No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    940.15 Kb
  • XML
    141.57 Kb
  • HTML
    141.40 Kb
  • Author: Ronit Weisman1
  • Editor: Joseph Heitman2
    Affiliations: 1: Department of Natural and Life Sciences, The Open University of Israel, Raanana, 435379, Israel; 2: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0006-2016
  • Received 27 March 2016 Accepted 11 July 2016 Published 21 October 2016
  • Ronit Weisman, [email protected]
image of Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals
    Preview this microbiology spectrum article:
    Zoom in

    Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/5/FUNK-0006-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/5/FUNK-0006-2016-2.gif
  • Abstract:

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  • Citation: Weisman R. 2016. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. Microbiol Spectrum 4(5):FUNK-0006-2016. doi:10.1128/microbiolspec.FUNK-0006-2016.


1. Loewith R, Hall MN. 2011. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189:1177–1201. http://dx.doi.org/10.1534/genetics.111.133363. [PubMed][CrossRef]
2. Workman JJ, Chen H, Laribee RN. 2014. Environmental signaling through the mechanistic target of rapamycin complex 1: mTORC1 goes nuclear. Cell Cycle 13:714–725. http://dx.doi.org/10.4161/cc.28112. [PubMed][CrossRef]
3. Chantranupong L, Wolfson RL, Sabatini DM. 2015. Nutrient-sensing mechanisms across evolution. Cell 161:67–83. http://dx.doi.org/10.1016/j.cell.2015.02.041. [PubMed][CrossRef]
4. Heitman J, Movva NR, Hall MN. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909. http://dx.doi.org/10.1126/science.1715094. [PubMed][CrossRef]
5. Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP. 1993. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023. http://dx.doi.org/10.1128/MCB.13.10.6012. [CrossRef]
6. Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73:585–596. http://dx.doi.org/10.1016/0092-8674(93)90144-F. [CrossRef]
7. Laplante M, Sabatini DM. 2012. mTOR signaling in growth control and disease. Cell 149:274–293. http://dx.doi.org/10.1016/j.cell.2012.03.017. [PubMed][CrossRef]
8. Cornu M, Albert V, Hall MN. 2013. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23:53–62. http://dx.doi.org/10.1016/j.gde.2012.12.005. [PubMed][CrossRef]
9. Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. 2010. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 11:510. doi:10.1186/1471-2164-11-510 http://dx.doi.org/10.1186/1471-2164-11-510. [PubMed][CrossRef]
10. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. 2002. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468. http://dx.doi.org/10.1016/S1097-2765(02)00636-6. [CrossRef]
11. Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M. 2007. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells 12:1357–1370. http://dx.doi.org/10.1111/j.1365-2443.2007.01141.x. [CrossRef]
12. Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. 2007. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol 27:3154–3164. http://dx.doi.org/10.1128/MCB.01039-06. [CrossRef]
13. Weisman R, Choder M. 2001. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem 276:7027–7032. http://dx.doi.org/10.1074/jbc.M010446200. [PubMed][CrossRef]
14. Cruz MC, Cavallo LM, Görlach JM, Cox G, Perfect JR, Cardenas ME, Heitman J. 1999. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 19:4101–4112. http://dx.doi.org/10.1128/MCB.19.6.4101. [PubMed][CrossRef]
15. Cruz MC, Goldstein AL, Blankenship J, Del Poeta M, Perfect JR, McCusker JH, Bennani YL, Cardenas ME, Heitman J. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 45:3162–3170. http://dx.doi.org/10.1128/AAC.45.11.3162-3170.2001. [CrossRef]
