No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Ecology of Fungal Plant Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    282.60 Kb
  • XML
    98.28 Kb
  • HTML
    102.82 Kb
  • Author: Aad J. Termorshuizen1
  • Editors: Joseph Heitman2, Pedro W. Crous3
    Affiliations: 1: Soil Cares Research, 6709 PA Wageningen, The Netherlands; 2: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 3: CBS-KNAW Fungal Diversity Centre, Royal Dutch Academy of Arts and Sciences, Utrecht, The Netherlands
  • Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.FUNK-0013-2016
  • Received 02 June 2016 Accepted 18 August 2016 Published 18 November 2016
  • Aad J. Termorshuizen, [email protected]
image of Ecology of Fungal Plant Pathogens
    Preview this microbiology spectrum article:
    Zoom in

    Ecology of Fungal Plant Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/FUNK-0013-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/FUNK-0013-2016-2.gif
  • Abstract:

    Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

  • Citation: Termorshuizen A. 2016. Ecology of Fungal Plant Pathogens. Microbiol Spectrum 4(6):FUNK-0013-2016. doi:10.1128/microbiolspec.FUNK-0013-2016.


1. Oerke EC. 2006. Crop losses to pests. J Agric Sci 144:31–43. http://dx.doi.org/10.1017/S0021859605005708
2. Calvin L, Krissoff B, Foster W. 2008. Measuring the costs and trade effects of phytosanitary protocols: a U.S.-Japanese apple example. Rev Agric Econ 30:120–135. http://dx.doi.org/10.1111/j.1467-9353.2007.00395.x
3. Agrios GN. 2005. Plant Pathology, 5th ed. Elsevier Academic Press, Amsterdam, The Netherlands.
4. Ingram DS. 1998. Biodiversity, plant pathogens and conservation. Plant Pathol 48:433–442. http://dx.doi.org/10.1046/j.1365-3059.1999.00361.x
5. Döring TF, Pautasso M, Finckh MR, Wolfe MS. 2012. Concepts of plant health: reviewing and challenging the foundations of plant protection. Plant Pathol 61:1–15. http://dx.doi.org/10.1111/j.1365-3059.2011.02501.x
6. Powelson ML, Rowe RC. 1993. Biology and management of early dying of potatoes. Annu Rev Phytopathol 31:111–126. http://dx.doi.org/10.1146/annurev.py.31.090193.000551
7. McNew GL. 1960. The nature, origin, and evolution of parasitism, p 19–69. In Horsfall JG, Dimond AE (ed), Plant Pathology: An Advanced Treatise. Academic Press, New York, NY.
8. Scholthof KBG. 2007. The disease triangle: pathogens, the environment and society. Nat Rev Microbiol 5:152–156. http://dx.doi.org/10.1038/nrmicro1596
9. Mordecai EA. 2015. Pathogen impacts on plant diversity in variable environments. Oikos 124:414–420. http://dx.doi.org/10.1111/oik.01328
10. Mes JJ, Weststeijn EA, Herlaar F, Lambalk JJM, Wijbrandi J, Haring MA, Cornelissen BJC. 1999. Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89:156–160. http://dx.doi.org/10.1094/PHYTO.1999.89.2.156
11. Troch V, Audenaert K, Wyand RA, Haesaert G, Höfte M, Brown JKM. 2014. Formae speciales of cereal powdery mildew: close or distant relatives? Mol Plant Pathol 15:304–314. http://dx.doi.org/10.1111/mpp.12093
12. Schneider JHM, Schilder MT, Dijst G. 1997. Characterization of Rhizoctonia solani AG 2 isolates causing bare patch in field grown tulips in The Netherlands. Eur J Plant Pathol 103:265–279. http://dx.doi.org/10.1023/A:1008643311984
13. Baumgartner K, Coetzee MPA, Hoffmeister D. 2011. Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol 12:515–534. http://dx.doi.org/10.1111/j.1364-3703.2010.00693.x
14. Jiménez-Gasco MM, Malcolm GM, Berbegal M, Armengol J, Jiménez-Díaz RM. 2014. Complex molecular relationship between vegetative compatibility groups (VCGs) in Verticillium dahliae: VCGs do not always align with clonal lineages. Phytopathology 104:650–659. http://dx.doi.org/10.1094/PHYTO-07-13-0180-R
15. Smith DS, Rocheleau H, Chapados JT, Abbott C, Ribero S, Redhead SA, Lévesque CA, De Boer SH. 2014. Phylogeny of the genus Synchytrium and the development of TaqMan PCR assay for sensitive detection of Synchytrium endobioticum in soil. Phytopathology 104:422–432. http://dx.doi.org/10.1094/PHYTO-05-13-0144-R
16. Inderbitzin P, Subbarao KV. 2014. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology 104:564–574. http://dx.doi.org/10.1094/PHYTO-11-13-0315-IA
17. Crous PW, Groenewald JZ, Slippers B, Wingfield MJ. 2016. Global food and fibre security threatened by current inefficiencies in fungal identification. Philos Trans R Soc Lond B Biol Sci 371:20160024.
