1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Virulence and Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Anthony R. Richardson1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0011-2018
  • Received 09 January 2018 Accepted 16 August 2018 Published 26 April 2019
  • Anthony R. Richardson, [email protected]
image of Virulence and Metabolism
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Virulence and Metabolism, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0011-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0011-2018-2.gif
  • Abstract:

    is clearly the most pathogenic member of the . This is in large part due to the acquisition of an impressive arsenal of virulence factors that are coordinately regulated by a series of dedicated transcription factors. What is becoming more and more appreciated in the field is the influence of the metabolic state of on the activity of these virulence regulators and their roles in modulating metabolic gene expression. Here I highlight recent advances in metabolism as it pertains to virulence. Specifically, mechanisms of nutrient acquisition are outlined including carbohydrate and non-carbohydrate carbon/energy sources as well as micronutrient (Fe, Mn, Zn and S) acquisition. Additionally, energy producing strategies (respiration versus fermentation) are discussed and put in the context of pathogenesis. Finally, transcriptional regulators that coordinate metabolic gene expression are outlined, particularly those that affect the activities of major virulence factor regulators. This chapter essentially connects many recent observations that link the metabolism of to its overall pathogenesis and hints that the mere presence of a plethora of virulence factors may not entirely explain the extraordinary pathogenic potential of .

  • Citation: Richardson A. 2019. Virulence and Metabolism. Microbiol Spectrum 7(2):GPP3-0011-2018. doi:10.1128/microbiolspec.GPP3-0011-2018.

References

1. Vitko NP, Grosser MR, Khatri D, Lance TR, Richardson AR. 2016. Expanded glucose import capability affords Staphylococcus aureus optimized glycolytic flux during infection. MBio 7:e00296–16 http://dx.doi.org/10.1128/mBio.00296-16. [PubMed][CrossRef]
2. Button DK, Egan JB, Hengstenberg W, Morse ML. 1973. Carbohydrate transport in Staphylococcus aureus. IV. Maltose accumulation and metabolism. Biochem Biophys Res Commun 52:850–855 http://dx.doi.org/10.1016/0006-291X(73)91015-2. [CrossRef]
3. Egan JB, Morse ML. 1966. Carbohydrate transport in Staphylococcus aureus. 3. Studies of the transport process. Biochim Biophys Acta 112:63–73 http://dx.doi.org/10.1016/S0926-6585(96)90009-6. [PubMed][CrossRef]
4. Egan JB, Morse ML. 1965. Carbohydrate transport in Staphylococcus aureus. I. Genetic and biochemical analysis of a pleiotropic transport mutant. Biochim Biophys Acta 97:310–319 http://dx.doi.org/10.1016/0304-4165(65)90096-6. [CrossRef]
5. Egan JB, Morse ML. 1965. Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim Biophys Acta 109:172–183 http://dx.doi.org/10.1016/0926-6585(65)90101-9. [CrossRef]
6. Hengstenberg W, Egan JB, Morse ML. 1967. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate. Proc Natl Acad Sci U S A 58:274–279 http://dx.doi.org/10.1073/pnas.58.1.274. [CrossRef]
7. Hengstenberg W, Egan JB, Morse ML. 1968. Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated. J Biol Chem 243:1881–1885.
8. Breidt F Jr, Hengstenberg W, Finkeldei U, Stewart GC. 1987. Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac operon of Staphylococcus aureus. J Biol Chem 262:16444–16449.