16. Bastidas RJ, Reedy JL, Morales-Johansson H, Heitman J, Cardenas ME. 2008. Signaling cascades as drug targets in model and pathogenic fungi. Curr Opin Investig Drugs 9:856–864. [PubMed]
17. Eltschinger S, Loewith R. 2016. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 26:148–159. http://dx.doi.org/10.1016/j.tcb.2015.10.003. [PubMed][CrossRef]
18. Gaubitz C, Oliveira TM, Prouteau M, Leitner A, Karuppasamy M, Konstantinidou G, Rispal D, Eltschinger S, Robinson GC, Thore S, Aebersold R, Schaffitzel C, Loewith R. 2015. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol Cell 58:977–988. http://dx.doi.org/10.1016/j.molcel.2015.04.031. [CrossRef]
19. Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7:25–42. http://dx.doi.org/10.1091/mbc.7.1.25. [PubMed][CrossRef]
20. Beck T, Hall MN. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692. http://dx.doi.org/10.1038/45287. [CrossRef]
21. Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J. 1999. The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279. http://dx.doi.org/10.1101/gad.13.24.3271. [PubMed][CrossRef]
22. Noda T, Ohsumi Y. 1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273:3963–3966. http://dx.doi.org/10.1074/jbc.273.7.3963. [PubMed][CrossRef]
23. Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S, Gerrits B, Aebersold R, Loewith R. 2009. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev 23:1929–1943. http://dx.doi.org/10.1101/gad.532109. [CrossRef]
24. Huber A, French SL, Tekotte H, Yerlikaya S, Stahl M, Perepelkina MP, Tyers M, Rougemont J, Beyer AL, Loewith R. 2011. Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 30:3052–3064. http://dx.doi.org/10.1038/emboj.2011.221. [CrossRef]
25. Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebersold R, Sauer U. 2015. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci Signal 8:rs4. http://dx.doi.org/10.1126/scisignal.2005768. [CrossRef]
26. Albert V, Hall MN. 2015. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33:55–66. http://dx.doi.org/10.1016/j.ceb.2014.12.001. [PubMed][CrossRef]
27. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R. 2007. Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674. http://dx.doi.org/10.1016/j.molcel.2007.04.020. [PubMed][CrossRef]
28. Stracka D, Jozefczuk S, Rudroff F, Sauer U, Hall MN. 2014. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J Biol Chem 289:25010–25020. http://dx.doi.org/10.1074/jbc.M114.574335. [PubMed][CrossRef]
29. Weisman R, Choder M, Koltin Y. 1997. Rapamycin specifically interferes with the developmental response of fission yeast to starvation. J Bacteriol 179:6325–6334. [PubMed]
30. Nakashima A, Sato T, Tamanoi F. 2010. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci 123:777–786. http://dx.doi.org/10.1242/jcs.060319. [CrossRef]
31. Nakashima A, Otsubo Y, Yamashita A, Sato T, Yamamoto M, Tamanoi F. 2012. Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. J Cell Sci 125:5840–5849. http://dx.doi.org/10.1242/jcs.111146. [PubMed][CrossRef]
32. Tee AR, Blenis J. 2005. mTOR, translational control and human disease. Semin Cell Dev Biol 16:29–37. http://dx.doi.org/10.1016/j.semcdb.2004.11.005. [PubMed][CrossRef]
33. Alvarez B, Moreno S. 2006. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci 119:4475–4485. http://dx.doi.org/10.1242/jcs.03241. [PubMed][CrossRef]
34. Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. 2007. Opposite effects of tor1 and tor2 on nitrogen starvation responses in fission yeast. Genetics 175:1153–1162. http://dx.doi.org/10.1534/genetics.106.064170. [PubMed][CrossRef]
35. Laor D, Cohen A, Pasmanik-Chor M, Oron-Karni V, Kupiec M, Weisman R. 2014. Isp7 is a novel regulator of amino acid uptake in the TOR signaling pathway. Mol Cell Biol 34:794–806. http://dx.doi.org/10.1128/MCB.01473-13. [PubMed][CrossRef]
