1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Dream of a Mycobacterium

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Catherine Baranowski1, E. Hesper Rego2, Eric J. Rubin3,4
  • Editors: Vincent A. Fischetti5, Richard P. Novick6, Joseph J. Ferretti7, Daniel A. Portnoy8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115; 2: Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510; 3: Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115; 4: Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115; 5: The Rockefeller University, New York, NY; 6: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 7: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 8: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 9: Australian Bacterial Pathogen Program, Department of Microbiology, Monash University, Melbourne, Australia
  • Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0008-2018
  • Received 21 May 2018 Accepted 25 May 2018 Published 26 April 2019
  • Eric J. Rubin, [email protected]
image of The Dream of a Mycobacterium
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Dream of a Mycobacterium, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0008-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0008-2018-2.gif
  • Abstract:

    How do mycobacteria divide? Cell division has been studied extensively in the model rod-shaped bacteria and , but much less is understood about cell division in mycobacteria, a genus that includes the major human pathogens and . In general, bacterial cell division requires the concerted effort of many proteins in both space and time to elongate the cell, replicate and segregate the chromosome, and construct and destruct the septum - processes which result in the creation of two new daughter cells. Here, we describe these distinct stages of cell division in and follow with the current knowledge in mycobacteria. As will become apparent, there are many differences between mycobacteria and in terms of both the broad outline of cell division and the molecular details. So, while the fundamental challenge of spatially and temporally organizing cell division is shared between these rod-shaped bacteria, they have solved these challenges in often vastly different ways.

  • Citation: Baranowski C, Rego E, Rubin E. 2019. The Dream of a Mycobacterium. Microbiol Spectrum 7(2):GPP3-0008-2018. doi:10.1128/microbiolspec.GPP3-0008-2018.

References

1. Jacob F. 1965. Leçon inaugurale: faite le vendredi 7 mai 1965 (Collège de France).
2. Hirota Y, Ryter A, Jacob F. 1968. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb Symp Quant Biol 33:677–693 http://dx.doi.org/10.1101/SQB.1968.033.01.077. [PubMed][CrossRef]
3. Bi EF, Lutkenhaus J. 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164 http://dx.doi.org/10.1038/354161a0. [PubMed][CrossRef]
4. Blaauwen den T, Hamoen LW, Levin PA. 2017. The divisome at 25: the road ahead. Curr Opin Microbiol 36:85–94. [PubMed][CrossRef]
5. Kieser KJ, Rubin EJ. 2014. How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12:550–562 http://dx.doi.org/10.1038/nrmicro3299. [PubMed][CrossRef]
6. Meniche X, Otten R, Siegrist MS, Baer CE, Murphy KC, Bertozzi CR, Sassetti CM. 2014. Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A 111:E3243–E3251 http://dx.doi.org/10.1073/pnas.1402158111. [PubMed][CrossRef]
7. Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104 http://dx.doi.org/10.1126/science.1216166. [CrossRef]
8. Foley HN, Stewart JA, Kavunja HW, Rundell SR, Swarts BM. 2016. Bioorthogonal chemical reporters for selective in situ probing of mycomembrane components in mycobacteria. Angew Chem Int Ed Engl 55:2053–2057 http://dx.doi.org/10.1002/anie.201509216. [CrossRef]
9. Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. 2013. (D)-amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol 8:500–505 http://dx.doi.org/10.1021/cb3004995. [CrossRef]