18. Katsantonis D, Hillocks RJ, Gowen S. 2003. Comparative effect of root-knot nematode on severity of Verticillium and Fusarium wilt in cotton. Phytoparasitica 31:154–162. http://dx.doi.org/10.1007/BF02980785
19. Rotenberg D, MacGuidwin AE, Saeed IAM, Rouse DI. 2004. Interaction of spatially separated Pratylenchus penetrans and Verticillium dahliae on potato measured by impaired photosynthesis. Plant Pathol 53:294–302. http://dx.doi.org/10.1111/j.0032-0862.2004.01005.x
20. Oyarzun PJ, Gerlagh M, Hoogland AE. 1993. Pathogenic fungi involved in root rot of peas in The Netherlands and their physiological specialization. Neth J Plant Pathol 99:23–33. http://dx.doi.org/10.1007/BF01974782
21. Fuchs JG, Thuerig B, Brandhuber R, Bruns C, Finckh MR, Fliessbach A, Mäder P, Schmidt H, Vogt-Kaute W, Wilbois KP, Lucius T. 2014. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl Soil Ecol 79:26–36. http://dx.doi.org/10.1016/j.apsoil.2014.02.013
22. Wei F, Fan R, Dong H, Shang W, Xu X, Zhu H, Yang J, Hu X. 2015. Threshold microsclerotial inoculum for cotton Verticillium wilt determined through wet-sieving and real-time quantitative PCR. Phytopathology 105:220–229. http://dx.doi.org/10.1094/PHYTO-05-14-0139-R
23. Gilligan CA, van den Bosch F. 2008. Epidemiological models for invasion and persistence of pathogens. Annu Rev Phytopathol 46:385–418. http://dx.doi.org/10.1146/annurev.phyto.45.062806.094357
24. Bailey DJ, Otten W, Gilligan CA. 2000. Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds. New Phytol 146:535–544. http://dx.doi.org/10.1046/j.1469-8137.2000.00660.x
25. Dean W. 1987. Brazil and the Struggle for Rubber. Cambridge Univ Press, Cambridge, United Kingdom.
26. Ratnadass A, Fernandes P, Avelino J, Habib R. 2012. Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303. http://dx.doi.org/10.1007/s13593-011-0022-4
27. Datnoff LE, Elmer WH, Huber DM (ed). 2007. Mineral Nutrition and Plant Disease. American Phytopathological Society, Minnessota, MN.
28. Huber DM, Thompson IA. 2007. Nitrogen and plant disease, p 31–44. In Datnoff LE, Elmer WH, Huber DM (ed), Mineral Nutrition and Plant Disease. American Phytopathological Society, Minnessota, MN.
29. Fokkema NJ. 1973. The role of saprophytic fungi in antagonism against Drechslera sorokiniana ( Helminthosporium sativum) on agar plates and on rye leaves with pollen. Physiol Plant Pathol 3:195–205. http://dx.doi.org/10.1016/0048-4059(73)90082-9
30. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348. http://dx.doi.org/10.1146/annurev.phyto.40.030402.110010
31. Bostock RM, Pye MF, Roubtsova TV. 2014. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549. http://dx.doi.org/10.1146/annurev-phyto-081211-172902
32. Graniti A. 1998. Cypress canker: a pandemic in progress. Annu Rev Phytopathol 36:91–114. http://dx.doi.org/10.1146/annurev.phyto.36.1.91
33. Herms DA, Mattson WJ. 1992. The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335. http://dx.doi.org/10.1086/417659
34. Spear ER, Coley PD, Kursar TA. 2015. Do pathogens limit the distributions of tropical trees across a rainfall gradient? J Ecol 103:165–174. http://dx.doi.org/10.1111/1365-2745.12339
