.org/10.1073/pnas.0609370104. [PubMed][CrossRef]
162. Lehár J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF III, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT. 2007. Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 3:80 http://dx.doi.org/10.1038/msb4100116. [CrossRef]
163. Jansen G, Lee AY, Epp E, Fredette A, Surprenant J, Harcus D, Scott M, Tan E, Nishimura T, Whiteway M, Hallett M, Thomas DY. 2009. Chemogenomic profiling predicts antifungal synergies. Mol Syst Biol 5:338 http://dx.doi.org/10.1038/msb.2009.95. [PubMed][CrossRef]
164. Lo YC, Senese S, Li CM, Hu Q, Huang Y, Damoiseaux R, Torres JZ. 2015. Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens. PLOS Comput Biol 11:e1004153. http://dx.doi.org/10.1371/journal.pcbi.1004153. [CrossRef]
165. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, Rossi L, De Pascale G, Curak J, Brown E, Tyers M, Wright GD. 2011. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol 7:499 http://dx.doi.org/10.1038/msb.2011.31. [PubMed][CrossRef]
166. Roemer T, Davies J, Giaever G, Nislow C. 2011. Bugs, drugs and chemical genomics. Nat Chem Biol 8:46–56 http://dx.doi.org/10.1038/nchembio.744. [PubMed][CrossRef]
167. Giaever G, Flaherty P, Kumm J, Proctor M, Nislow C, Jaramillo DF, Chu AM, Jordan MI, Arkin AP, Davis RW. 2004. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci USA 101:793–798 http://dx.doi.org/10.1073/pnas.0307490100. [CrossRef]
168. Giaever G, Shoemaker DD, Jones TW, Liang H, Winzeler EA, Astromoff A, Davis RW. 1999. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat Genet 21:278–283 http://dx.doi.org/10.1038/6791. [PubMed][CrossRef]
169. Giaever G, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391 http://dx.doi.org/10.1038/nature00935. [PubMed][CrossRef]
170. Lee W, St Onge RP, Proctor M, Flaherty P, Jordan MI, Arkin AP, Davis RW, Nislow C, Giaever G. 2005. Genome-wide requirements for resistance to functionally distinct DNA-damaging agents. PLoS Genet 1:e24. http://dx.doi.org/10.1371/journal.pgen.0010024. [PubMed][CrossRef]
171. Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G. 2008. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365 http://dx.doi.org/10.1126/science.1150021. [CrossRef]
172. Lee AY, St Onge RP, Proctor MJ, Wallace IM, Nile AH, Spagnuolo PA, Jitkova Y, Gronda M, Wu Y, Kim MK, Cheung-Ong K, Torres NP, Spear ED, Han MK, Schlecht U, Suresh S, Duby G, Heisler LE, Surendra A, Fung E, Urbanus ML, Gebbia M, Lissina E, Miranda M, Chiang JH, Aparicio AM, Zeghouf M, Davis RW, Cherfils J, Boutry M, Kaiser CA, Cummins CL, Trimble WS, Brown GW, Schimmer AD, Bankaitis VA, Nislow C, Bader GD, Giaever G. 2014. Mapping the cellular response to small molecules using chemogenomic fitness signatures. Science 344:208–211 http://dx.doi.org/10.1126/science.1250217. [CrossRef]
173. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H. 2003. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181 http://dx.doi.org/10.1046/j.1365-2958.2003.03697.x. [CrossRef]
174. Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, Martel N, Davison J, Sillaots S, Trosok S, Bachewich C, Bussey H, Youngman P, Roemer T. 2007. Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:e92. http://dx.doi.org/10.1371/journal.ppat.0030092. [CrossRef]
175. Brown JC, Nelson J, VanderSluis B, Deshpande R, Butts A, Kagan S, Polacheck I, Krysan DJ, Myers CL, Madhani HD. 2014. Unraveling the biology of a fungal meningitis pathogen using chemical genetics. Cell 159:1168–1187 http://dx.doi.org/10.1016/j.cell.2014.10.044. [CrossRef]
176. O’Meara TR, Veri AO, Ketela T, Jiang B, Roemer T, Cowen LE. 2015. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat Commun 6:6741 http://dx.doi.org/10.1038/ncomms7741. [PubMed][CrossRef]
177. Huang Z, Chen K, Zhang J, Li Y, Wang H, Cui D, Tang J, Liu Y, Shi X, Li W, Liu D, Chen R, Sucgang RS, Pan X. 2013. A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Reports 3:577–585 http://dx.doi.org/10.1016/j.celrep.2013.01.019. [PubMed][CrossRef]
178. Pries V, Cotesta S, Riedl R, Aust T, Schuierer S, Tao J, Filipuzzi I, Hoepfner D. 2016. Advantages and challenges of phenotypic screens: the identification of two novel antifungal geranylgeranyltransferase I inhibitors. J Biomol Screen 21:306–315 http://dx.doi.org/10.1177/1087057115610488. [CrossRef]
179. Baltz RH. 2009. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 13:144–151 http://dx.doi.org/10.1016/j.cbpa.2009.02.031. [PubMed][CrossRef]
180. Anniballi F, Lonati D, Fiore A, Auricchio B, De Medici D, Locatelli CA. 2014. New targets in the search for preventive and therapeutic agents for botulism. Expert Rev Anti Infect Ther 12:1075–1086 http://dx.doi.org/10.1586/14787210.2014.945917. [PubMed][CrossRef]
181. Clerici M, Piconi S, Trabattoni D. 1999. Vaccine strategies for infectious diseases. Expert Opin Investig Drugs 8:95–106 http://dx.doi.org/10.1517/13543784.8.2.95. [PubMed][CrossRef]
182. Clatworthy AE, Pierson E, Hung DT. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548 http://dx.doi.org/10.1038/nchembio.2007.24. [PubMed][CrossRef]
183. Gauwerky K, Borelli C, Korting HC. 2009. Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14:214–222 http://dx.doi.org/10.1016/j.drudis.2008.11.013. [CrossRef]
184. Denning DW, Bromley MJ. 2015. How to bolster the antifungal pipeline. Science 347:1414–1416 http://dx.doi.org/10.1126/science.aaa6097. [PubMed][CrossRef]
185. Cowen LE. 2008. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 6:187–198 http://dx.doi.org/10.1038/nrmicro1835. [PubMed][CrossRef]