10. Botella H, Yang G, Ouerfelli O, Ehrt S, Nathan CF, Vaubourgeix J. 2017. Distinct spatiotemporal dynamics of peptidoglycan synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis. MBio 8:e01183-e17 http://dx.doi.org/10.1128/mBio.01183-17. [CrossRef]
11. Daniel RA, Errington J. 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776 http://dx.doi.org/10.1016/S0092-8674(03)00421-5. [PubMed][CrossRef]
12. Kang C-M, Nyayapathy S, Lee J-Y, Suh J-W, Husson RN. 2008. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154:725–735 http://dx.doi.org/10.1099/mic.0.2007/014076-0. [CrossRef]
13. Cameron TA, Zupan JR, Zambryski PC. 2015. The essential features and modes of bacterial polar growth. Trends Microbiol 23:347–353 http://dx.doi.org/10.1016/j.tim.2015.01.003. [CrossRef]
14. Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 111:E1025–E1034 http://dx.doi.org/10.1073/pnas.1317174111. [CrossRef]
15. Hussain S, Wivagg CN, Szwedziak P, Wong F, Schaefer K, Izore T, Renner LD, Sun Y, Bisson Filho AW, Walker S, Amir A, Löwe J, Garner EC. 2017. MreB filaments create rod shape by aligning along principal membrane curvature. BioRxiv https://www.biorxiv.org/content/early/2017/10/02/197475.1. [CrossRef]
16. Edwards DH, Errington J. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915 http://dx.doi.org/10.1046/j.1365-2958.1997.3811764.x. [CrossRef]
17. Hett EC, Chao MC, Rubin EJ. 2010. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog 6:e1001020-14 http://dx.doi.org/10.1371/journal.ppat.1001020. [PubMed][CrossRef]
18. Sanders AN, Wright LF, Pavelka MS Jr. 2014. Genetic characterization of mycobacterial l, d-transpeptidases. Microbiology 160:1795–1806 http://dx.doi.org/10.1099/mic.0.078980-0. [PubMed][CrossRef]
19. Haeusser DP, Margolin W. 2016. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14:305–319 http://dx.doi.org/10.1038/nrmicro.2016.26. [PubMed][CrossRef]
20. Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F, Jukes C, Sun Y, Dekker C, Holden S, VanNieuwenhze MS, Brun YV, Garner EC. 2017. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739–743 http://dx.doi.org/10.1126/science.aak9973. [PubMed][CrossRef]
21. Adams DW, Errington J. 2009. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7:642–653 http://dx.doi.org/10.1038/nrmicro2198. [PubMed][CrossRef]
22. Migocki MD, Freeman MK, Wake RG, Harry EJ. 2002. The Min system is not required for precise placement of the midcell Z ring in Bacillus subtilis. EMBO Rep 3:1163–1167 http://dx.doi.org/10.1093/embo-reports/kvf233. [PubMed][CrossRef]
23. Rego EH, Audette RE, Rubin EJ. 2017. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546:153–157 http://dx.doi.org/10.1038/nature22361. [PubMed][CrossRef]
24. Kieser KJ, Boutte CC, Kester JC, Baer CE, Barczak AK, Meniche X, Chao MC, Rego EH, Sassetti CM, Fortune SM, Rubin EJ. 2015. Phosphorylation of the peptidoglycan synthase PonA1 governs the rate of polar elongation in mycobacteria. PLoS Pathog 11:e1005010 http://dx.doi.org/10.1371/journal.ppat.1005010. [PubMed][CrossRef]
25. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95 http://dx.doi.org/10.1126/science.1229858. [PubMed][CrossRef]
26. Santi I, Dhar N, Bousbaine D, Wakamoto Y, McKinney JD. 2013. Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun 4:2470 http://dx.doi.org/10.1038/ncomms3470. [PubMed][CrossRef]
27. Joyce G, Williams KJ, Robb M, Noens E, Tizzano B, Shahrezaei V, Robertson BD. 2012. Cell division site placement and asymmetric growth in mycobacteria. PLoS One 7:e44582 http://dx.doi.org/10.1371/journal.pone.0044582. [PubMed][CrossRef]
28. Eskandarian HA, Odermatt PD, Ven JXY, Hannebelle MTM, Nievergelt AP, Dhar N, McKinney JD, Fantner GE. 2017. Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nat Microbiol 2:17094 http://dx.doi.org/10.1038/nmicrobiol.2017.94. [PubMed][CrossRef]
29. Thakur M, Chakraborti PK. 2006. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J Biol Chem 281:40107–40113 http://dx.doi.org/10.1074/jbc.M607216200. [PubMed][CrossRef]