35. Garrett SD. 1970. Pathogenic Root-infecting Fungi. Cambridge University Press, Cambridge, United Kingdom.
36. Gonzalez-Martin C, Teigell-Perez N, Valladares B, Griffin DW. 2014. The global dispersion of pathogenic microorganisms by dust storms and its relevance to agriculture. Adv Agron 127:1–41. http://dx.doi.org/10.1016/B978-0-12-800131-8.00001-7
37. Malcolm GM, Kuldau GA, Gugino BK, Jiménez-Gasco MM. 2013. Hidden host plant associations of soil-borne fungal pathogens: an ecological perspective. Phytopathology 103:538–544. http://dx.doi.org/10.1094/PHYTO-08-12-0192-LE
38. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
39. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. http://dx.doi.org/10.1128/MMBR.00050-14
40. Garber RH, Presley JT. 1971. Relation of air temperature to development of Verticillium wilt on cotton in the field. Phytopathology 61:204–207. http://dx.doi.org/10.1094/Phyto-61-204
41. Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, Thomma BPHJ, Ploetz RC, Kema GHJ. 2015. Worse comes to worst: bananas and Panama disease—When plant and pathogen clones meet. PLoS Pathog 11:e1005197. http://dx.doi.org/10.1371/journal.ppat.1005197
42. Crous PW, Groenewald JZ. 2005. Hosts, species and genotypes: opinions versus data. Presented as a keynote address at the 15th Biennial Conference of the Australasian Plant Pathology Society, Geelong, Australia, 26–29 September 2005. Australas Plant Pathol 34:463–470. http://dx.doi.org/10.1071/AP05082
43. Damm U, Cannon PF, Woudenberg JHC, Crous PW. 2012. The Colletotrichum acutatum species complex. Stud Mycol 73:37–113. http://dx.doi.org/10.3114/sim0010
44. Freeman S, Horowitz S, Sharon A. 2001. Pathogenic and nonpathogenic lifestyles in Colletotrichum acutatum from strawberry and other plants. Phytopathology 91:986–992. http://dx.doi.org/10.1094/PHYTO.2001.91.10.986
45. Peres NA, Timmer LW, Adaskaveg JE, Correll JC. 2005. Lifestyles of Colletotrichum acutatum. Plant Dis 89:784–796. http://dx.doi.org/10.1094/PD-89-0784
46. Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA, Ortega CN, Sauer EL, Sehgal T, Young S, Rohr JR. 2015. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA 112:8667–8671. http://dx.doi.org/10.1073/pnas.1506279112
47. Mitchell CE, Tilman D, Groth JV. 2002. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726. http://dx.doi.org/10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2
48. Hantsch L, Bien S, Radatz S, Braun U, Auge H, Bruelheide H. 2014. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation. J Ecol 102:1673–1687. http://dx.doi.org/10.1111/1365-2745.12317
49. Bever JD, Mangan SA, Alexander HM. 2015. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst 46:305–325. http://dx.doi.org/10.1146/annurev-ecolsys-112414-054306
50. van den Berg F, Gaucel S, Lannou C, Gilligan CA, van den Bosch F. 2013. High levels of auto-infection in plant pathogens favour short latent periods: a theoretical approach. Evol Ecol 27:409–428. http://dx.doi.org/10.1007/s10682-012-9602-2
51. Salama NKG, van den Bosch F, Edwards GR, Heard MS, Jeger MJ. 2012. Population dynamics of a non-cultivated biennual plant Tragopogon pratensis infected by the autecious demicyclic rust fungus Puccinia hysterium. Fungal Ecol 5:530–542. http://dx.doi.org/10.1016/j.funeco.2011.12.009
52. Janzen DH. 1970. Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528. http://dx.doi.org/10.1086/282687
53. Connell JH. 1970. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees, p 298–312. In den Boer PR, Gradwell GR (ed), Dynamics of Population. Pudoc, Wageningen, The Netherlands.
54. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88. http://dx.doi.org/10.1038/nature12911
55. Yu L, Fang S, Chesson P, He F. 2015. The effect of soil-borne pathogens depends on the abundance of host tree species. Nature Communications 6:10017. http://dx.doi.org/10.1038/ncomms10017.