9. Fischer R, Hengstenberg W. 1992. Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Sequence and expression in Escherichia coli and structural comparison with the enzyme II mannitol of Escherichia coli. Eur J Biochem 204:963–969 http://dx.doi.org/10.1111/j.1432-1033.1992.tb16717.x. [CrossRef]
10. Fischer R, von Strandmann RP, Hengstenberg W. 1991. Mannitol-specific phosphoenolpyruvate-dependent phosphotransferase system of Enterococcus faecalis: molecular cloning and nucleotide sequences of the enzyme IIIMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Escherichia coli, and comparison of the gene products with similar enzymes. J Bacteriol 173:3709–3715 http://dx.doi.org/10.1128/jb.173.12.3709-3715.1991. [CrossRef]
11. Park JY, Kim JW, Moon BY, Lee J, Fortin YJ, Austin FW, Yang S-J, Seo KS. 2015. Characterization of a novel two-component regulatory system, HptRS, the regulator for the hexose phosphate transport system in Staphylococcus aureus. Infect Immun 83:1620–1628 http://dx.doi.org/10.1128/IAI.03109-14. [CrossRef]
12. Yang Y, Sun H, Liu X, Wang M, Xue T, Sun B. 2016. Regulatory mechanism of the three-component system HptRSA in glucose-6-phosphate uptake in Staphylococcus aureus. Med Microbiol Immunol (Berl) 205:241–253 http://dx.doi.org/10.1007/s00430-015-0446-6. [CrossRef]
13. Somerville GA, Saïd-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM. 2003. Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions. Infect Immun 71:4724–4732 http://dx.doi.org/10.1128/IAI.71.8.4724-4732.2003. [CrossRef]
14. Hiron A, Borezée-Durant E, Piard J-C, Juillard V. 2007. Only one of four oligopeptide transport systems mediates nitrogen nutrition in Staphylococcus aureus. J Bacteriol 189:5119–5129 http://dx.doi.org/10.1128/JB.00274-07. [CrossRef]
15. Kaiser JC, Omer S, Sheldon JR, Welch I, Heinrichs DE. 2015. Role of BrnQ1 and BrnQ2 in branched-chain amino acid transport and virulence in Staphylococcus aureus. Infect Immun 83:1019–1029 http://dx.doi.org/10.1128/IAI.02542-14. [CrossRef]
16. Halsey CR, Lei S, Wax JK, Lehman MK, Nuxoll AS, Steinke L, Sadykov M, Powers R, Fey PD. 2017. Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression. MBio 8:e01434-16 http://dx.doi.org/10.1128/mBio.01434-16. [PubMed][CrossRef]
17. Li C, Sun F, Cho H, Yelavarthi V, Sohn C, He C, Schneewind O, Bae T. 2010. CcpA mediates proline auxotrophy and is required for Staphylococcus aureus pathogenesis. J Bacteriol 192:3883–3892 http://dx.doi.org/10.1128/JB.00237-10. [CrossRef]
18. Nuxoll AS, Halouska SM, Sadykov MR, Hanke ML, Bayles KW, Kielian T, Powers R, Fey PD. 2012. CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. PLoS Pathog 8:e1003033 http://dx.doi.org/10.1371/journal.ppat.1003033. [PubMed][CrossRef]
19. Soutourina O, Poupel O, Coppée J-Y, Danchin A, Msadek T, Martin-Verstraete I. 2009. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol Microbiol 73:194–211 http://dx.doi.org/10.1111/j.1365-2958.2009.06760.x. [CrossRef]
20. Parsons JB, Frank MW, Jackson P, Subramanian C, Rock CO. 2014. Incorporation of extracellular fatty acids by a fatty acid kinase-dependent pathway in Staphylococcus aureus. Mol Microbiol 92:234–245 http://dx.doi.org/10.1111/mmi.12556. [CrossRef]
21. Stockland AE, San Clemente CL. 1968. Lactate dehydrogenase activity in certain strains of Staphylococcus aureus. J Bacteriol 95:74–80. [PubMed]
22. Garrard W, Lascelles J. 1968. Regulation of Staphylococcus aureus lactate dehydrogenase. J Bacteriol 95:152–156. [PubMed]
23. Stockland AE, San Clemente CL. 1969. Multiple forms of lactate dehydrogenase in Staphylococcus aureus. J Bacteriol 100:347–353.
24. Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR. 2011. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence. Front Cell Infect Microbiol 1:19 http://dx.doi.org/10.3389/fcimb.2011.00019. [CrossRef]
25. Spahich NA, Vitko NP, Thurlow LR, Temple B, Richardson AR. 2016. Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence. Mol Microbiol 100:759–773 http://dx.doi.org/10.1111/mmi.13347. [CrossRef]
26. Richardson AR, Libby SJ, Fang FC. 2008. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319:1672–1676 http://dx.doi.org/10.1126/science.1155207. [CrossRef]
27. Olson ME, King JM, Yahr TL, Horswill AR. 2013. Sialic acid catabolism in Staphylococcus aureus. J Bacteriol 195:1779–1788 http://dx.doi.org/10.1128/JB.02294-12. [PubMed][CrossRef]
28. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. 2004. Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628 http://dx.doi.org/10.1126/science.1099930. [CrossRef]
29. Beasley FC, Heinrichs DE. 2010. Siderophore-mediated iron acquisition in the staphylococci. J Inorg Biochem 104:282–288 http://dx.doi.org/10.1016/j.jinorgbio.2009.09.011. [PubMed][CrossRef]
30. Beasley FC, Vinés ED, Grigg JC, Zheng Q, Liu S, Lajoie GA, Murphy MEP, Heinrichs DE. 2009. Characterization of staphyloferrin A biosynthetic and transport mutants in Staphylococcus aureus. Mol Microbiol 72:947–963 http://dx.doi.org/10.1111/j.1365-2958.2009.06698.x. [CrossRef]
31. Cotton JL, Tao J, Balibar CJ. 2009. Identification and characterization of the Staphylococcus aureus gene cluster coding for staphyloferrin A. Biochemistry 48:1025–1035 http://dx.doi.org/10.1021/bi801844c. [PubMed][CrossRef]
32. Cheung J, Beasley FC, Liu S, Lajoie GA, Heinrichs DE. 2009. Molecular characterization of staphyloferrin B biosynthesis in Staphylococcus aureus. Mol Microbiol 74:594–608 http://dx.doi.org/10.1111/j.1365-2958.2009.06880.x. [PubMed][CrossRef]
33. Dale SE, Sebulsky MT, Heinrichs DE. 2004. Involvement of SirABC in iron-siderophore import in Staphylococcus aureus. J Bacteriol 186:8356–8362 http://dx.doi.org/10.1128/JB.186.24.8356-8362.2004. [PubMed][CrossRef]
34. Sebulsky MT, Hohnstein D, Hunter MD, Heinrichs DE. 2000. Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J Bacteriol 182:4394–4400 http://dx.doi.org/10.1128/JB.182.16.4394-4400.2000. [CrossRef]
35. Sebulsky MT, Heinrichs DE. 2001. Identification and characterization of fhuD1 and fhuD2, two genes involved in iron-hydroxamate uptake in Staphylococcus aureus. J Bacteriol 183:4994–5000 http://dx.doi.org/10.1128/JB.183.17.4994-5000.2001. [PubMed][CrossRef]
36. Morrissey JA, Cockayne A, Hill PJ, Williams P. 2000. Molecular cloning and analysis of a putative siderophore ABC transporter from Staphylococcus aureus. Infect Immun 68:6281–6288 http://dx.doi.org/10.1128/IAI.68.11.6281-6288.2000. [CrossRef]
37. Hammer ND, Skaar EP. 2011. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147 http://dx.doi.org/10.1146/annurev-micro-090110-102851. [PubMed][CrossRef]
38. Torres VJ, Pishchany G, Humayun M, Schneewind O, Skaar EP. 2006. Staphylococcus aureus IsdB is a hemoglobin receptor required for heme iron utilization. J Bacteriol 188:8421–8429 http://dx.doi.org/10.1128/JB.01335-06. [CrossRef]
39. Dryla A, Gelbmann D, von Gabain A, Nagy E. 2003. Identification ofa novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol Microbiol 49:37–53 http://dx.doi.org/10.1046/j.1365-2958.2003.03542.x. [PubMed][CrossRef]
40. Muryoi N, Tiedemann MT, Pluym M, Cheung J, Heinrichs DE, Stillman MJ. 2008. Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J Biol Chem 283:28125–28136 http://dx.doi.org/10.1074/jbc.M802171200. [CrossRef]
41. Zhu H, Xie G, Liu M, Olson JS, Fabian M, Dooley DM, Lei B. 2008. Pathway for heme uptake from human methemoglobin by the iron-regulated surface determinants system of Staphylococcus aureus. J Biol Chem 283:18450–18460 http://dx.doi.org/10.1074/jbc.M801466200. [CrossRef]
