No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungal Biofilms: Inside Out

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    133.43 Kb
  • XML
    120.00 Kb
  • PDF
    4.80 MB
  • Authors: Katherine Lagree1, Aaron P. Mitchell2
  • Editor: Joseph Heitman3
    Affiliations: 1: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213; 2: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213; 3: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
  • Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0024-2016
  • Received 20 July 2016 Accepted 21 February 2017 Published 07 April 2017
  • Aaron Mitchell, [email protected]
image of Fungal Biofilms: Inside Out
    Preview this microbiology spectrum article:
    Zoom in

    Fungal Biofilms: Inside Out, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0024-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/2/FUNK-0024-2016-2.gif
  • Abstract:

    We focus this article on turning a biofilm inside out. The “inside” of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the “outside,” which we view as biofilm structure, development, pharmacological attributes, and medical impact.

  • Citation: Lagree K, Mitchell A. 2017. Fungal Biofilms: Inside Out. Microbiol Spectrum 5(2):FUNK-0024-2016. doi:10.1128/microbiolspec.FUNK-0024-2016.


1. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711–745. http://dx.doi.org/10.1146/annurev.mi.49.100195.003431 [PubMed]
2. Schaechter M. 2015. A brief history of bacterial growth physiology. Front Microbiol 6:289. http://dx.doi.org/10.3389/fmicb.2015.00289
3. Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193. http://dx.doi.org/10.1128/CMR.15.2.167-193.2002 [PubMed]
4. Verstrepen KJ, Klis FM. 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15. http://dx.doi.org/10.1111/j.1365-2958.2006.05072.x [PubMed]
5. Richard ML, Plaine A. 2007. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133. http://dx.doi.org/10.1128/EC.00297-06
6. Tiede A, Bastisch I, Schubert J, Orlean P, Schmidt RE. 1999. Biosynthesis of glycosylphosphatidylinositols in mammals and unicellular microbes. Biol Chem 380:503–523. http://dx.doi.org/10.1515/BC.1999.066 [PubMed]
7. Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2:e63. http://dx.doi.org/10.1371/journal.ppat.0020063 [PubMed]
8. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489. http://dx.doi.org/10.1074/jbc.M401929200
9. Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, Hoyer LL. 2006. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299. http://dx.doi.org/10.1099/mic.0.28959-0
10. Spellberg BJ, Ibrahim AS, Avanesian V, Fu Y, Myers C, Phan QT, Filler SG, Yeaman MR, Edwards JE Jr. 2006. Efficacy of the anti- Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis 194:256–260. http://dx.doi.org/10.1086/504691
11. de Groot PW, Bader O, de Boer AD, Weig M, Chauhan N. 2013. Adhesins in human fungal pathogens: glue with plenty of stick. Eukaryot Cell 12:470–481. http://dx.doi.org/10.1128/EC.00364-12 [PubMed]
12. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64. http://dx.doi.org/10.1371/journal.pbio.0050064
13. Rauceo JM, De Armond R, Otoo H, Kahn PC, Klotz SA, Gaur NK, Lipke PN. 2006. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 5:1664–1673. http://dx.doi.org/10.1128/EC.00120-06 [PubMed]
14. Lin J, Oh SH, Jones R, Garnett JA, Salgado PS, Rusnakova S, Matthews SJ, Hoyer LL, Cota E. 2014. The peptide-binding cavity is essential for Als3-mediated adhesion of Candida albicans to human cells. J Biol Chem 289:18401–18412. http://dx.doi.org/10.1074/jbc.M114.547877
15. Salgado PS, Yan R, Taylor JD, Burchell L, Jones R, Hoyer LL, Matthews SJ, Simpson PJ, Cota E. 2011. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Proc Natl Acad Sci USA 108:15775–15779. http://dx.doi.org/10.1073/pnas.1103496108
16. Otoo HN, Lee KG, Qiu W, Lipke PN. 2008. Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell 7:776–782. http://dx.doi.org/10.1128/EC.00309-07 [PubMed]
17. Chan CX, Lipke PN. 2014. Role of force-sensitive amyloid-like interactions in fungal catch bonding and biofilms. Eukaryot Cell 13:1136–1142. http://dx.doi.org/10.1128/EC.00068-14
18. Sokurenko EV, Vogel V, Thomas WE. 2008. Catch-bond mechanism of force-enhanced adhesion: counterintuitive, elusive, but … widespread? Cell Host Microbe 4:314–323. http://dx.doi.org/10.1016/j.chom.2008.09.005