30. Sureka K, Hossain T, Mukherjee P, Chatterjee P, Datta P, Kundu M, Basu J. 2010. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS One 5:e8590 http://dx.doi.org/10.1371/journal.pone.0008590. [PubMed][CrossRef]
31. Kang C-M, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN. 2005. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704 http://dx.doi.org/10.1101/gad.1311105. [CrossRef]
32. Wu LJ, Errington J. 2011. Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 10:8–12 http://dx.doi.org/10.1038/nrmicro2671. [PubMed][CrossRef]
33. Patrick JE, Kearns DB. 2008. MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis. Mol Microbiol 70:1166–1179 http://dx.doi.org/10.1111/j.1365-2958.2008.06469.x. [PubMed][CrossRef]
34. Egan AJF, Vollmer W. 2013. The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28 http://dx.doi.org/10.1111/j.1749-6632.2012.06818.x. [PubMed][CrossRef]
35. England K, Crew R, Slayden RA. 2011. Mycobacterium tuberculosis septum site determining protein, Ssd encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response. BMC Microbiol 11:79 http://dx.doi.org/10.1186/1471-2180-11-79. [PubMed][CrossRef]
36. Gamba P, Hamoen LW, Daniel RA. 2016. Cooperative recruitment of FtsW to the division site of Bacillus subtilis. Front Microbiol 7:1808 http://dx.doi.org/10.3389/fmicb.2016.01808. [PubMed][CrossRef]
37. Feucht A, Lucet I, Yudkin MD, Errington J. 2001. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125 http://dx.doi.org/10.1046/j.1365-2958.2001.02356.x. [CrossRef]
38. Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 68:1029–1046 http://dx.doi.org/10.1111/j.1365-2958.2008.06210.x. [PubMed][CrossRef]
39. Gola S, Munder T, Casonato S, Manganelli R, Vicente M. 2015. The essential role of SepF in mycobacterial division. Mol Microbiol 97:560–576 http://dx.doi.org/10.1111/mmi.13050. [PubMed][CrossRef]
40. Haeusser DP, Lee AH, Weart RB, Levin PA. 2009. ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. J Bacteriol 191:1986–1991 http://dx.doi.org/10.1128/JB.01606-07. [CrossRef]
41. Weart RB, Nakano S, Lane BE, Zuber P, Levin PA. 2005. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 57:238–249 http://dx.doi.org/10.1111/j.1365-2958.2005.04673.x. [PubMed][CrossRef]
42. Dziedzic R, Kiran M, Plocinski P, Ziolkiewicz M, Brzostek A, Moomey M, Vadrevu IS, Dziadek J, Madiraju M, Rajagopalan M. 2010. Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLoS One 5:e11058 http://dx.doi.org/10.1371/journal.pone.0011058. [PubMed][CrossRef]
43. Gamba P, Veening JW, Saunders NJ, Hamoen LW, Daniel RA. 2009. Two-step assembly dynamics of the Bacillus subtilis divisome. J Bacteriol 191:4186–4194 http://dx.doi.org/10.1128/JB.01758-08. [PubMed][CrossRef]
44. Wu KJ, Zhang J, Baranowski C, Leung V, Rego EH, Morita Y, Rubin EJ, Boutte CC. 2018. Characterization of conserved and novel septal factors in Mycobacterium smegmatis. J Bacteriol 200:e00649-17. [PubMed][CrossRef]
45. Meeske AJ, Riley EP, Robins WP, Uehara T, Mekalanos JJ, Kahne D, Walker S, Kruse AC, Bernhardt TG, Rudner DZ. 2016. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 537:634–638 http://dx.doi.org/10.1038/nature19331. [PubMed][CrossRef]
46. Datta P, Dasgupta A, Bhakta S, Basu J. 2002. Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J Biol Chem 277:24983–24987 http://dx.doi.org/10.1074/jbc.M203847200. [PubMed][CrossRef]
47. Rajagopalan M, Maloney E, Dziadek J, Poplawska M, Lofton H, Chauhan A, Madiraju MVVS. 2005. Genetic evidence that mycobacterial FtsZ and FtsW proteins interact, and colocalize to the division site in Mycobacterium smegmatis. FEMS Microbiol Lett 250:9–17 http://dx.doi.org/10.1016/j.femsle.2005.06.043. [CrossRef]
48. Datta P, Dasgupta A, Singh AK, Mukherjee P, Kundu M, Basu J. 2006. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62:1655–1673 http://dx.doi.org/10.1111/j.1365-2958.2006.05491.x. [CrossRef]