56. Olff H, Hoorens B, de Goede RGM, van der Putten WH, Gleichman JM. 2000. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia 125:45–54. http://dx.doi.org/10.1007/PL00008890
57. Van der Putten WH, Yeates GW, Duyts H, Schreck Reis C, Karssen G. 2005. Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biol Invasions 7:733–746. http://dx.doi.org/10.1007/s10530-004-1196-3
58. Liu QH, Hytteborn H. 1991. Gap structure, disturbance and regeneration in a primeval Picea abies forest. J Veg Sci 2:391–402. http://dx.doi.org/10.2307/3235932
59. Bendel M, Kienast F, Bugmann H, Rigling D. 2006. Incidence and distribution of Heterobasidion and Armillaria and their influence on canopy gap formation in unmanaged mountain pine forests in the Swiss Alps. Eur J Plant Pathol 116:85–93. http://dx.doi.org/10.1007/s10658-006-9028-1
60. Chavarriaga D, Bodles WJA, Leifert C, Belbahri L, Woodward S. 2007. Phytophthora cinnamomi and other fine root pathogens in north temperate pine forests. FEMS Microbiol Lett 276:67–74. http://dx.doi.org/10.1111/j.1574-6968.2007.00914.x
61. Yamazaki M, Iwamoto S, Seiwa K. 2009. Distance- and density-dependent seedling mortality caused by several diseases in eight tree species co-occurring in a temperate forest. Plant Ecol 201:181–196. http://dx.doi.org/10.1007/s11258-008-9531-x
62. Packer A, Clay K. 2003. Soil pathogens and Prunus serotina seedling and sapling growth near conspecific trees. Ecology 84:108–119. http://dx.doi.org/10.1890/0012-9658(2003)084[0108:SPAPSS]2.0.CO;2
63. Burdon JJ, Thrall PH, Ericson AL. 2006. The current and future dynamics of disease in plant communities. Annu Rev Phytopathol 44:19–39. http://dx.doi.org/10.1146/annurev.phyto.43.040204.140238
64. Augspurger CK, Wilkinson HT. 2007. Host specificity of pathogenic Pythium species: implications for tree species diversity. Biotropica 39:702–708. http://dx.doi.org/10.1111/j.1744-7429.2007.00326.x
65. Hoestra H.1967. Replant diseases of apple in The Netherlands. Ph.D. thesis. Wageningen University, Wageningen, The Netherlands.
66. Mazzola M, Manici LM. 2012. Apple replant disease: role of microbial ecology in cause and control. Annu Rev Phytopathol 50:45–65. http://dx.doi.org/10.1146/annurev-phyto-081211-173005
67. Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. 2012. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev Camb Philos Soc 87:52–71. http://dx.doi.org/10.1111/j.1469-185X.2011.00184.x
68. Van der Putten WH, Van Dijk C, Peters BAM. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56. http://dx.doi.org/10.1038/362053a0
69. Blok WJ, Bollen GJ. 1996. Etiology of asparagus replant-bound early decline. Neth J Plant Pathol 102:87–98. http://dx.doi.org/10.1007/BF01877119
70. Van Rheenen HA, Hasselbach OE, Muigai SGS. 1981. The effect of growing beans together with maize on the incidence of bean diseases and pests. Neth J Plant Pathol 87:193–199. http://dx.doi.org/10.1007/BF01976985
71. Mommer L, van Ruijven J, de Caluwe H, Smit-Tiekstra AE, Wagemaker CAM, Ouborg NJ, Bögemann GM, van der Weerden GM, Berendse F, de Kroon H. 2010. Unveiling below-ground species abundance in a biodiversity experiment: a test of vertical niche differentiation among grassland species. J Ecol 98:1117–1127. http://dx.doi.org/10.1111/j.1365-2745.2010.01702.x
72. de Kroon H, Hendriks M, van Ruijven J, Ravenek J, Padilla FM, Jongejans E, Visser EJW, Mommer L. 2012. Root responses to nutrients and soil biota: drivers of species coexistence and ecosystem productivity. J Ecol 100:6–15. http://dx.doi.org/10.1111/j.1365-2745.2011.01906.x
73. Maron JL, Marler M, Klironomos JN, Cleveland CC. 2011. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol Lett 14:36–41. http://dx.doi.org/10.1111/j.1461-0248.2010.01547.x
74. Schnitzer SA, Klironomos JN, Hillerislambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 92:296–303. http://dx.doi.org/10.1890/10-0773.1