19. Lipke PN, Garcia MC, Alsteens D, Ramsook CB, Klotz SA, Dufrêne YF. 2012. Strengthening relationships: amyloids create adhesion nanodomains in yeasts. Trends Microbiol 20:59–65. http://dx.doi.org/10.1016/j.tim.2011.10.002
20. Frank AT, Ramsook CB, Otoo HN, Tan C, Soybelman G, Rauceo JM, Gaur NK, Klotz SA, Lipke PN. 2010. Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. Eukaryot Cell 9:405–414. http://dx.doi.org/10.1128/EC.00235-09
21. Loza L, Fu Y, Ibrahim AS, Sheppard DC, Filler SG, Edwards JE Jr. 2004. Functional analysis of the Candida albicans ALS1 gene product. Yeast 21:473–482. http://dx.doi.org/10.1002/yea.1111 [PubMed]
22. Frieman MB, McCaffery JM, Cormack BP. 2002. Modular domain structure in the Candida glabrata adhesin Epa1p, a beta1,6 glucan-cross-linked cell wall protein. Mol Microbiol 46:479–492. http://dx.doi.org/10.1046/j.1365-2958.2002.03166.x [PubMed]
23. Boisramé A, Cornu A, Da Costa G, Richard ML. 2011. Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family. Eukaryot Cell 10:1317–1330. http://dx.doi.org/10.1128/EC.05044-11 [PubMed][CrossRef]
24. Li F, Palecek SP. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:1193–1203. http://dx.doi.org/10.1099/mic.0.2007/013789-0
25. Orlean P. 2012. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192:775–818. http://dx.doi.org/10.1534/genetics.112.144485 [PubMed]
26. Mao Y, Zhang Z, Gast C, Wong B. 2008. C-terminal signals regulate targeting of glycosylphosphatidylinositol-anchored proteins to the cell wall or plasma membrane in Candida albicans. Eukaryot Cell 7:1906–1915. http://dx.doi.org/10.1128/EC.00148-08
27. Hamada K, Terashima H, Arisawa M, Kitada K. 1998. Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273:26946–26953. http://dx.doi.org/10.1074/jbc.273.41.26946
28. Ahmad MF, Yadav B, Kumar P, Puri A, Mazumder M, Ali A, Gourinath S, Muthuswami R, Komath SS. 2012. The GPI anchor signal sequence dictates the folding and functionality of the Als5 adhesin from Candida albicans. PLoS One 7:e35305. http://dx.doi.org/10.1371/journal.pone.0035305
29. Fanning S, Xu W, Beaurepaire C, Suhan JP, Nantel A, Mitchell AP. 2012. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol Microbiol 86:284–302. http://dx.doi.org/10.1111/j.1365-2958.2012.08193.x [PubMed]
30. Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE Jr, Filler SG. 1998. Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66:1783–1786. [PubMed]
31. Gaur NK, Klotz SA. 1997. Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294. [PubMed]
32. Nobbs AH, Vickerman MM, Jenkinson HF. 2010. Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryot Cell 9:1622–1634. http://dx.doi.org/10.1128/EC.00103-10
33. Santos MA, Tuite MF. 1995. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23:1481–1486. http://dx.doi.org/10.1093/nar/23.9.1481
34. Soll DR, Daniels KJ. 2016. Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev 80:565–595. http://dx.doi.org/10.1128/MMBR.00068-15 [PubMed][CrossRef]
35. Cabral V, Znaidi S, Walker LA, Martin-Yken H, Dague E, Legrand M, Lee K, Chauvel M, Firon A, Rossignol T, Richard ML, Munro CA, Bachellier-Bassi S, d’Enfert C. 2014. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog 10:e1004542. http://dx.doi.org/10.1371/journal.ppat.1004542
36. Mowat E, Butcher J, Lang S, Williams C, Ramage G. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol 56:1205–1212. http://dx.doi.org/10.1099/jmm.0.47247-0
37. Seidler MJ, Salvenmoser S, Müller FM. 2008. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136. http://dx.doi.org/10.1128/AAC.00234-08 [PubMed]
38. Thau N, Monod M, Crestani B, Rolland C, Tronchin G, Latgé JP, Paris S. 1994. rodletless mutants of Aspergillus fumigatus. Infect Immun 62:4380–4388. [PubMed]
39. Upadhyay SK, Mahajan L, Ramjee S, Singh Y, Basir SF, Madan T. 2009. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J Med Microbiol 58:714–722. http://dx.doi.org/10.1099/jmm.0.005991-0
40. Hawser SP, Baillie GS, Douglas LJ. 1998. Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253–256. http://dx.doi.org/10.1099/00222615-47-3-253 [PubMed]
41. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623–633. [PubMed]
42. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. http://dx.doi.org/10.1126/science.284.5418.1318
43. Donlan RM. 2001. Biofilms and device-associated infections. Emerg Infect Dis 7:277–281. http://dx.doi.org/10.3201/eid0702.010226 [PubMed]
44. Desai JV, Mitchell AP, Andes DR. 2014. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 4:a019729. http://dx.doi.org/10.1101/cshperspect.a019729 [PubMed]
45. Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R. 2010. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia 169:323–331. http://dx.doi.org/10.1007/s11046-009-9264-y
46. Baillie GS, Douglas LJ. 2000. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403. http://dx.doi.org/10.1093/jac/46.3.397
47. Al-Fattani MA, Douglas LJ. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008. http://dx.doi.org/10.1099/jmm.0.46569-0 [PubMed]
48. Thomas DP, Bachmann SP, Lopez-Ribot JL. 2006. Proteomics for the analysis of the Candida albicans biofilm lifestyle. Proteomics 6:5795–5804. http://dx.doi.org/10.1002/pmic.200600332 [PubMed]
49. McCotter SW, Horianopoulos LC, Kronstad JW. 2016. Regulation of the fungal secretome. Curr Genet 62:533–545. http://dx.doi.org/10.1007/s00294-016-0578-2 [PubMed]
50. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. 2014. Novel entries in a fungal biofilm matrix encyclopedia. MBio 5:e01333-14. http://dx.doi.org/10.1128/mBio.01333-14
51. Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, Mitchell AP, Andes DR. 2015. Community participation in biofilm matrix assembly and function. Proc Natl Acad Sci USA 112:4092–4097. http://dx.doi.org/10.1073/pnas.1421437112 [PubMed]
52. Nett JE, Zarnowski R, Cabezas-Olcoz J, Brooks EG, Bernhardt J, Marchillo K, Mosher DF, Andes DR. 2015. Host contributions to construction of three device-associated Candida albicans biofilms. Infect Immun 83:4630–4638. http://dx.doi.org/10.1128/IAI.00931-15
53. Nett JE, Cabezas-Olcoz J, Marchillo K, Mosher DF, Andes DR. 2016. Targeting fibronectin to disrupt in vivo Candida albicans biofilms. Antimicrob Agents Chemother 60:3152–3155. http://dx.doi.org/10.1128/AAC.03094-15
54. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prévost MC, Latgé JP. 2007. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600. http://dx.doi.org/10.1111/j.1462-5822.2007.00895.x
55. Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, Kauffmann-Lacroix C, Latgé JP, Beauvais A. 2010. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12:405–410. http://dx.doi.org/10.1111/j.1462-5822.2009.01409.x
56. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257. http://dx.doi.org/10.1371/journal.ppat.1002257 [PubMed]
57. Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR, Ostapska H, Xiao T, Ralph B, Solis NV, Lehoux M, Baptista SD, Thammahong A, Cerone RP, Kaminskyj SG, Guiot MC, Latgé JP, Fontaine T, Vinh DC, Filler SG, Sheppard DC. 2015. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog 11:e1005187. http://dx.doi.org/10.1371/journal.ppat.1005187 [PubMed]
58. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S, Schwarz F, Trichot C, Aebi M, Delepierre M, Elbim C, Romani L, Latgé JP. 2011. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372. http://dx.doi.org/10.1371/journal.ppat.1002372
59. Nett JE. 2016. The host’s reply to Candida biofilm. Pathogens 5:e33. http://dx.doi.org/10.3390/pathogens5010033
60. Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. 2013. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12:420–429. http://dx.doi.org/10.1128/EC.00287-12
61. Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F. 2013. Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol 4:141. http://dx.doi.org/10.3389/fmicb.2013.00141
62. Shin KS, Kwon NJ, Kim YH, Park HS, Kwon GS, Yu JH. 2009. Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. Eukaryot Cell 8:738–746. http://dx.doi.org/10.1128/EC.00368-08 [PubMed]
63. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828. http://dx.doi.org/10.1371/journal.ppat.1000828
64. Uppuluri P, Pierce CG, Thomas DP, Bubeck SS, Saville SP, Lopez-Ribot JL. 2010. The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. Eukaryot Cell 9:1531–1537. http://dx.doi.org/10.1128/EC.00111-10
65. Nobile CJ, Fox EP, Hartooni N, Mitchell KF, Hnisz D, Andes DR, Kuchler K, Johnson AD. 2014. A histone deacetylase complex mediates biofilm dispersal and drug resistance in Candida albicans. MBio 5:e01201-14. http://dx.doi.org/10.1128/mBio.01201-14
66. Hawser SP, Douglas LJ. 1995. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39:2128–2131. http://dx.doi.org/10.1128/AAC.39.9.2128 [PubMed]
67. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394. http://dx.doi.org/10.1128/JB.183.18.5385-5394.2001
68. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340. http://dx.doi.org/10.1128/IAI.71.8.4333-4340.2003
69. Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980. http://dx.doi.org/10.1093/jac/dkf049
70. Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. 2012. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85. http://dx.doi.org/10.1111/j.1439-0507.2011.02047.x
71. Nett JE, Sanchez H, Cain MT, Andes DR. 2010. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202:171–175. http://dx.doi.org/10.1086/651200
72. Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR. 2012. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848. http://dx.doi.org/10.1371/journal.ppat.1002848
73. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622–1625. http://dx.doi.org/10.1126/science.1099390 [PubMed]
74. LaFleur MD, Kumamoto CA, Lewis K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846. http://dx.doi.org/10.1128/AAC.00684-06
75. Lafleur MD, Qi Q, Lewis K. 2010. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44. http://dx.doi.org/10.1128/AAC.00860-09
76. Bink A, Vandenbosch D, Coenye T, Nelis H, Cammue BP, Thevissen K. 2011. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Antimicrob Agents Chemother 55:4033–4037. http://dx.doi.org/10.1128/AAC.00280-11
77. García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545. http://dx.doi.org/10.1128/EC.3.2.536-545.2004
78. Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, Solis N, Hill EM, Xu W, Filler SG, Andes DR, Fanning S, Lanni F, Mitchell AP. 2013. Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4:e00637-12. http://dx.doi.org/10.1128/mBio.00637-12 [PubMed]
79. Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell 4:1562–1573. http://dx.doi.org/10.1128/EC.4.9.1562-1573.2005 [PubMed]
80. Nobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, Tuch BB, Andes DR, Johnson AD. 2012. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138. http://dx.doi.org/10.1016/j.cell.2011.10.048
81. Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X, Rodriguez-Zas SL, Kwast KE, Ghannoum MA, Hoyer LL. 2007. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153:2373–2385. http://dx.doi.org/10.1099/mic.0.2007/006163-0
82. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD. 2015. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol 96:1226–1239. http://dx.doi.org/10.1111/mmi.13002
83. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992. http://dx.doi.org/10.1128/AEM.67.7.2982-2992.2001
84. Ramage G, Saville SP, Wickes BL, López-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68:5459–5463. http://dx.doi.org/10.1128/AEM.68.11.5459-5463.2002 [PubMed]
85. Nett JE, Lepak AJ, Marchillo K, Andes DR. 2009. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 200:307–313. http://dx.doi.org/10.1086/599838 [PubMed]
86. Rossignol T, Ding C, Guida A, d’Enfert C, Higgins DG, Butler G. 2009. Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8:550–559. http://dx.doi.org/10.1128/EC.00350-08
87. Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d’Enfert C. 2011. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol 80:995–1013. http://dx.doi.org/10.1111/j.1365-2958.2011.07626.x [PubMed]
88. Ghosh AK, Wangsanut T, Fonzi WA, Rolfes RJ. 2015. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans. FEMS Yeast Res 15:fov093. [PubMed]
89. Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE. 2015. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 11:e1004630. http://dx.doi.org/10.1371/journal.ppat.1004630
90. Ramage G, VandeWalle K, López-Ribot JL, Wickes BL. 2002. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett 214:95–100. http://dx.doi.org/10.1111/j.1574-6968.2002.tb11330.x
91. Daniels KJ, Park YN, Srikantha T, Pujol C, Soll DR. 2013. Impact of environmental conditions on the form and function of Candida albicans biofilms. Eukaryot Cell 12:1389–1402. http://dx.doi.org/10.1128/EC.00127-13 [PubMed]
92. Richard ML, Nobile CJ, Bruno VM, Mitchell AP. 2005. Candida albicans biofilm-defective mutants. Eukaryot Cell 4:1493–1502. http://dx.doi.org/10.1128/EC.4.8.1493-1502.2005 [PubMed]
93. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. 2004. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72:6023–6031. http://dx.doi.org/10.1128/IAI.72.10.6023-6031.2004 [PubMed]
94. Finkel JS, Yudanin N, Nett JE, Andes DR, Mitchell AP. 2011. Application of the systematic “DAmP” approach to create a partially defective C. albicans mutant. Fungal Genet Biol 48:1056–1061. http://dx.doi.org/10.1016/j.fgb.2011.07.005 [PubMed]