49. Plocinski P, Ziolkiewicz M, Kiran M, Vadrevu SI, Nguyen HB, Hugonnet J, Veckerle C, Arthur M, Dziadek J, Cross TA, Madiraju M, Rajagopalan M. 2011. Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J Bacteriol 193:3246–3256 http://dx.doi.org/10.1128/JB.00188-11. [CrossRef]
50. Plocinski P, Arora N, Sarva K, Blaszczyk E, Qin H, Das N, Plocinska R, Ziolkiewicz M, Dziadek J, Kiran M, Gorla P, Cross TA, Madiraju M, Rajagopalan M. 2012. Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J Bacteriol 194:6398–6409 http://dx.doi.org/10.1128/JB.01005-12. [CrossRef]
51. Gomez JE, Bishai WR. 2000. whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97:8554–8559 http://dx.doi.org/10.1073/pnas.140225297. [PubMed][CrossRef]
52. Sham L-T, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 2014. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:220–222 http://dx.doi.org/10.1126/science.1254522. [CrossRef]
53. Typas A, Banzhaf M, Gross CA, Vollmer W. 2011. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136 http://dx.doi.org/10.1038/nrmicro2677. [CrossRef]
54. Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L, Mainardi JL. 2008. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l, d-transpeptidation. J Bacteriol 190:4360–4366 http://dx.doi.org/10.1128/JB.00239-08. [CrossRef]
55. Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HIM, Barry CE III. 2012. Meropenem inhibits d, d-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86:367–381 http://dx.doi.org/10.1111/j.1365-2958.2012.08199.x. [CrossRef]
56. Boutte CC, Baer CE, Papavinasasundaram K, Liu W, Chase MR, Meniche X, Fortune SM, Sassetti CM, Ioerger TR, Rubin EJ. 2016. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis. eLife 5:a021113 http://dx.doi.org/10.7554/eLife.14590. [CrossRef]
57. Gee CL, Papavinasasundaram KG, Blair SR, Baer CE, Falick AM, King DS, Griffin JE, Venghatakrishnan H, Zukauskas A, Wei J-R, Dhiman RK, Crick DC, Rubin EJ, Sassetti CM, Alber T. 2012. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5:ra7 http://dx.doi.org/10.1126/scisignal.2002525. [PubMed][CrossRef]
58. Meeske AJ, Sham L-T, Kimsey H, Koo B-M, Gross CA, Bernhardt TG, Rudner DZ. 2015. MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci U S A 112:6437–6442 http://dx.doi.org/10.1073/pnas.1504967112. [PubMed][CrossRef]
59. Kieser KJ, Baranowski C, Chao MC, Long JE, Sassetti CM, Waldor MK, Sacchettini JC, Ioerger TR, Rubin EJ. 2015. Peptidoglycan synthesis in Mycobacterium tuberculosis is organized into networks with varying drug susceptibility. Proc Natl Acad Sci U S A 112:13087–13092 http://dx.doi.org/10.1073/pnas.1514135112. [CrossRef]
60. Donovan C, Bramkamp M. 2014. Cell division in Corynebacterineae. Front Microbiol 5:132 http://dx.doi.org/10.3389/fmicb.2014.00132. [PubMed][CrossRef]
61. Tavares JR, de Souza RF, Meira GLS, Gueiros-Filho FJ. 2008. Cytological characterization of YpsB, a novel component of the Bacillus subtilis divisome. J Bacteriol 190:7096–7107 http://dx.doi.org/10.1128/JB.00064-08. [CrossRef]
62. Plocinska R, Martinez L, Gorla P, Pandeeti E, Sarva K, Blaszczyk E, Dziadek J, Madiraju MV, Rajagopalan M. 2014. Mycobacterium tuberculosis MtrB sensor kinase interactions with FtsI and Wag31 proteins reveal a role for MtrB distinct from that regulating MtrA activities. J Bacteriol 196:4120–4129 http://dx.doi.org/10.1128/JB.01795-14. [CrossRef]
63. Dasgupta A, Datta P, Kundu M, Basu J. 2006. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504 http://dx.doi.org/10.1099/mic.0.28630-0. [PubMed][CrossRef]
64. Chao MC, Kieser KJ, Minami S, Mavrici D, Aldridge BB, Fortune SM, Alber T, Rubin EJ. 2013. Protein complexes and proteolytic activation of the cell wall hydrolase RipA regulate septal resolution in mycobacteria. PLoS Pathog 9:e1003197 http://dx.doi.org/10.1371/journal.ppat.1003197. [PubMed][CrossRef]
65. Smith TJ, Blackman SA, Foster SJ. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–262 http://dx.doi.org/10.1099/00221287-146-2-249. [CrossRef]