42. Liu M, Tanaka WN, Zhu H, Xie G, Dooley DM, Lei B. 2008. Direct hemin transfer from IsdA to IsdC in the iron-regulated surface determinant (Isd) heme acquisition system of Staphylococcus aureus. J Biol Chem 283:6668–6676 http://dx.doi.org/10.1074/jbc.M708372200. [CrossRef]
43. Skaar EP, Gaspar AH, Schneewind O. 2004. IsdG and IsdI, heme-degrading enzymes in the cytoplasm of Staphylococcus aureus. J Biol Chem 279:436–443 http://dx.doi.org/10.1074/jbc.M307952200. [PubMed][CrossRef]
44. Dale I, Fagerhol MK, Naesgaard I. 1983. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem 134:1–6 http://dx.doi.org/10.1111/j.1432-1033.1983.tb07522.x. [PubMed][CrossRef]
45. Sohnle PG, Collins-Lech C, Wiessner JH. 1991. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis 163:187–192 http://dx.doi.org/10.1093/infdis/163.1.187. [CrossRef]
46. Clohessy PA, Golden BE. 1995. Calprotectin-mediated zinc chelation as a biostatic mechanism in host defence. Scand J Immunol 42:551–556 http://dx.doi.org/10.1111/j.1365-3083.1995.tb03695.x. [PubMed][CrossRef]
47. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP. 2011. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–164 http://dx.doi.org/10.1016/j.chom.2011.07.004. [CrossRef]
48. Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P. 2000. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248 http://dx.doi.org/10.1084/jem.192.9.1237. [CrossRef]
49. Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M, Blackwell JM. 2001. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 354:511–519 http://dx.doi.org/10.1042/bj3540511. [CrossRef]
50. Horsburgh MJ, Wharton SJ, Cox AG, Ingham E, Peacock S, Foster SJ. 2002. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44:1269–1286 http://dx.doi.org/10.1046/j.1365-2958.2002.02944.x. [CrossRef]
51. Kehl-Fie TE, Zhang Y, Moore JL, Farrand AJ, Hood MI, Rathi S, Chazin WJ, Caprioli RM, Skaar EP. 2013. MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun 81:3395–3405 http://dx.doi.org/10.1128/IAI.00420-13. [CrossRef]
52. Grim KP, San Francisco B, Radin JN, Brazel EB, Kelliher JL, Párraga Solórzano PK, Kim PC, McDevitt CA, Kehl-Fie TE. 2017. The metallophore staphylopine enables Staphylococcus aureus to compete with the host for zinc and overcome nutritional immunity. MBio 8:e01281–17 http://dx.doi.org/10.1128/mBio.01281-17. [PubMed][CrossRef]
53. Remy L, Carrière M, Derré-Bobillot A, Martini C, Sanguinetti M, Borezée-Durant E. 2013. The Staphylococcus aureus Opp1 ABC transporter imports nickel and cobalt in zinc-depleted conditions and contributes to virulence. Mol Microbiol 87:730–743 http://dx.doi.org/10.1111/mmi.12126. [CrossRef]
54. Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A, Wang S, Hajjar C, Lobinski R, Lemaire D, Richaud P, Voulhoux R, Espaillat A, Cava F, Pignol D, Borezée-Durant E, Arnoux P. 2016. Biosynthesis of abroad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352:1105–1109 http://dx.doi.org/10.1126/science.aaf1018. [CrossRef]
55. Chandrangsu P, Loi VV, Antelmann H, Helmann JD. 2017. The role of bacillithiol in Gram-positive Firmicutes. Antioxid Redox Signal 28:445–462. [PubMed][CrossRef]
56. Peng H, Shen J, Edmonds KA, Luebke JL, Hickey AK, Palmer LD, Chang FJ, Bruce KA, Kehl-Fie TE, Skaar EP, Giedroc DP. 2017. Sulfide homeostasis and nitroxyl intersect via formation of reactive sulfur species in Staphylococcus aureus. MSphere 2:e00082–17 http://dx.doi.org/10.1128/mSphere.00082-17. [PubMed][CrossRef]
57. Giehl TJ, Qoronfleh MW, Wilkinson BJ. 1987. Transport, nutritional and metabolic studies of taurine in staphylococci. J Gen Microbiol 133:849–856. [PubMed][CrossRef]
58. Roberts CA, Al-Tameemi HM, Mashruwala AA, Rosario-Cruz Z, Chauhan U, Sause WE, Torres VJ, Belden WJ, Boyd JM. 2017. The Suf iron-sulfur cluster biosynthetic system is essential in Staphylococcus aureus, and decreased Suf function results in global metabolic defects and reduced survival in human neutrophils. Infect Immun 85:e00100–17 http://dx.doi.org/10.1128/IAI.00100-17. [PubMed][CrossRef]