95. Nett JE, Crawford K, Marchillo K, Andes DR. 2010. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54:3505–3508. http://dx.doi.org/10.1128/AAC.00227-10
96. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7:e1000133. http://dx.doi.org/10.1371/journal.pbio.1000133 [PubMed]
97. Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP. 2012. Portrait of Candida albicans adherence regulators. PLoS Pathog 8:e1002525. http://dx.doi.org/10.1371/journal.ppat.1002525
98. Nobile CJ, Nett JE, Andes DR, Mitchell AP. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610. http://dx.doi.org/10.1128/EC.00194-06
99. Herskowitz I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757. http://dx.doi.org/10.1038/342749a0 [PubMed]
100. Mitchell AP. 1994. Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol Rev 58:56–70. [PubMed]
101. Nobile CJ, Mitchell AP. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155. http://dx.doi.org/10.1016/j.cub.2005.05.047
102. Nobile CJ, Johnson AD. 2015. Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92. http://dx.doi.org/10.1146/annurev-micro-091014-104330 [PubMed][CrossRef]
103. Hao B, Clancy CJ, Cheng S, Raman SB, Iczkowski KA, Nguyen MH. 2009. Candida albicans RFX2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. Eukaryot Cell 8:627–639. http://dx.doi.org/10.1128/EC.00246-08
104. Nett JE, Sanchez H, Cain MT, Ross KM, Andes DR. 2011. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10:1660–1669. http://dx.doi.org/10.1128/EC.05126-11 [PubMed]
105. Noble SM, French S, Kohn LA, Chen V, Johnson AD. 2010. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598. http://dx.doi.org/10.1038/ng.605
106. Ding C, Vidanes GM, Maguire SL, Guida A, Synnott JM, Andes DR, Butler G. 2011. Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and Candida albicans. PLoS One 6:e28151. http://dx.doi.org/10.1371/journal.pone.0028151 [PubMed]
107. Pérez A, Pedrós B, Murgui A, Casanova M, López-Ribot JL, Martínez JP. 2006. Biofilm formation by Candida albicans mutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Res 6:1074–1084. http://dx.doi.org/10.1111/j.1567-1364.2006.00131.x
108. Srikantha T, Daniels KJ, Pujol C, Kim E, Soll DR. 2013. Identification of genes upregulated by the transcription factor Bcr1 that are involved in impermeability, impenetrability, and drug resistance of Candida albicans a/α biofilms. Eukaryot Cell 12:875–888. http://dx.doi.org/10.1128/EC.00071-13 [PubMed]
109. Weissman Z, Kornitzer D. 2004. A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53:1209–1220. http://dx.doi.org/10.1111/j.1365-2958.2004.04199.x [PubMed]
110. Holland LM, Schröder MS, Turner SA, Taff H, Andes D, Grózer Z, Gácser A, Ames L, Haynes K, Higgins DG, Butler G. 2014. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog 10:e1004365. http://dx.doi.org/10.1371/journal.ppat.1004365
111. Guida A, Lindstädt C, Maguire SL, Ding C, Higgins DG, Corton NJ, Berriman M, Butler G. 2011. Using RNA-seq to determine the transcriptional landscape and the hypoxic response of the pathogenic yeast Candida parapsilosis. BMC Genomics 12:628. http://dx.doi.org/10.1186/1471-2164-12-628

Article metrics loading...



We focus this article on turning a biofilm inside out. The “inside” of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the “outside,” which we view as biofilm structure, development, pharmacological attributes, and medical impact.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Confocal imaging of biofilms. Images show the heterogeneity of biofilms at the level of gene expression using a GFP construct fused to the promoter that is constitutively expressed throughout the biofilm and an RFP construct fused to the promoter showing greater expression at the basal layer of the biofilm, respectively. Images show the phenotypic diversity of biofilms based on the growth medium in RPMI, YPD, and RPMI plus 10% serum, respectively. Biofilms were fixed and imaged using a Zeiss DuoScan confocal microscope. Side view projections were generated by reslicing and then z-projecting the stack using ImageJ software from the National Institutes of Health.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0024-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Als1 structure. Domains of Als proteins that are discussed in the text are depicted with amino acid coordinates of Als1 indicated.

Source: microbiolspec April 2017 vol. 5 no. 2 doi:10.1128/microbiolspec.FUNK-0024-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error