66. Ohnishi R, Ishikawa S, Sekiguchi J. 1999. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 181:3178–3184.
67. Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J. 1998. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180:2549–2555. [PubMed]
68. Scheffers D-J, Pinho MG. 2005. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69:585–607 http://dx.doi.org/10.1128/MMBR.69.4.585-607.2005. [PubMed][CrossRef]
69. Böth D, Schneider G, Schnell R. 2011. Peptidoglycan remodeling in Mycobacterium tuberculosis: comparison of structures and catalytic activities of RipA and RipB. J Mol Biol 413:247–260 http://dx.doi.org/10.1016/j.jmb.2011.08.014. [CrossRef]
70. Martinelli DJ, Pavelka MS Jr. 2016. The RipA and RipB peptidoglycan endopeptidases are individually nonessential to Mycobacterium smegmatis. J Bacteriol 198:1464–1475 http://dx.doi.org/10.1128/JB.00059-16. [CrossRef]
71. Hett EC, Chao MC, Steyn AJ, Fortune SM, Deng LL, Rubin EJ. 2007. A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol Microbiol 66:658–668 http://dx.doi.org/10.1111/j.1365-2958.2007.05945.x. [CrossRef]
72. Hett EC, Chao MC, Deng LL, Rubin EJ. 2008. A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog 4:e1000001 http://dx.doi.org/10.1371/journal.ppat.1000001. [PubMed][CrossRef]
73. Buist G, Steen A, Kok J, Kuipers OP. 2008. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847 http://dx.doi.org/10.1111/j.1365-2958.2008.06211.x. [CrossRef]
74. Chauhan A, Lofton H, Maloney E, Moore J, Fol M, Madiraju MVVS, Rajagopalan M. 2006. Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Mol Microbiol 62:132–147 http://dx.doi.org/10.1111/j.1365-2958.2006.05333.x. [CrossRef]
75. Mo AH, Burkholder WF. 2010. YneA, an SOS-induced inhibitor of cell division in Bacillus subtilis, is regulated posttranslationally and requires the transmembrane region for activity. J Bacteriol 192:3159–3173 http://dx.doi.org/10.1128/JB.00027-10. [CrossRef]
76. Vadrevu IS, Lofton H, Sarva K, Blasczyk E, Plocinska R, Chinnaswamy J, Madiraju M, Rajagopalan M. 2011. ChiZ levels modulate cell division process in mycobacteria. Tuberculosis (Edinb) 91(Suppl 1) :S128–S135 http://dx.doi.org/10.1016/j.tube.2011.10.022. [CrossRef]
77. Senzani S, Li D, Bhaskar A, Ealand C, Chang J, Rimal B, Liu C, Joon Kim S, Dhar N, Kana B. 2017. An Amidase_3 domain-containing N-acetylmuramyl- l-alanine amidase is required for mycobacterial cell division. Sci Rep 7:1140 http://dx.doi.org/10.1038/s41598-017-01184-7. [PubMed][CrossRef]
78. Du S, Pichoff S, Lutkenhaus J. 2016. FtsEX acts on FtsA to regulate divisome assembly and activity. Proc Natl Acad Sci U S A 113:E5052–E5061 http://dx.doi.org/10.1073/pnas.1606656113. [PubMed][CrossRef]
79. Yang DC, Peters NT, Parzych KR, Uehara T, Markovski M, Bernhardt TG. 2011. An ATP-binding cassette transporter-like complex governs cell-wall hydrolysis at the bacterial cytokinetic ring. Proc Natl Acad Sci U S A 108:E1052–E1060 http://dx.doi.org/10.1073/pnas.1107780108. [CrossRef]
80. Meisner J, Montero Llopis P, Sham L-T, Garner E, Bernhardt TG, Rudner DZ. 2013. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol Microbiol 89:1069–1083 http://dx.doi.org/10.1111/mmi.12330. [CrossRef]
81. Mavrici D, Marakalala MJ, Holton JM, Prigozhin DM, Gee CL, Zhang YJ, Rubin EJ, Alber T. 2014. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proc Natl Acad Sci U S A 111:8037–8042 http://dx.doi.org/10.1073/pnas.1321812111. [CrossRef]
82. Thanky NR, Young DB, Robertson BD. 2007. Unusual features of the cell cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division. Tuberculosis (Edinb) 87:231–236 http://dx.doi.org/10.1016/j.tube.2006.10.004. [CrossRef]
83. Zhou X, Halladin DK, Theriot JA. 2016. Fast mechanically driven daughter cell separation is widespread in actinobacteria. MBio 7:e00952-16 http://dx.doi.org/10.1128/mBio.00952-16. [PubMed][CrossRef]
84. Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ. 2007. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896–7910 http://dx.doi.org/10.1128/JB.00726-07. [PubMed][CrossRef]