Article metrics loading...



Invasive fungal infections are becoming an increasingly important cause of human mortality and morbidity, particularly for immunocompromised populations. The fungal pathogens , , and collectively contribute to over 1 million human deaths annually. Hence, the importance of safe and effective antifungal therapeutics for the practice of modern medicine has never been greater. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for drug development remains limited. Only three classes of molecules are currently approved for the treatment of invasive mycoses. The efficacy of these agents is compromised by host toxicity, fungistatic activity, or the emergence of drug resistance in pathogen populations. Here we describe our current arsenal of antifungals and highlight current strategies that are being employed to improve the therapeutic safety and efficacy of these drugs. We discuss state-of-the-art approaches to discover novel chemical matter with antifungal activity and highlight some of the most promising new targets for antifungal drug development. We feature the benefits of combination therapy as a strategy to expand our current repertoire of antifungals and discuss the antifungal combinations that have shown the greatest potential for clinical development. Despite the paucity of new classes of antifungals that have come to market in recent years, it is clear that by leveraging innovative approaches to drug discovery and cultivating collaborations between academia and industry, there is great potential to bolster the antifungal armamentarium.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Structures and mechanisms of action of clinically relevant antifungal drugs. The azoles function by targeting the ergosterol biosynthetic enzyme lanosterol demethylase, encoded by ( and ) or and (), causing a block in the production of ergosterol and the accumulation of a toxic sterol produced by Erg3. This toxic sterol exerts a severe membrane stress on the cell. Polyenes such as amphotericin B primarily exist in the form of large extramembranous aggregates that extract ergosterol from lipid bilayers. Fungal cell walls are composed of (1,3)-β--glucans covalently linked to (1,6)-β--glucans as well as chitin, mannans, and cell wall proteins. The echinocandins act as noncompetitive inhibitors of (1,3)-β--glucan synthase (encoded by in , , and ) and thereby cause a loss of cell wall integrity and severe cell wall stress. Pyrimidines such as flucytosine become rapidly deaminated in the cytosol to generate 5-fluorouracil (5-FU) by fungal-specific cytosine deaminases. 5-FU acts as a potent antimetabolite that causes RNA miscoding and inhibits DNA synthesis. Adapted from reference 185 with permission.

Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0002-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Structures of compounds with antifungal activity. Chemical structures of antifungal molecules highlighted throughout the review. The description in brackets describes the molecular target of the chemical compound.

Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0002-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error