No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

What Defines the “Kingdom” Fungi?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    4.30 MB
  • HTML
    182.74 Kb
  • XML
    169.01 Kb
  • Authors: Thomas A. Richards1,2, Guy Leonard3, Jeremy G. Wideman4
  • Editors: Joseph Heitman5, Timothy Y. James6
    Affiliations: 1: Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; 2: Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Canada; 3: Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; 4: Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; 5: Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710; 6: Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048
  • Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0044-2017
  • Received 15 February 2017 Accepted 25 February 2017 Published 23 June 2017
  • Thomas A. Richards, [email protected]
image of What Defines the “Kingdom” Fungi?
    Preview this microbiology spectrum article:
    Zoom in

    What Defines the “Kingdom” Fungi?, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0044-2017-1.gif /docserver/preview/fulltext/microbiolspec/5/3/FUNK-0044-2017-2.gif
  • Abstract:

    The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade—wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.

  • Citation: Richards T, Leonard G, Wideman J. 2017. What Defines the “Kingdom” Fungi?. Microbiol Spectrum 5(3):FUNK-0044-2017. doi:10.1128/microbiolspec.FUNK-0044-2017.


1. Whittaker RH. 1969. New concepts of kingdoms or organisms: evolutionary relations are better represented by new classifications than by the traditional two kingdoms. Science 163:150–160. http://dx.doi.org/10.1126/science.163.3863.150[PubMed]
2. Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, Cavalier-Smith T, Guiry MD, Kirk PM. 2015. A higher level classification of all living organisms. PLoS One 10:e0119248. (Erratum, doi:10.1371/journal.pone.0130114.) http://dx.doi.org/10.1371/journal.pone.0119248
3. Cavalier-Smith T. 2004. Only six kingdoms of life. Proc Biol Sci 271:1251–1262. http://dx.doi.org/10.1098/rspb.2004.2705
4. Dawson SC, Pace NR. 2002. Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329. http://dx.doi.org/10.1073/pnas.062169599
5. Whittaker RH, Margulis L. 1978. Protist classification and the kingdoms of organisms. Biosystems 10:3–18. http://dx.doi.org/10.1016/0303-2647(78)90023-0
6. Copeland H. 1938. The kingdoms of organisms. Q Rev Biol 13:383–420. http://dx.doi.org/10.1086/394568
7. Cavalier-Smith T. 1981. Eukaryote kingdoms: seven or nine? Biosystems 14:461–481. http://dx.doi.org/10.1016/0303-2647(81)90050-2 [PubMed]
8. Margulis L, Guerrero R. 1991. Kingdoms in turmoil. New Sci 1761:46–50. [PubMed]
9. Cavalier-Smith T. 1998. A revised six-kingdom system of life. Biol Rev Camb Philos Soc 73:203–266. http://dx.doi.org/10.1017/S0006323198005167
10. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–514. http://dx.doi.org/10.1111/j.1550-7408.2012.00644.x
11. McFadden GI, van Dooren GG. 2004. Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516. http://dx.doi.org/10.1016/j.cub.2004.06.041
12. Nowack ECM, Melkonian M, Glöckner G. 2008. Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. http://dx.doi.org/10.1016/j.cub.2008.02.051
13. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, JGI Sequencing, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788. http://dx.doi.org/10.1038/nature06617
14. Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I. 2013. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325. http://dx.doi.org/10.1038/ncomms3325
15. Vogel HJ. 1964. Distribution of lysine pathways among fungi: evolutionary implications. Am Nat 98:435–446. http://dx.doi.org/10.1086/282338
16. Broquist HP. 1971. [157] lysine biosynthesis (yeast). Methods Enzymol 17B:112–113.
17. Torruella G, Suga H, Riutort M, Peretó J, Ruiz-Trillo I. 2009. The evolutionary history of lysine biosynthesis pathways within eukaryotes. J Mol Evol 69:240–248. http://dx.doi.org/10.1007/s00239-009-9266-x
18. Sumathi JC, Raghukumar S, Kasbekar DP, Raghukumar C. 2006. Molecular evidence of fungal signatures in the marine protist Corallochytrium limacisporum and its implications in the evolution of animals and fungi. Protist 157:363–376. http://dx.doi.org/10.1016/j.protis.2006.05.003
19. Kosuge T, Hoshino T. 1999. The α-aminoadipate pathway for lysine biosynthesis is widely distributed among Thermus strains. J Biosci Bioeng 88:672–675. http://dx.doi.org/10.1016/S1389-1723(00)87099-1
20. Paterson RRM. 2005. Fungus or bacterium and vice versa? Microbiology 151:641. http://dx.doi.org/10.1099/mic.0.27732-0
21. Newell SY, Arsuffi TL, Fallon RD. 1988. Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Appl Environ Microbiol 54:1876–1879. [PubMed]
22. Salmanowicz BB, Nylund JE. 1988. High performance liquid chromatography determination of ergosterol as a measure of ectomycorrhiza infection in Scots pine. Eur J Forest Pathol 18:291–298. http://dx.doi.org/10.1111/j.1439-0329.1988.tb00216.x