85. Jani C, Eoh H, Lee JJ, Hamasha K, Sahana MB, Han J-S, Nyayapathy S, Lee J-Y, Suh J-W, Lee SH, Rehse SJ, Crick DC, Kang C-M. 2010. Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol 10:327 http://dx.doi.org/10.1186/1471-2180-10-327. [PubMed][CrossRef]
86. Mukherjee P, Sureka K, Datta P, Hossain T, Barik S, Das KP, Kundu M, Basu J. 2009. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol Microbiol 73:103–119 http://dx.doi.org/10.1111/j.1365-2958.2009.06750.x. [PubMed][CrossRef]
87. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honoré N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007–1011 http://dx.doi.org/10.1038/35059006. [CrossRef]
88. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. 2009. A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214 http://dx.doi.org/10.1038/nm.1915. [PubMed][CrossRef]
89. Campos M, Surovtsev IV, Kato S, Paintdakhi A, Beltran B, Ebmeier SE, Jacobs-Wagner C. 2014. A constant size extension drives bacterial cell size homeostasis. Cell 159:1433–1446 http://dx.doi.org/10.1016/j.cell.2014.11.022. [PubMed][CrossRef]
90. Taheri-Araghi S, Bradde S, Sauls JT, Hill NS, Levin PA, Paulsson J, Vergassola M, Jun S. 2015. Cell-size control and homeostasis in bacteria. Curr Biol 25:385–391 http://dx.doi.org/10.1016/j.cub.2014.12.009. [PubMed][CrossRef]
91. Priestman M, Thomas P, Robertson BD, Shahrezaei V. 2017. Mycobacteria modify their cell size control under sub-optimal carbon sources. Front Cell Dev Biol 5:64 http://dx.doi.org/10.3389/fcell.2017.00064. [PubMed][CrossRef]
92. Logsdon MM, Ho P-Y, Papavinasasundaram K, Richardson K, Cokol M, Sassetti CM, Amir A, Aldridge BB. 2017. A parallel adder coordinates mycobacterial cell-cycle progression and cell-size homeostasis in the context of asymmetric growth and organization. Curr Biol 27:3367–3374.e7 http://dx.doi.org/10.1016/j.cub.2017.09.046. [PubMed][CrossRef]
93. Hett EC, Rubin EJ. 2008. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156 http://dx.doi.org/10.1128/MMBR.00028-07. [CrossRef]
94. Sharbati-Tehrani S, Meister B, Appel B, Lewin A. 2004. The porin MspA from Mycobacterium smegmatis improves growth of Mycobacterium bovis BCG. Int J Med Microbiol 294:235–245 http://dx.doi.org/10.1016/j.ijmm.2004.02.001. [CrossRef]
95. Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. 2004. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150:853–864 http://dx.doi.org/10.1099/mic.0.26902-0. [CrossRef]
96. Sharbati S, Schramm K, Rempel S, Wang H, Andrich R, Tykiel V, Kunisch R, Lewin A. 2009. Characterisation of porin genes from Mycobacterium fortuitum and their impact on growth. BMC Microbiol 9:31 http://dx.doi.org/10.1186/1471-2180-9-31. [PubMed][CrossRef]
97. Wang JD, Levin PA. 2009. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7:822–827 http://dx.doi.org/10.1038/nrmicro2202. [PubMed][CrossRef]
98. Trojanowski D, Ginda K, Pióro M, Hołówka J, Skut P, Jakimowicz D, Zakrzewska-Czerwińska J. 2015. Choreography of the Mycobacterium replication machinery during the cell cycle. MBio 6:e02125-14 http://dx.doi.org/10.1128/mBio.02125-14. [PubMed][CrossRef]
99. Nair N, Dziedzic R, Greendyke R, Muniruzzaman S, Rajagopalan M, Madiraju MV. 2009. Synchronous replication initiation in novel Mycobacterium tuberculosis dnaA cold-sensitive mutants. Mol Microbiol 71:291–304 http://dx.doi.org/10.1111/j.1365-2958.2008.06523.x. [PubMed][CrossRef]
100. Ditse Z, Lamers MH, Warner DF. 2017. DNA Replication in Mycobacterium tuberculosis. Microbiol Spectr 5:TBTB2-0027-2016 http://dx.doi.org/10.1128/microbiolspec.TBTB2-0027-2016. [CrossRef]
101. Rock JM, Lang UF, Chase MR, Ford CB, Gerrick ER, Gawande R, Coscolla M, Gagneux S, Fortune SM, Lamers MH. 2015. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat Genet 47:677–681 http://dx.doi.org/10.1038/ng.3269. [CrossRef]