36. Davie E, Forte GM, Petersen J. 2015. Nitrogen regulates AMPK to control TORC1 signaling. Curr Biol 25:445–454. http://dx.doi.org/10.1016/j.cub.2014.12.034. [PubMed][CrossRef]
37. Chica N, Rozalén AE, Pérez-Hidalgo L, Rubio A, Novak B, Moreno S. 2016. Nutritional control of cell size by the greatwall-endosulfine-PP2A·B55 pathway. Curr Biol 26:319–330. http://dx.doi.org/10.1016/j.cub.2015.12.035. [PubMed][CrossRef]
38. Chowdhury T, Köhler JR. 2015. Ribosomal protein S6 phosphorylation is controlled by TOR and modulated by PKA in Candida albicans. Mol Microbiol 98:384–402. http://dx.doi.org/10.1111/mmi.13130. [PubMed][CrossRef]
39. Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL. 1999. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA 96:14866–14870. http://dx.doi.org/10.1073/pnas.96.26.14866. [CrossRef]
40. Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF. 2000. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275:35727–35733. http://dx.doi.org/10.1074/jbc.M004235200. [PubMed][CrossRef]
41. Bastidas RJ, Heitman J, Cardenas ME. 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5:e1000294. doi:10.1371/journal.ppat.1000294 http://dx.doi.org/10.1371/journal.ppat.1000294. [PubMed][CrossRef]
42. Di Como CJ, Arndt KT. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev 10:1904–1916. http://dx.doi.org/10.1101/gad.10.15.1904. [PubMed][CrossRef]
43. Jiang Y, Broach JR. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–2792. http://dx.doi.org/10.1093/emboj/18.10.2782. [PubMed][CrossRef]
44. Zheng Y, Jiang Y. 2005. The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes. Mol Biol Cell 16:2119–2127. http://dx.doi.org/10.1091/mbc.E04-09-0797. [CrossRef]
45. Liao WL, Ramón AM, Fonzi WA. 2008. GLN3 encodes a global regulator of nitrogen metabolism and virulence of C. albicans. Fungal Genet Biol 45:514–526. http://dx.doi.org/10.1016/j.fgb.2007.08.006. [PubMed][CrossRef]
46. Laor D, Cohen A, Kupiec M, Weisman R. 2015. TORC1 regulates developmental responses to nitrogen stress via regulation of the GATA transcription factor Gaf1. MBio 6:e00959-15. doi:10.1128/mBio.00959-15 http://dx.doi.org/10.1128/mBio.00959-15. [PubMed][CrossRef]
47. Kim L, Hoe KL, Yu YM, Yeon JH, Maeng PJ. 2012. The fission yeast GATA factor, Gaf1, modulates sexual development via direct down-regulation of ste11+ expression in response to nitrogen starvation. PLoS One 7:e42409. doi:10.1371/journal.pone.0042409 http://dx.doi.org/10.1371/journal.pone.0042409. [CrossRef]
48. Lee J, Moir RD, Willis IM. 2009. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem 284:12604–12608. http://dx.doi.org/10.1074/jbc.C900020200. [PubMed][CrossRef]
49. Lempiäinen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, Shore D. 2009. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell 33:704–716. http://dx.doi.org/10.1016/j.molcel.2009.01.034. [PubMed][CrossRef]
50. Martin DE, Soulard A, Hall MN. 2004. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119:969–979. http://dx.doi.org/10.1016/j.cell.2004.11.047. [PubMed][CrossRef]
51. Li H, Tsang CK, Watkins M, Bertram PG, Zheng XF. 2006. Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 442:1058–1061 http://dx.doi.org/10.1038/nature05020. [PubMed][CrossRef]
52. Du W, Hálová L, Kirkham S, Atkin J, Petersen J. 2012. TORC2 and the AGC kinase Gad8 regulate phosphorylation of the ribosomal protein S6 in fission yeast. Biol Open 1:884–888. http://dx.doi.org/10.1242/bio.20122022. [PubMed][CrossRef]
53. Cherkasova VA, Hinnebusch AG. 2003. Translational control by TOR and TAP42 through dephosphorylation of eIF2alpha kinase GCN2. Genes Dev 17:859–872. http://dx.doi.org/10.1101/gad.1069003. [PubMed][CrossRef]