23. Wallander H, Massicotte HB, Nylund J-E. 1997. Seasonal variation in protein, ergosterol and chitin in five morphotypes of pinus sylvestris L. ectomycorrhizae in a mature Swedish forest. Soil Biol Biochem 29:45–53. http://dx.doi.org/10.1016/S0038-0717(96)00263-5
24. Weete JD, Abril M, Blackwell M. 2010. Phylogenetic distribution of fungal sterols. PLoS One 5:e10899. http://dx.doi.org/10.1371/journal.pone.0010899
25. Thompson GAJ Jr, Nozawa Y. 1972. Lipids of protozoa: phospholipids and neutral lipids. Annu Rev Microbiol 26:249–278. http://dx.doi.org/10.1146/annurev.mi.26.100172.001341 [PubMed]
26. Stern AI, Schiff JA, Klein HP. 1960. Isolation of ergosterol from Euglena gracilis: distribution among mutant strains. J Protozool 7:52–55. http://dx.doi.org/10.1111/j.1550-7408.1960.tb00707.x
27. Goad LJ, Berens RL, Marr JJ, Beach DH, Holz GG Jr. 1989. The activity of ketoconazole and other azoles against Trypanosoma cruzi: biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol 32:179–189. http://dx.doi.org/10.1016/0166-6851(89)90069-8
28. Hunt RC, Ellar DJ. 1974. Isolation of the plasma membrane of a trypanosomatid flagellate: general characterisation and lipid composition. Biochim Biophys Acta 339:173–189. http://dx.doi.org/10.1016/0005-2736(74)90316-2
29. Brumfield KM, Moroney JV, Moore TS, Simms TA, Donze D. 2010. Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol. PLoS One 5:e8659. (Erratum, 10:e0129189. doi:10.1371/journal.pone.0129189.) http://dx.doi.org/10.1371/journal.pone.0008659
30. Patterson GW. 1969. Sterols of Chlorella. III. Species containing ergosterol. Comp Biochem Physiol B 31:391–394. http://dx.doi.org/10.1016/0010-406X(69)90019-X
31. Smith FR, Korn ED. 1968. 7-Dehydrostigmasterol and ergosterol: the major sterols of an amoeba. J Lipid Res 9:405–408. [PubMed]
32. Bartnicki-Garcia S. 1968. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108. http://dx.doi.org/10.1146/annurev.mi.22.100168.000511 [PubMed]
33. Ma L, Chen Z, Huang W, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Raley C, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Walsh L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. 2016. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740. http://dx.doi.org/10.1038/ncomms10740
34. Bruns TD, Vilgalys R, Barns SM, Gonzalez D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML. 1992. Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1:231–241. http://dx.doi.org/10.1016/1055-7903(92)90020-H
35. Latgé J-P. 2007. The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290. http://dx.doi.org/10.1111/j.1365-2958.2007.05872.x
36. Erwig LP, Gow NAR. 2016. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14:163–176. http://dx.doi.org/10.1038/nrmicro.2015.21 [PubMed]
37. Cavalier-Smith T. 1987. The origin of fungi and pseudofungi, p 339–353. In Rayer ADM (ed), Evolutionary Biology of the Fungi (British Mycological Society Symposia). Cambridge University Press, Cambridge, United Kingdom.
38. Clay RP, Benhamou N, Fuller MS. 1991. Ultrastructural detection of polysaccharides in the cell walls of two members of the hyphocytriales. Mycol Res 95:1057–1064. http://dx.doi.org/10.1016/S0953-7562(09)80546-7
39. Mélida H, Sandoval-Sierra JV, Diéguez-Uribeondo J, Bulone V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryot Cell 12:194–203. http://dx.doi.org/10.1128/EC.00288-12 [PubMed]
40. Arroyo-Begovich A, Cárabez-Trejo A, Ruíz-Herrera J, Carabez-Trejo A, Ruiz-Herrera J. 1980. Identification of the structural component in the cyst wall of Entamoeba invadens. J Parasitol 66:735–741. http://dx.doi.org/10.2307/3280662 [PubMed]
41. Das S, Van Dellen K, Bulik D, Magnelli P, Cui J, Head J, Robbins PW, Samuelson J. 2006. The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin). Mol Biochem Parasitol 148:86–92. http://dx.doi.org/10.1016/j.molbiopara.2006.03.002
42. Kneipp LF, Andrade AF, de Souza W, Angluster J, Alviano CS, Travassos LR. 1998. Trichomonas vaginalis and Tritrichomonas foetus: expression of chitin at the cell surface. Exp Parasitol 89:195–204. http://dx.doi.org/10.1006/expr.1998.4290 [PubMed]
43. Loiseau PM, Bories C, Sanon A. 2002. The chitinase system from Trichomonas vaginalis as a potential target for antimicrobial therapy of urogenital trichomoniasis. Biomed Pharmacother 56:503–510. http://dx.doi.org/10.1016/S0753-3322(02)00331-1
44. Cherif M, Benhamou N, Belanger R. 1993. OCCURRENCE of cellulose and chitin in the hyphal walls of Pythium ultimum: a comparative study with other plant pathogenic fungi. Can J Microbiol 39:213–222. http://dx.doi.org/10.1139/m93-030
45. Durkin CA, Mock T, Armbrust EV. 2009. Chitin in diatoms and its association with the cell wall. Eukaryot Cell 8:1038–1050. http://dx.doi.org/10.1128/EC.00079-09 [PubMed]
46. Lin CC, Aronson JM. 1970. Chitin and cellulose in the cell walls of the oomycete, Apodachlya sp. Arch Mikrobiol 72:111–114. http://dx.doi.org/10.1007/BF00409517