75. McCarthy-Neumann S, Kobe RK. 2008. Tolerance of soil pathogens co-varies with shade tolerance across species of tropical tree seedlings. Ecology 89:1883–1892. http://dx.doi.org/10.1890/07-0211.1
76. Kos M, Veendrick J, Bezemer TM. 2013. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland. Basic Appl Ecol 14:506–514. http://dx.doi.org/10.1016/j.baae.2013.07.002
77. Kirisits T. 2013. Dutch elm disease and other Ophiostoma diseases, p 256–282. In Gonthier P, Nicolotti G (ed), Infectious Forest Diseases. CAB International, Wallingford, United Kingdom. http://dx.doi.org/10.1079/9781780640402.0256
78. Bonde MR, Peterson GL, Schaad NW, Smilanick JL. 1997. Karnal bunt of wheat. Plant Dis 81:1370–1377. http://dx.doi.org/10.1094/PDIS.1997.81.12.1370
79. Gross A, Hosoya T, Queloz V. 2014. Population structure of the invasive forest pathogen Hymenoscyphus pseudoalbidus. Mol Ecol 23:2943–2960. http://dx.doi.org/10.1111/mec.12792
80. Cole TE, Müller B, Hong Y, Brasier CM, Buck KW. 1998. Complexity of virus-like double-stranded RNA elements in a diseased isolate of the Dutch elm disease fungus, Ophiostoma novo-ulmi. J Phytopathol 146:593–598. http://dx.doi.org/10.1111/j.1439-0434.1998.tb04760.x
81. Xie J, Jiang D. 2014. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu Rev Phytopathol 52:45–68. http://dx.doi.org/10.1146/annurev-phyto-102313-050222
82. Milgroom MG, Cortesi P. 2004. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol 42:311–338. http://dx.doi.org/10.1146/annurev.phyto.42.040803.140325
83. Bebber DP. 2015. Range-expanding pests and pathogens in a warming world. Annu Rev Phytopathol 53:335–356. http://dx.doi.org/10.1146/annurev-phyto-080614-120207
84. Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH. 2012. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc Natl Acad Sci USA 109:10954–10959. http://dx.doi.org/10.1073/pnas.1201403109
85. Restrepo S, Tabima JF, Mideros MF, Grünwald NJ, Matute DR. 2014. Speciation in fungal and oomycete plant pathogens. Annu Rev Phytopathol 52:289–316. http://dx.doi.org/10.1146/annurev-phyto-102313-050056
86. Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van Kim P, Nottéghem JL, Kohn LM. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630. http://dx.doi.org/10.1534/genetics.105.041780
87. Gilbert GS. 2002. Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40:13–43. http://dx.doi.org/10.1146/annurev.phyto.40.021202.110417
88. Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H, McNally KE, Parlange F, Riba A, Roffler S, Schaefer LK, Shimizu KK, Valenti L, Zbinden H, Wicker T, Keller B. 2016. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet 48:201–205. http://dx.doi.org/10.1038/ng.3485
89. Brasier CM, Kirk SA, Pipe ND, Buck KW. 1998. Rare interspecific hybrids in natural populations of the Dutch elm disease pathogens Ophiostoma ulmi and O. novo-ulmi. Mycol Res 102:45–57. http://dx.doi.org/10.1017/S0953756297004541
90. Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. 2011. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 6:e18260. http://dx.doi.org/10.1371/journal.pone.0018260
91. Stukenbrock EH. 2016. The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology 106:104–112. http://dx.doi.org/10.1094/PHYTO-08-15-0184-RVW
92. Stukenbrock EH, McDonald BA. 2008. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol 46:75–100. http://dx.doi.org/10.1146/annurev.phyto.010708.154114
93. Chavarro Mesa E, Ceresini PC, Ramos Molina LM, Pereira DAS, Schurt DA, Vieira JR Jr, Poloni NM, McDonald BA. 2015. The Urochlora foliar blight and collar rot pathogen Rhizoctonia solani AG-1 IA emerged in South America via a host shift from rice. Phytopathology 105:1475–1486. http://dx.doi.org/10.1094/PHYTO-04-15-0093-R [CrossRef]
94. Musvuugwa T, Dreyer LL, Roets F. Future dangers posed by fungi in the Ophiostomatales when encountering new hosts. Fungal Ecol 22:83–89.