54. Valbuena N, Rozalén AE, Moreno S. 2012. Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. J Cell Sci 125:5955–5959. http://dx.doi.org/10.1242/jcs.105395. [CrossRef]
55. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y. 2010. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30:1049–1058. http://dx.doi.org/10.1128/MCB.01344-09. [PubMed][CrossRef]
56. Kaeberlein M, Powers RW III, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK. 2005. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196. http://dx.doi.org/10.1126/science.1115535. [PubMed][CrossRef]
57. Powers RW III, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S. 2006. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184. http://dx.doi.org/10.1101/gad.1381406. [PubMed][CrossRef]
58. Rallis C, Codlin S, Bähler J. 2013. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell 12:563–573 http://dx.doi.org/10.1111/acel.12080. [CrossRef]
59. Rohde JR, Cardenas ME. 2004. Nutrient signaling through TOR kinases controls gene expression and cellular differentiation in fungi. Curr Top Microbiol Immunol 279:53–72. http://dx.doi.org/10.1007/978-3-642-18930-2_4. [CrossRef]
60. Cooper TG. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238. http://dx.doi.org/10.1111/j.1574-6976.2002.tb00612.x. [PubMed][CrossRef]
61. Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, De Virgilio C. 2012. Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46:105–110. http://dx.doi.org/10.1016/j.molcel.2012.02.009. [PubMed][CrossRef]
62. Valbuena N, Guan KL, Moreno S. 2012. The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J Cell Sci 125:1920–1928. http://dx.doi.org/10.1242/jcs.094219. [PubMed][CrossRef]
63. Kingsbury JM, Sen ND, Cardenas ME. 2015. Branched-chain aminotransferases control TORC1 signaling in Saccharomyces cerevisiae. PLoS Genet 11:e1005714. doi:10.1371/journal.pgen.1005714 http://dx.doi.org/10.1371/journal.pgen.1005714. [CrossRef]
64. Péli-Gulli MP, Sardu A, Panchaud N, Raucci S, De Virgilio C. 2015. Amino acids stimulate TORC1 through Lst4-Lst7, a GTPase-activating protein complex for the Rag family GTPase Gtr2. Cell Rep 13:1–7. http://dx.doi.org/10.1016/j.celrep.2015.08.059. [PubMed][CrossRef]
65. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. 1998. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273:14484–14494. http://dx.doi.org/10.1074/jbc.273.23.14484. [PubMed][CrossRef]
66. Wang X, Campbell LE, Miller CM, Proud CG. 1998. Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334:261–267. http://dx.doi.org/10.1042/bj3340261. [PubMed][CrossRef]
67. Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL. 2015. Differential regulation of mTORC1 by leucine and glutamine. Science 347:194–198. http://dx.doi.org/10.1126/science.1259472. [PubMed][CrossRef]
68. Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. 2012. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47:349–358. http://dx.doi.org/10.1016/j.molcel.2012.05.043. [PubMed][CrossRef]
69. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501. http://dx.doi.org/10.1126/science.1157535. [PubMed][CrossRef]
70. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. 2008. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945. http://dx.doi.org/10.1038/ncb1753. [PubMed][CrossRef]
71. Binda M, Péli-Gulli MP, Bonfils G, Panchaud N, Urban J, Sturgill TW, Loewith R, De Virgilio C. 2009. The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35:563–573. http://dx.doi.org/10.1016/j.molcel.2009.06.033. [PubMed][CrossRef]
72. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. 2005. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19:15–26. http://dx.doi.org/10.1016/j.molcel.2005.05.020. [PubMed][CrossRef]