47. Schwelm A, Fogelqvist J, Knaust A, Jülke S, Lilja T, Bonilla-Rosso G, Karlsson M, Shevchenko A, Dhandapani V, Choi SR, Kim HG, Park JY, Lim YP, Ludwig-Müller J, Dixelius C. 2015. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases. Sci Rep 5:11153. http://dx.doi.org/10.1038/srep11153
48. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL. 2010. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955. http://dx.doi.org/10.1105/tpc.110.076406
49. Potter JL, Weisman RA. 1971. Differentiation in Acanthamoeba: beta-glucan synthesis during encystment. Biochim Biophys Acta 237:65–74. http://dx.doi.org/10.1016/0304-4165(71)90030-4
50. Samuelson J, Bushkin GG, Chatterjee A, Robbins PW. 2013. Strategies to discover the structural components of cyst and oocyst walls. Eukaryot Cell 12:1578–1587. http://dx.doi.org/10.1128/EC.00213-13 [PubMed]
51. Šantek B, Felski M, Friehs K, Lotz M, Flaschel E. 2010. Production of paramylon, a β-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on potato liquor. Eng Life Sci 10:165–170.
52. Taylor JW, Berbee ML. 2014. Fungi from PCR to genomics: the spreading revolution in evolutionary biology, p 1–18. In McLaughlin DJ, Spatafora JW (ed), Systematics and Evolution. Part A. Springer, Berlin, Germany.
53. James TY, et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822. http://dx.doi.org/10.1038/nature05110 [PubMed]
54. Liu Y, Steenkamp ET, Brinkmann H, Forget L, Philippe H, Lang BF. 2009. Phylogenomic analyses predict sistergroup relationship of nucleariids and fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272. http://dx.doi.org/10.1186/1471-2148-9-272
55. James TY, Pelin A, Bonen L, Ahrendt S, Sain D, Corradi N, Stajich JE. 2013. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr Biol 23:1548–1553. http://dx.doi.org/10.1016/j.cub.2013.06.057 [PubMed]
56. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. http://dx.doi.org/10.1128/AEM.71.9.5544-5550.2005
57. Cavalier-Smith T. 2001. What are fungi?, p 3–37 In McLaughlin DJ, McLaughlin EG, Esser K, Lemke PA (ed), The Mycota, vol. 7A, Systematics and Evolution. Springer, Berlin, Germany.
58. Liu YJ, Hodson MC, Hall BD. 2006. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:74. http://dx.doi.org/10.1186/1471-2148-6-74
59. Zimmerman NB, Vitousek PM. 2012. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proc Natl Acad Sci USA 109:13022–13027. http://dx.doi.org/10.1073/pnas.1209872109
60. Jumpponen A, Jones KL. 2009. Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. http://dx.doi.org/10.1111/j.1469-8137.2009.02990.x
61. Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. http://dx.doi.org/10.1111/j.1469-8137.2009.02920.x
62. Wurzbacher CM, Bärlocher F, Grossart HP. 2010. Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149. http://dx.doi.org/10.3354/ame01385
63. Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin MA, del Campo J, Eme L, Pérez-Cordón G, Whipps CM, Nichols KM, Paley R, Roger AJ, Sitjà-Bobadilla A, Donachie S, Ruiz-Trillo I. 2015. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr Biol 25:2404–2410. http://dx.doi.org/10.1016/j.cub.2015.07.053
64. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. http://dx.doi.org/10.1126/science.1208473
65. Selosse MA, Le Tacon F. 1998. The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13:15–20. http://dx.doi.org/10.1016/S0169-5347(97)01230-5
66. Opik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T. 2008. High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876. http://dx.doi.org/10.1111/j.1469-8137.2008.02515.x [PubMed]
67. Simon L, Bousquet J, Levesque RC, Lalonde M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69. http://dx.doi.org/10.1038/363067a0
68. Wang B, Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363. http://dx.doi.org/10.1007/s00572-005-0033-6 [PubMed]
69. Craig MacLean R, Brandon C. 2008. Stable public goods cooperation and dynamic social interactions in yeast. J Evol Biol 21:1836–1843. http://dx.doi.org/10.1111/j.1420-9101.2008.01579.x
70. Koschwanez JH, Foster KR, Murray AW. 2011. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol 9:e1001122. http://dx.doi.org/10.1371/journal.pbio.1001122
71. Verbruggen E, El Mouden C, Jansa J, Akkermans G, Bücking H, West SA, Kiers ET. 2012. Spatial structure and interspecific cooperation: theory and an empirical test using the mycorrhizal mutualism. Am Nat 179:E133–E146. http://dx.doi.org/10.1086/665032
72. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. 2007. The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77. http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095740
73. Richards TA, Talbot NJ. 2013. Horizontal gene transfer in osmotrophs: playing with public goods. Nat Rev Microbiol 11:720–727. http://dx.doi.org/10.1038/nrmicro3108 [PubMed]
74. Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. 2007. Biological solutions to transport network design. Proc Biol Sci 274:2307–2315. http://dx.doi.org/10.1098/rspb.2007.0459
75. Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism: from biochemistry to genomics. Nat Rev Microbiol 3:937–947. http://dx.doi.org/10.1038/nrmicro1286
76. Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L. 2010. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. http://dx.doi.org/10.1016/j.micres.2009.11.009 [PubMed]
77. Tudzynski B, Hölter K. 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet Biol 25:157–170. http://dx.doi.org/10.1006/fgbi.1998.1095
78. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P. 2005. The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320. http://dx.doi.org/10.1016/j.phytochem.2005.04.011
79. Walton JD. 2000. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30:167–171. http://dx.doi.org/10.1006/fgbi.2000.1224
80. Ahn JH, Walton JD. 1996. Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum. Plant Cell 8:887–897. http://dx.doi.org/10.1105/tpc.8.5.887
81. Keller NP, Hohn TM. 1997. Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29. http://dx.doi.org/10.1006/fgbi.1997.0970
82. Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR. 1999. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372. http://dx.doi.org/10.1126/science.284.5418.1368 [PubMed]
83. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH, Leonard TJ. 1996. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422. http://dx.doi.org/10.1073/pnas.93.4.1418
84. Berbee ML, Taylor JW. 2010. Dating the molecular clock in fungi: how close are we? Fungal Biol Rev 24:1–16. http://dx.doi.org/10.1016/j.fbr.2010.03.001
85. Matari NH, Blair JE. 2014. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models. BMC Evol Biol 14:101. http://dx.doi.org/10.1186/1471-2148-14-101
86. Collinge AJ, Trinci APJ. 1974. Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368. http://dx.doi.org/10.1007/BF00696249
87. Löpez-Franco R, Bracker CE. 1996. Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195:90–111. http://dx.doi.org/10.1007/BF01279189
88. Fisher KE, Roberson RW. 2016. Hyphal tip cytoplasmic organization in four zygomycetous fungi. Mycologia 108:533–542. http://dx.doi.org/10.3852/15-226 [PubMed]
89. Vargas MM, Aronson JM, Roberson RW. 1993. The cytoplasmic organization of hyphal tip cells in the fungus Allomyces macrogynus. Protoplasma 176:43–52. http://dx.doi.org/10.1007/BF01378938
90. Richards TA, Cavalier-Smith T. 2005. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118. http://dx.doi.org/10.1038/nature03949 [PubMed]
91. Sebé-Pedrós A, Grau-Bové X, Richards TA, Ruiz-Trillo I. 2014. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol 6:290–305. http://dx.doi.org/10.1093/gbe/evu013
92. James TY, Berbee ML. 2012. No jacket required--new fungal lineage defies dress code: recently described zoosporic fungi lack a cell wall during trophic phase. BioEssays 34:94–102. http://dx.doi.org/10.1002/bies.201100110
93. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. 2012. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227. http://dx.doi.org/10.1038/emboj.2011.361
94. Weber I, Assmann D, Thines E, Steinberg G. 2006. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 18:225–242. http://dx.doi.org/10.1105/tpc.105.037341
95. Nakamura Y, Itoh T, Martin W. 2007. Rate and polarity of gene fusion and fission in Oryza sativa and Arabidopsis thaliana. Mol Biol Evol 24:110–121. http://dx.doi.org/10.1093/molbev/msl138
96. Stover NA, Cavalcanti AR, Li AJ, Richardson BC, Landweber LF. 2005. Reciprocal fusions of two genes in the formaldehyde detoxification pathway in ciliates and diatoms. Mol Biol Evol 22:1539–1542. http://dx.doi.org/10.1093/molbev/msi151 [PubMed]
97. Yanai I, Wolf YI, Koonin EV. 2002. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol 3:research0024. doi:10.1186/gb-2002-3-5-research0024.
98. Leonard G, Richards TA. 2012. Genome-scale comparative analysis of gene fusions, gene fissions, and the fungal tree of life. Proc Natl Acad Sci USA 109:21402–21407. http://dx.doi.org/10.1073/pnas.1210909110 [PubMed]
99. Sudbery PE. 2008. Regulation of polarised growth in fungi. Fungal Biol Rev 22:44–55. http://dx.doi.org/10.1016/j.fbr.2008.07.001
100. Park H-O, Bi E. 2007. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 71:48–96. http://dx.doi.org/10.1128/MMBR.00028-06
101. Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C. 2002. Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615. http://dx.doi.org/10.1126/science.1072309
102. Pruyne DW, Schott DH, Bretscher A. 1998. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931–1945. http://dx.doi.org/10.1083/jcb.143.7.1931 [PubMed]
103. Tcheperegine SE, Gao X-D, Bi E. 2005. Regulation of cell polarity by interactions of Msb3 and Msb4 with Cdc42 and polarisome components. Mol Cell Biol 25:8567–8580. http://dx.doi.org/10.1128/MCB.25.19.8567-8580.2005
104. Bretscher A. 2003. Polarized growth and organelle segregation in yeast: the tracks, motors, and receptors. J Cell Biol 160:811–816. http://dx.doi.org/10.1083/jcb.200301035
105. Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A. 2004. Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591. http://dx.doi.org/10.1146/annurev.cellbio.20.010403.103108
106. Walch-Solimena C, Collins RN, Novick PJ. 1997. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 137:1495–1509. http://dx.doi.org/10.1083/jcb.137.7.1495
107. Goud B, Salminen A, Walworth NC, Novick PJ. 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768. http://dx.doi.org/10.1016/0092-8674(88)90093-1
108. Walworth NC, Goud B, Kabcenell AK, Novick PJ. 1989. Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J 8:1685–1693. [PubMed]
109. Virag A, Lee MP, Si H, Harris SD. 2007. Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 66:1579–1596.
110. Mahlert M, Leveleki L, Hlubek A, Sandrock B, Bölker M. 2006. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol 59:567–578. http://dx.doi.org/10.1111/j.1365-2958.2005.04952.x [PubMed]
111. Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleissner A, Freitag M, Lew RR, Mouriño-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK. 2011. Architecture and development of the Neurospora crassa hypha: a model cell for polarized growth. Fungal Biol 115:446–474. http://dx.doi.org/10.1016/j.funbio.2011.02.008
112. Koumandou VL, Dacks JB, Coulson RM, Field MC. 2007. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29. http://dx.doi.org/10.1186/1471-2148-7-29
113. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB. 2012. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125:2500–2508. http://dx.doi.org/10.1242/jcs.101378 [PubMed]
114. Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. 2013. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 164:2–12. http://dx.doi.org/10.1016/j.protis.2012.09.002
115. Brown MW, Spiegel FW, Silberman JD. 2009. Phylogeny of the “forgotten” cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta. Mol Biol Evol 26:2699–2709. http://dx.doi.org/10.1093/molbev/msp185 [PubMed]
116. Mendoza L, Taylor JW, Ajello L. 2002. The class mesomycetozoea: a heterogeneous group of microorganisms at the animal-fungal boundary. Annu Rev Microbiol 56:315–344. http://dx.doi.org/10.1146/annurev.micro.56.012302.160950
117. Gozlan RE, Marshall WL, Lilje O, Jessop CN, Gleason FH, Andreou D. 2014. Current ecological understanding of fungal-like pathogens of fish: what lies beneath? Front Microbiol 5:62. http://dx.doi.org/10.3389/fmicb.2014.00062
118. Spanggaard B, Huss HH, Bresciani J. 1995. Morphology of Ichthyophonus hoferi assessed by light and scanning electron microscopy. J Fish Dis 18:567–577. http://dx.doi.org/10.1111/j.1365-2761.1995.tb00361.x
119. Herr AR, Ajello L, Mendoza L. 1999. Chitin synthase class 2 (chs2) gene from the human and animal pathogen Rhinosporidium seeberi, p 296. Abstr. 99th Gen Meet Am Soc Microbiol.
120. Hibbett DS, et al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547. http://dx.doi.org/10.1016/j.mycres.2007.03.004
121. James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW, Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 98:860–871. http://dx.doi.org/10.3852/mycologia.98.6.860
122. Zettler LAA, Nerad TA, O’Kelly CJ, Sogin ML. 2001. The nucleariid amoebae: more protists at the animal-fungal boundary. J Eukaryot Microbiol 48:293–297. http://dx.doi.org/10.1111/j.1550-7408.2001.tb00317.x
123. Worley AC, Raper KB, Hohl M. 1979. Fonticula alba: A new cellular slime mold (acrasiomycetes). Mycologia 71:746–760. http://dx.doi.org/10.2307/3759186
124. del Campo J, Mallo D, Massana R, de Vargas C, Richards TA, Ruiz-Trillo I. 2015. Diversity and distribution of unicellular opisthokonts along the European coast analysed using high-throughput sequencing. Environ Microbiol 17:3195–3207. http://dx.doi.org/10.1111/1462-2920.12759
125. del Campo J, Ruiz-Trillo I. 2013. Environmental survey meta-analysis reveals hidden diversity among unicellular opisthokonts. Mol Biol Evol 30:802–805. http://dx.doi.org/10.1093/molbev/mst006
126. Hawksworth DL. 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432. http://dx.doi.org/10.1017/S0953756201004725
127. Jones MDM, Richards TA. 2011. Environmental DNA analysis and the expansion of the fungal tree of life, p 37–54. In Pöggeler S, Wöstemeyer J (ed), The Mycota. Springer, Heidelberg, Germany. http://dx.doi.org/10.1007/978-3-642-19974-5_3
128. Rappé MS, Giovannoni SJ. 2003. The uncultured microbial majority. Annu Rev Microbiol 57:369–394. http://dx.doi.org/10.1146/annurev.micro.57.030502.090759
129. Moon-van der Staay SY, De Wachter R, Vaulot D. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610. http://dx.doi.org/10.1038/35054541
130. Moreira D, López-García P. 2002. The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol 10:31–38. http://dx.doi.org/10.1016/S0966-842X(01)02257-0
131. Schadt CW, Martin AP, Lipson DA, Schmidt SK. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361. http://dx.doi.org/10.1126/science.1086940
132. Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM. 2008. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol Phylogenet Evol 46:635–644. http://dx.doi.org/10.1016/j.ympev.2007.10.002
133. Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY. 2011. Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science 333:876–879. http://dx.doi.org/10.1126/science.1206958 [PubMed]
134. Embley TM, Hirt RP. 1998. Early branching eukaryotes? Curr Opin Genet Dev 8:624–629. http://dx.doi.org/10.1016/S0959-437X(98)80029-4
135. Philippe H. 2000. Opinion: long branch attraction and protist phylogeny. Protist 151:307–316. http://dx.doi.org/10.1078/S1434-4610(04)70029-2
136. Philippe H, Germot A. 2000. Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17:830–834. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026362
137. Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T. 2007. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71. http://dx.doi.org/10.1111/j.1462-2920.2006.01111.x [PubMed]
138. Lepère C, Boucher D, Jardillier L, Domaizon I, Debroas D. 2006. Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). Appl Environ Microbiol 72:2971–2981. http://dx.doi.org/10.1128/AEM.72.4.2971-2981.2006
139. Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson SC, Willcock S, Richards TA. 2007. Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci 274:3069–3077. http://dx.doi.org/10.1098/rspb.2007.1067
140. Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421. http://dx.doi.org/10.1128/AEM.00653-09
141. Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A. 2015. Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc Biol Sci 282:20152243. [PubMed]
142. Richards TA, Jones MDM, Leonard G, Bass D. 2012. Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522. http://dx.doi.org/10.1146/annurev-marine-120710-100802
143. Lefèvre E, Roussel B, Amblard C, Sime-Ngando T. 2008. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One 3:e2324. http://dx.doi.org/10.1371/journal.pone.0002324
144. Lepère C, Domaizon I, Debroas D. 2008. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol 74:2940–2949. http://dx.doi.org/10.1128/AEM.01156-07 [PubMed]
145. Gutiérrez MH, Jara AM, Pantoja S. 2016. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1646–1653. http://dx.doi.org/10.1111/1462-2920.13257 [PubMed]
146. Seto K, Kagami M, Degawa Y. 2016. Phylogenetic position of parasitic chytrids on diatoms: characterization of a novel clade in chytridiomycota. J Eukaryot Microbiol. [Epub ahead of print.] http://dx.doi.org/10.1111/jeu.12373
147. Ishida S, Nozaki D, Grossart H-P, Kagami M. 2015. Novel basal, fungal lineages from freshwater phytoplankton and lake samples. Environ Microbiol Rep 7:435–441. http://dx.doi.org/10.1111/1758-2229.12268
148. Tian F, Yu Y, Chen B, Li H, Yao Y-F, Guo X-K. 2009. Bacterial, archaeal and eukaryotic diversity in arctic sediment as revealed by 16s rRNA and 18s rRNA gene clone libraries analysis. Polar Biol 32:93–103. http://dx.doi.org/10.1007/s00300-008-0509-x
149. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M. 2011. Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. EnvironMicrobiol 13:2359–2370. http://dx.doi.org/10.1111/j.1462-2920.2011.02507.x
150. Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. 2007. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576. http://dx.doi.org/10.1007/s00792-007-0068-z [PubMed]
151. Cavalier-Smith T. 1987. Eukaryotes with no mitochondria. Nature 326:332–333. http://dx.doi.org/10.1038/326332a0
152. Williams BA, Hirt RP, Lucocq JM, Embley TM. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869. http://dx.doi.org/10.1038/nature00949
153. Hirt RP, Healy B, Vossbrinck CR, Canning EU, Embley TM. 1997. A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria. Curr Biol 7:995–998. http://dx.doi.org/10.1016/S0960-9822(06)00420-9 [PubMed]
154. Germot A, Philippe H, Le Guyader H. 1997. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168. http://dx.doi.org/10.1016/S0166-6851(97)00064-9
155. Hirt RP, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM. 1999. Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585. http://dx.doi.org/10.1073/pnas.96.2.580
156. Keeling PJ, Luker MA, Palmer JD. 2000. Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. Mol Biol Evol 17:23–31. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026235
157. Lee SC, Corradi N, Doan S, Dietrich FS, Keeling PJ, Heitman J. 2010. Evolution of the sex-related locus and genomic features shared in microsporidia and fungi. PLoS One 5:e10539. http://dx.doi.org/10.1371/journal.pone.0010539 [PubMed]
158. Corradi N. 2015. Microsporidia: eukaryotic intracellular parasites shaped by gene loss and horizontal gene transfers. Annu Rev Microbiol 69:167–183. http://dx.doi.org/10.1146/annurev-micro-091014-104136
159. Franzen C. 2004. Microsporidia: how can they invade other cells? Trends Parasitol 20:275–279. http://dx.doi.org/10.1016/j.pt.2004.04.009