102. Vadia S, Tse JL, Lucena R, Yang Z, Kellogg DR, Wang JD, Levin PA. 2017. Fatty acid availability sets cell envelope capacity and dictates microbial cell size. Curr Biol 27:1757–1767.e5 http://dx.doi.org/10.1016/j.cub.2017.05.076. [PubMed][CrossRef]
103. WHO. 2017. Global Tuberculosis Report 2017. WHO, Geneva, Switzerland.
104. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE. 2016. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71:17–26 http://dx.doi.org/10.1093/jac/dkv316. [PubMed][CrossRef]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0008-2018
2019-04-26
2019-08-19

Abstract:

How do mycobacteria divide? Cell division has been studied extensively in the model rod-shaped bacteria and , but much less is understood about cell division in mycobacteria, a genus that includes the major human pathogens and . In general, bacterial cell division requires the concerted effort of many proteins in both space and time to elongate the cell, replicate and segregate the chromosome, and construct and destruct the septum - processes which result in the creation of two new daughter cells. Here, we describe these distinct stages of cell division in and follow with the current knowledge in mycobacteria. As will become apparent, there are many differences between mycobacteria and in terms of both the broad outline of cell division and the molecular details. So, while the fundamental challenge of spatially and temporally organizing cell division is shared between these rod-shaped bacteria, they have solved these challenges in often vastly different ways.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Characteristics of growth and division in and mycobacteria. and grow by adding new cell wall (gray) along the lateral cell body. Mycobacteria grow only at the polar regions, and do so at unequal amounts depending on the identity of the pole. This is observed by using a cell wall dye (green) to stain the existing cell wall and observe outgrowth of the newly synthesized, unstained cell wall ( 7 ). Arrows, polar location of new cell wall synthesis (a large arrow indicates more growth); dotted line, septum; green portion, old cell wall; gray portion, new cell wall.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0008-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Polar growth segregates the cell wall based on age. (Top) Fluorescent -amino acids are thought to incorporate into nascent PG. Pulse chase with these shows how the new and old cell walls are spatially segregated in (Baranowski C, Rego EH, and Rubin EJ, unpublished images). (Bottom) Alexa-488 NHS ester stains the existing cell wall (green). New cell wall is unstained and can be monitored using time-lapse microscopy. After two divisions, the oldest cell wall is inherited by the new pole daughter cells (*) in . (Baranowski, Rego, and Rubin. unpublished images; 7 ).

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0008-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mycobacterial divisome interactions. A schematic of mycobacterial divisome protein interactions. Note that interactions are not necessarily direct given the available data. Gray dotted lines, physical interactions; red dotted lines, negative regulation; brown lines, FtsQ pulldown proteins ( 44 ); blue text, cell wall enzymes; orange text, kinases.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0008-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Mycobacterial divisome and elongasome members. (Top) Schematic of proteins involved in mycobacterial cell division. Proteins marked with an asterisk (*) have been shown to interact with FtsZ. The FtsZ ring is illustrated as a dark gray circle upon which the divisome members are arranged. (Bottom) Schematic of proteins involved in mycobacterial elongation. Interacting proteins are depicted touching, and proteins with a question mark (?) may belong in these complexes, but data are limited.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0008-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error