73. Kira S, Kumano Y, Ukai H, Takeda E, Matsuura A, Noda T. 2016. Dynamic relocation of the TORC1-Gtr1/2-Ego1/2/3 complex is regulated by Gtr1 and Gtr2. Mol Biol Cell 27:382–396. http://dx.doi.org/10.1091/mbc.E15-07-0470. [PubMed][CrossRef]
74. Panchaud N, Péli-Gulli MP, De Virgilio C. 2013. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12:2948–2952. http://dx.doi.org/10.4161/cc.26000. [PubMed][CrossRef]
75. Mach KE, Furge KA, Albright CF. 2000. Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 155:611–622. [PubMed]
76. Urano J, Comiso MJ, Guo L, Aspuria PJ, Deniskin R, Tabancay AP Jr, Kato-Stankiewicz J, Tamanoi F. 2005. Identification of novel single amino acid changes that result in hyperactivation of the unique GTPase, Rheb, in fission yeast. Mol Microbiol 58:1074–1086. http://dx.doi.org/10.1111/j.1365-2958.2005.04877.x. [PubMed][CrossRef]
77. Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, Toda T. 2006. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells 11:1367–1379. http://dx.doi.org/10.1111/j.1365-2443.2006.01025.x. [PubMed][CrossRef]
78. Urano J, Sato T, Matsuo T, Otsubo Y, Yamamoto M, Tamanoi F. 2007. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci USA 104:3514–3519. http://dx.doi.org/10.1073/pnas.0608510104. [CrossRef]
79. Manning BD, Cantley LC. 2003. Rheb fills a GAP between TSC and TOR. Trends Biochem Sci 28:573–576. http://dx.doi.org/10.1016/j.tibs.2003.09.003. [PubMed][CrossRef]
80. Matsumoto S, Bandyopadhyay A, Kwiatkowski DJ, Maitra U, Matsumoto T. 2002. Role of the Tsc1-Tsc2 complex in signaling and transport across the cell membrane in the fission yeast Schizosaccharomyces pombe. Genetics 161:1053–1063. [PubMed]
81. Van Slegtenhorst M, Carr E, Stoyanova R, Kruger W, Henske EP. 2004. Tsc1+ and tsc2+ regulate arginine uptake and metabolism in Schizosaccharomyces pombe. J Biol Chem 279:12706–12713. [PubMed][CrossRef]
82. Tsao CC, Chen YT, Lan CY. 2009. A small G protein Rhb1 and a GTPase-activating protein Tsc2 involved in nitrogen starvation-induced morphogenesis and cell wall integrity of Candida albicans. Fungal Genet Biol 46:126–136. http://dx.doi.org/10.1016/j.fgb.2008.11.008. [CrossRef]
83. Jewell JL, Russell RC, Guan KL. 2013. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139. http://dx.doi.org/10.1038/nrm3522. [PubMed][CrossRef]
84. Inoki K, Zhu T, Guan KL. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590. http://dx.doi.org/10.1016/S0092-8674(03)00929-2. [PubMed][CrossRef]
85. Weisman R, Cohen A, Gasser SM. 2014. TORC2-a new player in genome stability. EMBO Mol Med 6:995–1002. http://dx.doi.org/10.15252/emmm.201403959. [PubMed][CrossRef]
86. Masui K, Cavenee WK, Mischel PS. 2014. mTORC2 in the center of cancer metabolic reprogramming. Trends Endocrinol Metab 25:364–373. http://dx.doi.org/10.1016/j.tem.2014.04.002. [PubMed][CrossRef]
87. Kamada Y, Fujioka Y, Suzuki NN, Inagaki F, Wullschleger S, Loewith R, Hall MN, Ohsumi Y. 2005. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239–7248. http://dx.doi.org/10.1128/MCB.25.16.7239-7248.2005. [PubMed][CrossRef]
88. Matsuo T, Kubo Y, Watanabe Y, Yamamoto M. 2003. Schizosaccharomyces pombe AGC family kinase Gad8p forms a conserved signaling module with TOR and PDK1-like kinases. EMBO J 22:3073–3083. http://dx.doi.org/10.1093/emboj/cdg298. [CrossRef]
89. Schmidt A, Kunz J, Hall MN. 1996. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci USA 93:13780–13785. http://dx.doi.org/10.1073/pnas.93.24.13780. [PubMed][CrossRef]
90. Helliwell SB, Schmidt A, Ohya Y, Hall MN. 1998. The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol 8:1211–1214. http://dx.doi.org/10.1016/S0960-9822(07)00511-8. [PubMed]
91. deHart AK, Schnell JD, Allen DA, Tsai JY, Hicke L. 2003. Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell 14:4676–4684. http://dx.doi.org/10.1091/mbc.E03-05-0323. [PubMed][CrossRef]