160. Held AA. 1981. Rozella and Rozellopsis: naked endoparasitic fungi which dress up as their hosts. Bot Rev 47:451–515. http://dx.doi.org/10.1007/BF02860539
161. Cavalier-Smith T. 2013. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49:115–178. http://dx.doi.org/10.1016/j.ejop.2012.06.001
162. Karpov SA, Mamkaeva MA, Aleoshin VV, Nassonova E, Lilje O, Gleason FH. 2014. Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Front Microbiol 5:112. http://dx.doi.org/10.3389/fmicb.2014.00112
163. Alexander WG, Wisecaver JH, Rokas A, Hittinger CT. 2016. Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proc Natl Acad Sci USA 113:4116–4121. http://dx.doi.org/10.1073/pnas.1517242113
164. Lara E, Moreira D, López-García P. 2010. The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161:116–121. http://dx.doi.org/10.1016/j.protis.2009.06.005
165. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA. 2011. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203. http://dx.doi.org/10.1038/nature09984
166. Held AA. 1975. The zoospore of Rozella allomycis: ultrastructure. Can J Bot 53:2212–2232. http://dx.doi.org/10.1139/b75-245
167. Powell MJ. 1984. Fine structure of the unwalled thallus of Rozella polyphagi in its host Polyphagus euglenae. Mycologia 76:1039–1048. http://dx.doi.org/10.2307/3793019
168. Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller K-D, Michel R. 2014. Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitol Res 113:1909–1918. http://dx.doi.org/10.1007/s00436-014-3838-4
169. Dangeard P-A. 1895. Mémoire sur les parasites du noyau et du protoplasme. Botaniste 4:199–248.
170. Corsaro D, Michel R, Walochnik J, Venditti D, Müller K-D, Hauröder B, Wylezich C. 2016. Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol Res 115:3003–3011. http://dx.doi.org/10.1007/s00436-016-5055-9
171. Haag KL, James TY, Pombert J-F, Larsson R, Schaer TMM, Refardt D, Ebert D. 2014. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites. Proc Natl Acad Sci USA 111:15480–15485. (Erratum, doi:10.1073/pnas.1502848112.) http://dx.doi.org/10.1073/pnas.1410442111
172. Corsaro D, Walochnik J, Venditti D, Müller K-D, Hauröder B, Michel R. 2014. Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota. Parasitol Res 113:4491–4498. http://dx.doi.org/10.1007/s00436-014-4138-8 [PubMed]
173. Karpov SA, Mikhailov KV, Mirzaeva GS, Mirabdullaev IM, Mamkaeva KA, Titova NN, Aleoshin VV. 2013. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164:195–205. http://dx.doi.org/10.1016/j.protis.2012.08.001
174. Letcher PM, Lopez S, Schmieder R, Lee PA, Behnke C, Powell MJ, McBride RC. 2013. Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel. PLoS One 8:e56232. http://dx.doi.org/10.1371/journal.pone.0056232
175. Karpov SA, Mamkaeva MA, Benzerara K, Moreira D, López-García P. 2014. Molecular phylogeny and ultrastructure of Aphelidium aff. melosirae (Aphelida, Opisthosporidia). Protist 165:512–526. http://dx.doi.org/10.1016/j.protis.2014.05.003
176. Karpov SA, Tcvetkova VS, Mamkaeva MA, Torruella G, Timpano H, Moreira D, Mamanazarova KS, López-García P. 2016. Morphological and genetic diversity of Opisthosporidia: new aphelid Paraphelidium tribonemae gen. et sp. nov. J Eukaryot Microbiol. [Epub ahead of print.] http://dx.doi.org/10.1111/jeu.12352
177. Cavalier-Smith T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354. http://dx.doi.org/10.1099/00207713-52-2-297
178. Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I. 2013. Insights into the origin of metazoan filopodia and microvilli. Mol Biol Evol 30:2013–2023. http://dx.doi.org/10.1093/molbev/mst110 [PubMed]
179. Pollard TD. 2007. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477. http://dx.doi.org/10.1146/annurev.biophys.35.040405.101936
180. Weaver AM, Young ME, Lee W-L, Cooper JA. 2003. Integration of signals to the Arp2/3 complex. Curr Opin Cell Biol 15:23–30. http://dx.doi.org/10.1016/S0955-0674(02)00015-7
181. Schirenbeck A, Arasada R, Bretschneider T, Stradal TEB, Schleicher M, Faix J. 2006. The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc Natl Acad Sci USA 103:7694–7699. http://dx.doi.org/10.1073/pnas.0511243103
182. Fritz-Laylin LK, Lord SJ, Mullins RD. 2016. Chytrid fungi construct actin-rich pseudopods, implicating actin regulators WASP and SCAR in an ancient mode of cell motility. bioRxiv. [Epub ahead of print.] doi:https://doi.org/10.1101/051821.
183. Yutin N, Wolf MY, Wolf YI, Koonin EV. 2009. The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9. http://dx.doi.org/10.1186/1745-6150-4-9
184. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. 2012. The Pfam protein families database. Nucleic Acids Res 40(D1) :D290–D301. http://dx.doi.org/10.1093/nar/gkr1065 [PubMed]
185. Sain D. 2013. Discovery of fungal cell wall components using evolutionary and functional genomics. Ph.D. thesis, University of California, Riverside.
186. Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O’Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046. http://dx.doi.org/10.3852/16-042 [PubMed]