95. Short DPG, Gurung S, Gladieux P, Inderbitzin P, Atallah ZK, Nigro F, Li G, Benlioglu S, Subbarao KV. 2015. Globally invading populations of the fungal plant pathogen Verticillium dahliae are dominated by multiple divergent lineages. Environ Microbiol 17:2824–2840. http://dx.doi.org/10.1111/1462-2920.12789
96. Pegg GF, Brady BL(ed). 2002. Verticillium Wilts. CABI Publishing, New York, NY. http://dx.doi.org/10.1079/9780851995298.0000
97. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956. http://dx.doi.org/10.1038/ng1839
98. Thomma BPHJ. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236. http://dx.doi.org/10.1046/j.1364-3703.2003.00173.x
99. Callaway RM, Thelen GC, Rodriguez A, Holben WE. 2004. Soil biota and exotic plant invasion. Nature 427:731–733. http://dx.doi.org/10.1038/nature02322
100. Reinhart KO, Tytgat T, Van der Putten WH, Clay K. 2010. Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytol 186:484–495. http://dx.doi.org/10.1111/j.1469-8137.2009.03159.x
101. Knevel IC, Lans T, Menting FBJ, Hertling UM, van der Putten WH. 2004. Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia 141:502–510. http://dx.doi.org/10.1007/s00442-004-1662-8
102. Klironomos JN. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70. http://dx.doi.org/10.1038/417067a
103. Mills KE, Bever JD. 1998. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79:1595–1601.
104. Allan E, van Ruijven J, Crawley MJ. 2010. Foliar fungal pathogens and grassland biodiversity. Ecology 91:2572–2582. http://dx.doi.org/10.1890/09-0859.1
105. Blumenthal D, Mitchell CE, Pysek P, Jarosík V. 2009. Synergy between pathogen release and resource availability in plant invasion. Proc Natl Acad Sci USA 106:7899–7904. http://dx.doi.org/10.1073/pnas.0812607106
106. Mordecai EA. 2011. Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecol Monogr 81:429–441. http://dx.doi.org/10.1890/10-2241.1
107. Mitchell CE, Power AG. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421:625–627. http://dx.doi.org/10.1038/nature01317
108. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, Maron JL, Morris WF, Parker IM, Power AG, Seabloom EW, Torchin ME, Vázquez DP. 2006. Biotic interactions and plant invasions. Ecol Lett 9:726–740. http://dx.doi.org/10.1111/j.1461-0248.2006.00908.x
109. Torchin ME, Lafferty KD, Dobson AP, McKenzie VJ, Kuris AM. 2003. Introduced species and their missing parasites. Nature 421:628–630. http://dx.doi.org/10.1038/nature01346
110. Wagner M, Mitschunas N. 2008. Fungal effects on seed bank persistence and potential applications in weed biocontrol: a review. Basic Appl Ecol 9:191–203. http://dx.doi.org/10.1016/j.baae.2007.02.003
111. Mitschunas N, Filser J, Wagner M. 2009. On the use of fungicides in ecological seed burial studies. Seed Sci Res 19:51–60. http://dx.doi.org/10.1017/S096025850818727X
112. Schafer M, Kotanen PM. 2004. Impacts of naturally-occurring soil fungi on seeds of meadow plants. Plant Ecol 175:19–35. http://dx.doi.org/10.1023/B:VEGE.0000048096.00772.23
113. Mordecai EA. 2012. Soil moisture and fungi affect seed survival in California grassland annual plants. PLoS One 7:e39083. http://dx.doi.org/10.1371/journal.pone.0039083
114. Beckstead J, Meyer SE, Molder CJ, Smith C. 2007. A race for survival: can Bromus tectorum seeds escape Pyrenophora semeniperda-caused mortality by germinating quickly? Ann Bot (Lond) 99:907–914. http://dx.doi.org/10.1093/aob/mcm028

Article metrics loading...



Fungal plant pathogens are ubiquitous and highly diverse. Key to their success is high host density, which notably is the case in agroecosystems. Several hypotheses related to the effects of plant pathogens on plant diversity (the Janzen-Connell hypothesis, the dilution effect hypothesis) and the phenomenon of higher biomass in plant mixtures (i.e., overyielding) can all be explained by the quantitative interplay between host and pathogen density. In many agroecosystems, fungal plant pathogens cause great losses, since in monocultures diseased plants cannot be replaced by healthy plants. On the other hand, in natural ecosystems fungal plant pathogens shape the succession of vegetation and enhance the biodiversity of forests and grasslands. When pathogens are introduced into areas outside their natural range, they may behave differently, causing severe damage. Once introduced, changes may occur such as hybridization with other closely related pathogens or host shifts, host jumps, or horizontal gene transfer. Such changes can be hazardous for both agricultural and natural ecosystems.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Generic image for table

Click to view


Characteristics of the three major ecological groups of fungal plant pathogens

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.FUNK-0013-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error