92. Tabuchi M, Audhya A, Parsons AB, Boone C, Emr SD. 2006. The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol 26:5861–5875. http://dx.doi.org/10.1128/MCB.02403-05. [PubMed][CrossRef]
93. Aronova S, Wedaman K, Aronov PA, Fontes K, Ramos K, Hammock BD, Powers T. 2008. Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab 7:148–158. http://dx.doi.org/10.1016/j.cmet.2007.11.015. [PubMed][CrossRef]
94. Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J. 2011. Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 108:19222–19227. http://dx.doi.org/10.1073/pnas.1116948108. [CrossRef]
95. Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. 2014. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife 3:e03779. doi:http://dx.doi.org/10.7554/eLife.03779 http://dx.doi.org/10.7554/eLife.03779. [CrossRef]
96. Roelants FM, Baltz AG, Trott AE, Fereres S, Thorner J. 2010. A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci USA 107:34–39. http://dx.doi.org/10.1073/pnas.0912497106. [PubMed][CrossRef]
97. Niles BJ, Powers T. 2014. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol Biol Cell 25:3962–3972. http://dx.doi.org/10.1091/mbc.E14-06-1122. [PubMed][CrossRef]
98. Niles BJ, Joslin AC, Fresques T, Powers T. 2014. TOR complex 2-Ypk1 signaling maintains sphingolipid homeostasis by sensing and regulating ROS accumulation. Cell Rep 6:541–552. http://dx.doi.org/10.1016/j.celrep.2013.12.040. (Erratum, 6:592.) [PubMed][CrossRef]
99. Rispal D, Eltschinger S, Stahl M, Vaga S, Bodenmiller B, Abraham Y, Filipuzzi I, Movva NR, Aebersold R, Helliwell SB, Loewith R. 2015. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J Biol Chem 290:14963–14978. http://dx.doi.org/10.1074/jbc.M114.627794. [PubMed][CrossRef]
100. Berchtold D, Piccolis M, Chiaruttini N, Riezman I, Riezman H, Roux A, Walther TC, Loewith R. 2012. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol 14:542–547. http://dx.doi.org/10.1038/ncb2480. [PubMed][CrossRef]
101. Vlahakis A, Graef M, Nunnari J, Powers T. 2014. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA 111:10586–10591. http://dx.doi.org/10.1073/pnas.1406305111. [PubMed][CrossRef]
102. Kawai M, Nakashima A, Ueno M, Ushimaru T, Aiba K, Doi H, Uritani M. 2001. Fission yeast tor1 functions in response to various stresses including nitrogen starvation, high osmolarity, and high temperature. Curr Genet 39:166–174 http://dx.doi.org/10.1007/s002940100198. [CrossRef]
103. Ikeda K, Morigasaki S, Tatebe H, Tamanoi F, Shiozaki K. 2008. Fission yeast TOR complex 2 activates the AGC-family Gad8 kinase essential for stress resistance and cell cycle control. Cell Cycle 7:358–364. http://dx.doi.org/10.4161/cc.7.3.5245. [PubMed][CrossRef]
104. Schonbrun M, Laor D, López-Maury L, Bähler J, Kupiec M, Weisman R. 2009. TOR complex 2 controls gene silencing, telomere length maintenance, and survival under DNA-damaging conditions. Mol Cell Biol 29:4584–4594. http://dx.doi.org/10.1128/MCB.01879-08. [CrossRef]
105. Petersen J, Nurse P. 2007. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol 9:1263–1272. http://dx.doi.org/10.1038/ncb1646. [PubMed][CrossRef]
106. Ikai N, Nakazawa N, Hayashi T, Yanagida M. 2011. The reverse, but coordinated, roles of Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in Schizosaccharomyces pombe. Open Biol 1:110007. doi:10.1098/rsob.110007 http://dx.doi.org/10.1098/rsob.110007. [PubMed][CrossRef]
107. Weisman R, Roitburg I, Nahari T, Kupiec M. 2005. Regulation of leucine uptake by tor1+ in Schizosaccharomyces pombe is sensitive to rapamycin. Genetics 169:539–550. http://dx.doi.org/10.1534/genetics.104.034983. [PubMed][CrossRef]