Article metrics loading...



The application of environmental DNA techniques and increased genome sequencing of microbial diversity, combined with detailed study of cellular characters, has consistently led to the reexamination of our understanding of the tree of life. This has challenged many of the definitions of taxonomic groups, especially higher taxonomic ranks such as eukaryotic kingdoms. The Fungi is an example of a kingdom which, together with the features that define it and the taxa that are grouped within it, has been in a continual state of flux. In this article we aim to summarize multiple lines of data pertinent to understanding the early evolution and definition of the Fungi. These include ongoing cellular and genomic comparisons that, we will argue, have generally undermined all attempts to identify a synapomorphic trait that defines the Fungi. This article will also summarize ongoing work focusing on taxon discovery, combined with phylogenomic analysis, which has identified novel groups that lie proximate/adjacent to the fungal clade—wherever the boundary that defines the Fungi may be. Our hope is that, by summarizing these data in the form of a discussion, we can illustrate the ongoing efforts to understand what drove the evolutionary diversification of fungi.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...



Image of FIGURE 1

Click to view


Diversity and distribution of gene families known to function in chitin cell wall synthesis or remodeling. The diversity of domain architectures (as identified using PFAM [ 184 ]) for chitin cell wall synthesis or remodeling gene families. Note the gene fusion between a myosin head domain motor protein and a chitin synthase which was previously suggested to be fungus-specific ( 92 ). The taxonomic distribution of putative homologues across a subset of eukaryotic taxa identified using a custom-built set of domain-specific hidden Markov models kindly provided by Jason Stajich and Divya Sain ( 185 ). The fungal component of the phylogenetic tree is based on Spatafora et al. ( 186 ).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0044-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view


Diversity and distribution of gene families known to function in hyphal growth. A cartoon illustrating how proteins interact relating to subprocesses which govern vesicle trafficking associated with hyphal growth. Functions are briefly discussed in the main body of this manuscript and are marked i to viii. The taxonomic distribution of putative orthologues identified using reciprocal BLAST searches and phylogenetic methods across a subset of eukaryotic taxa (data not shown). The fungal component of the phylogenetic tree is based on Spatafora et al. ( 186 ).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0044-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view


Cartoon illustration summarizing how features previously discussed as defining the protist-fungal transition have been shown to have a mosaic distribution within the Fungi and/or outside the Fungi among other eukaryotes. White connecting nodes illustrate linked characters/traits.

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0044-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view


Schematic phylogenetic tree illustrating additional groups branching proximate to the origin of the fungal clade and the phylogenetic uncertainty among the deep branches of the Fungi and associated groups. Basal clone group 1 is composed of environmental sequences, which in some analyses is placed close to fungi ( 149 ).

Source: microbiolspec June 2017 vol. 5 no. 3 doi:10.1128/microbiolspec.FUNK-0044-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error