108. Saitoh S, Mori A, Uehara L, Masuda F, Soejima S, Yanagida M. 2015. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. Mol Biol Cell 26:373–386. http://dx.doi.org/10.1091/mbc.E14-11-1503. [CrossRef]
109. Du W, Forte GM, Smith D, Petersen J. 2016. Phosphorylation of the amino-terminus of the AGC kinase Gad8 prevents its interaction with TORC2. Open Biol 6:6. doi:10.1098/rsob.150189 http://dx.doi.org/10.1098/rsob.150189. [PubMed][CrossRef]
110. Shimada K, Filipuzzi I, Stahl M, Helliwell SB, Studer C, Hoepfner D, Seeber A, Loewith R, Movva NR, Gasser SM. 2013. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol Cell 51:829–839. http://dx.doi.org/10.1016/j.molcel.2013.08.019. [PubMed][CrossRef]
111. Sturgill TW, Cohen A, Diefenbacher M, Trautwein M, Martin DE, Hall MN. 2008. TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell 7:1819–1830. http://dx.doi.org/10.1128/EC.00088-08. [PubMed][CrossRef]
112. Kunz J, Schneider U, Howald I, Schmidt A, Hall MN. 2000. HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem 275:37011–37020. http://dx.doi.org/10.1074/jbc.M007296200. [PubMed][CrossRef]
113. Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K. 2010. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 20:1975–1982. http://dx.doi.org/10.1016/j.cub.2010.10.026. [PubMed][CrossRef]
114. Cohen A, Kupiec M, Weisman R. 2016. Gad8 is found in the nucleus where it interacts with the MluI cell cycle box-binding factor (MBF) transcriptional complex to regulate the response to DNA replication stress. J Biol Chem 291:9371–9381. http://dx.doi.org/10.1074/jbc.M115.705251. [CrossRef]
115. Zinzalla V, Stracka D, Oppliger W, Hall MN. 2011. Activation of mTORC2 by association with the ribosome. Cell 144:757–768. http://dx.doi.org/10.1016/j.cell.2011.02.014. [PubMed][CrossRef]
116. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E. 2010. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29:3939–3951. http://dx.doi.org/10.1038/emboj.2010.271.
117. Cohen A, Kupiec M, Weisman R. 2014. Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem 289:21727–21737. http://dx.doi.org/10.1074/jbc.M114.573824. [CrossRef]
118. Hatano T, Morigasaki S, Tatebe H, Ikeda K, Shiozaki K. 2015. Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose. Cell Cycle 14:848–856. http://dx.doi.org/10.1080/15384101.2014.1000215. [CrossRef]
119. Liu W, Zhao J, Li X, Li Y, Jiang L. 2010. The protein kinase CaSch9p is required for the cell growth, filamentation and virulence in the human fungal pathogen Candida albicans. FEMS Yeast Res 10:462–470. http://dx.doi.org/10.1111/j.1567-1364.2010.00617.x. [PubMed][CrossRef]
120. Lee CM, Nantel A, Jiang L, Whiteway M, Shen SH. 2004. The serine/threonine protein phosphatase SIT4 modulates yeast-to-hypha morphogenesis and virulence in Candida albicans. Mol Microbiol 51:691–709. http://dx.doi.org/10.1111/j.1365-2958.2003.03879.x. [CrossRef]
121. Zacchi LF, Gomez-Raja J, Davis DA. 2010. Mds3 regulates morphogenesis in Candida albicans through the TOR pathway. Mol Cell Biol 30:3695–3710. http://dx.doi.org/10.1128/MCB.01540-09. [PubMed][CrossRef]
122. Su C, Lu Y, Liu H. 2013. Reduced TOR signaling sustains hyphal development in Candida albicans by lowering Hog1 basal activity. Mol Biol Cell 24:385–397. http://dx.doi.org/10.1091/mbc.E12-06-0477. [PubMed][CrossRef]
123. Lee H, Khanal Lamichhane A, Garraffo HM, Kwon-Chung KJ, Chang YC. 2012. Involvement of PDK1, PKC and TOR signalling pathways in basal fluconazole tolerance in Cryptococcus neoformans. Mol Microbiol 84:130–146. http://dx.doi.org/10.1111/j.1365-2958.2012.08016.x. [CrossRef]
124. Baldin C, Valiante V, Krüger T, Schafferer L, Haas H, Kniemeyer O, Brakhage AA. 2015. Comparative proteomics of a Tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation. Proteomics 15:2230–2243. http://dx.doi.org/10.1002/pmic.201400584.
125. Fitzgibbon GJ, Morozov IY, Jones MG, Caddick MX. 2005. Genetic analysis of the TOR pathway in Aspergillus nidulans. Eukaryot Cell 4:1595–1598. http://dx.doi.org/10.1128/EC.4.9.1595-1598.2005. [PubMed][CrossRef]
126. Meyer V, Arentshorst M, Flitter SJ, Nitsche BM, Kwon MJ, Reynaga-Peña CG, Bartnicki-Garcia S, van den Hondel CA, Ram AF. 2009. Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics. Eukaryot Cell 8:1677–1691. http://dx.doi.org/10.1128/EC.00050-09. [PubMed][CrossRef]
127. Meyer V, Minkwitz S, Schütze T, van den Hondel CA, Ram AF. 2010. The Aspergillus niger RmsA protein: a node in a genetic network? Commun Integr Biol 3:195–197. http://dx.doi.org/10.4161/cib.3.2.10983. [PubMed][CrossRef]
128. Teichert S, Wottawa M, Schönig B, Tudzynski B. 2006. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. Eukaryot Cell 5:1807–1819. http://dx.doi.org/10.1128/EC.00039-06. [PubMed][CrossRef]
129. Yu F, Gu Q, Yun Y, Yin Y, Xu JR, Shim WB, Ma Z. 2014. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. New Phytol 203:219–232. http://dx.doi.org/10.1111/nph.12776. [PubMed][CrossRef]
130. Chen D, Wang Y, Zhou X, Wang Y, Xu JR. 2014. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. PLoS One 9:e105811. doi:10.1371/journal.pone.0105811 http://dx.doi.org/10.1371/journal.pone.0105811. [PubMed][CrossRef]
131. Weisman R. 2010. Fission yeast TOR and rapamycin, p 251–269. In Hall MN, Tamanoi F (ed), The Enzymes: Structure, Function and Regulation of TOR Complexes from Yeast to Mammals. Part A, vol 27. Elsevier, London, United Kingdom. [CrossRef]

Article metrics loading...



All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


TORC1 and TORC2 subunits and downstream AGC kinases in mammalian, , and cells. TORC1 and TORC2 have shared and unique components. The human protein Raptor is TORC1-specific and is conserved in both yeast species. The human proteins Rictor and Sin1 are TORC2-specific subunits and are conserved in both yeast species. The target kinases of TORC1 and TORC2 are shown as green parallelograms.

Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


TORC1 is activated by GTPases to promote growth and inhibit starvation responses. TORC1 (TORC1) and TORC1 (TORC1) are activated by the GTPase complex Gtr1/Gtr2. The complex is active when Gtr1 is bound to GTP and Gtr2 is bound to GDP. Vam6 is a guanine exchange factor (GEF) for Gtr1 that is conserved between and . In , the Gtr1/Gtr2 complex is associated with the EGO complex and is controlled by the SEACIT (which acts as GTPase activating protein, GAP), SEACAT, and Lst4-Lst7 complexes. These complexes have as yet unidentified equivalents in . TORC1 is also regulated by the Rhb1 GTPase (Rheb in mammals) and the TSC (tuberous sclerosis complex, a tumor suppressor complex in mammals), which acts as a GAP towards Rhb1.

Source: microbiolspec October 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.FUNK-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error