59. Mashruwala AA, Pang YY, Rosario-Cruz Z, Chahal HK, Benson MA, Mike LA, Skaar EP, Torres VJ, Nauseef WM, Boyd JM. 2015. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus. Mol Microbiol 95:383–409 http://dx.doi.org/10.1111/mmi.12860. [PubMed][CrossRef]
60. Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM. 2016. The DUF59 containing protein SufT is involved in the maturation of iron-sulfur (FeS) proteins during conditions of high FeS cofactor demand in Staphylococcus aureus. PLoS Genet 12:e1006233 http://dx.doi.org/10.1371/journal.pgen.1006233. [PubMed][CrossRef]
61. Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM. 2016. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol 102:1099–1119 http://dx.doi.org/10.1111/mmi.13539. [PubMed][CrossRef]
62. Rajkarnikar A, Strankman A, Duran S, Vargas D, Roberts AA, Barretto K, Upton H, Hamilton CJ, Rawat M. 2013. Analysis of mutants disrupted in bacillithiol metabolism in Staphylococcus aureus. Biochem Biophys Res Commun 436:128–133 http://dx.doi.org/10.1016/j.bbrc.2013.04.027. [CrossRef]
63. Pöther D-C, Gierok P, Harms M, Mostertz J, Hochgräfe F, Antelmann H, Hamilton CJ, Borovok I, Lalk M, Aharonowitz Y, Hecker M. 2013. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. Int J Med Microbiol 303:114–123 http://dx.doi.org/10.1016/j.ijmm.2013.01.003. [CrossRef]
64. Posada AC, Kolar SL, Dusi RG, François P, Roberts AA, Hamilton CJ, Liu GY, Cheung A. 2014. Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus. Infect Immun 82:316–332 http://dx.doi.org/10.1128/IAI.01074-13. [CrossRef]
65. Rosario-Cruz Z, Chahal HK, Mike LA, Skaar EP, Boyd JM. 2015. Bacillithiol has a role in Fe-S cluster biogenesis in Staphylococcus aureus. Mol Microbiol 98:218–242 http://dx.doi.org/10.1111/mmi.13115. [PubMed][CrossRef]
66. Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. 2014. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. Biochim Biophys Acta 1837:954–963 http://dx.doi.org/10.1016/j.bbabio.2014.03.017. [CrossRef]
67. Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP. 2013. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. MBio 4:e00241–13 http://dx.doi.org/10.1128/mBio.00241-13. [PubMed][CrossRef]
68. Hammer ND, Schurig-Briccio LA, Gerdes SY, Gennis RB, Skaar EP. 2016. CtaM is required for menaquinol oxidase aa3 function in Staphylococcus aureus. MBio 7:e00823–16 http://dx.doi.org/10.1128/mBio.00823-16. [PubMed][CrossRef]
69. Schlag S, Fuchs S, Nerz C, Gaupp R, Engelmann S, Liebeke M, Lalk M, Hecker M, Götz F. 2008. Characterization of the oxygen-responsive NreABC regulon of Staphylococcus aureus. J Bacteriol 190:7847–7858 http://dx.doi.org/10.1128/JB.00905-08. [PubMed][CrossRef]
70. Ledala N, Zhang B, Seravalli J, Powers R, Somerville GA. 2014. Influence of iron and aeration on Staphylococcus aureus growth, metabolism, and transcription. J Bacteriol 196:2178–2189 http://dx.doi.org/10.1128/JB.01475-14. [CrossRef]
71. Ferreira MT, Manso AS, Gaspar P, Pinho MG, Neves AR. 2013. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS One 8:e58277 http://dx.doi.org/10.1371/journal.pone.0058277. [PubMed][CrossRef]
72. Carvalho SM, de Jong A, Kloosterman TG, Kuipers OP, Saraiva LM. 2017. The Staphylococcus aureus α-acetolactate synthase ALS confers resistance to nitrosative stress. Front Microbiol 8:1273 http://dx.doi.org/10.3389/fmicb.2017.01273. [PubMed][CrossRef]
73. Leibig M, Liebeke M, Mader D, Lalk M, Peschel A, Götz F. 2011. Pyruvate formate lyase acts as a formate supplier for metabolic processes during anaerobiosis in Staphylococcus aureus. J Bacteriol 193:952–962 http://dx.doi.org/10.1128/JB.01161-10. [CrossRef]
74. Vitko NP, Spahich NA, Richardson AR. 2015. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus. MBio 6:e00045–15 http://dx.doi.org/10.1128/mBio.00045-15. [PubMed][CrossRef]
75. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. 2014. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99 http://dx.doi.org/10.3389/fcimb.2014.00099. [PubMed][CrossRef]
76. Hammer ND, Cassat JE, Noto MJ, Lojek LJ, Chadha AD, Schmitz JE, Creech CB, Skaar EP. 2014. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. Cell Host Microbe 16:531–537 http://dx.doi.org/10.1016/j.chom.2014.09.002. [CrossRef]
77. Cao S, Huseby DL, Brandis G, Hughes D. 2017. Alternative evolutionary pathways for drug-resistant small colony variant mutants in Staphylococcus aureus. MBio 8:e00358–17 http://dx.doi.org/10.1128/mBio.00358-17. [PubMed][CrossRef]
78. Chatterjee I, Kriegeskorte A, Fischer A, Deiwick S, Theimann N, Proctor RA, Peters G, Herrmann M, Kahl BC. 2008. In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus. J Bacteriol 190:834–842 http://dx.doi.org/10.1128/JB.00912-07. [CrossRef]
79. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B. 2011. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141 http://dx.doi.org/10.1002/emmm.201000115. [CrossRef]
80. Richardson AR, Payne EC, Younger N, Karlinsey JE, Thomas VC, Becker LA, Navarre WW, Castor ME, Libby SJ, Fang FC. 2011. Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe 10:33–43 http://dx.doi.org/10.1016/j.chom.2011.06.004. [PubMed][CrossRef]
81. Reents H, Münch R, Dammeyer T, Jahn D, Härtig E. 2006. The Fnr regulon of Bacillus subtilis. J Bacteriol 188:1103–1112 http://dx.doi.org/10.1128/JB.188.3.1103-1112.2006. [PubMed][CrossRef]
82. Seidl K, Stucki M, Ruegg M, Goerke C, Wolz C, Harris L, Berger-Bächi B, Bischoff M. 2006. Staphylococcus aureus CcpA affects virulence determinant production and antibiotic resistance. Antimicrob Agents Chemother 50:1183–1194 http://dx.doi.org/10.1128/AAC.50.4.1183-1194.2006. [CrossRef]
83. Deutscher J, Pevec B, Beyreuther K, Kiltz HH, Hengstenberg W. 1986. Streptococcal phosphoenolpyruvate-sugar phosphotransferase system: amino acid sequence and site of ATP-dependent phosphorylation of HPr. Biochemistry 25:6543–6551 http://dx.doi.org/10.1021/bi00369a031. [CrossRef]
84. Jault JM, Fieulaine S, Nessler S, Gonzalo P, Di Pietro A, Deutscher J, Galinier A. 2000. The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 275:1773–1780 http://dx.doi.org/10.1074/jbc.275.3.1773. [CrossRef]
85. Seidl K, Müller S, François P, Kriebitzsch C, Schrenzel J, Engelmann S, Bischoff M, Berger-Bächi B. 2009. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 9:95 http://dx.doi.org/10.1186/1471-2180-9-95. [PubMed][CrossRef]
86. Leiba J, Hartmann T, Cluzel M-E, Cohen-Gonsaud M, Delolme F, Bischoff M, Molle V. 2012. A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation. J Biol Chem 287:43607–43619 http://dx.doi.org/10.1074/jbc.M112.418913. [CrossRef]
87. Seidl K, Bischoff M, Berger-Bächi B. 2008. CcpA mediates the catabolite repression of tst in Staphylococcus aureus. Infect Immun 76:5093–5099 http://dx.doi.org/10.1128/IAI.00724-08. [CrossRef]
88. Seidl K, Goerke C, Wolz C, Mack D, Berger-Bächi B, Bischoff M. 2008. Staphylococcus aureus CcpA affects biofilm formation. Infect Immun 76:2044–2050 http://dx.doi.org/10.1128/IAI.00035-08. [CrossRef]
89. Crooke AK, Fuller JR, Obrist MW, Tomkovich SE, Vitko NP, Richardson AR. 2013. CcpA-independent glucose regulation of lactate dehydrogenase 1 in Staphylococcus aureus. PLoS One 8:e54293 http://dx.doi.org/10.1371/journal.pone.0054293. [PubMed][CrossRef]
90. Regassa LB, Novick RP, Betley MJ. 1992. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun 60:3381–3388.
91. Bischoff M, Wonnenberg B, Nippe N, Nyffenegger-Jann NJ, Voss M, Beisswenger C, Sunderkötter C, Molle V, Dinh QT, Lammert F, Bals R, Herrmann M, Somerville GA, Tschernig T, Gaupp R. 2017. CcpA affects infectivity of Staphylococcus aureus in a hyperglycemic environment. Front Cell Infect Microbiol 7:172 http://dx.doi.org/10.3389/fcimb.2017.00172. [CrossRef]
92. Ding Y, Liu X, Chen F, Di H, Xu B, Zhou L, Deng X, Wu M, Yang C-G, Lan L. 2014. Metabolic sensor governing bacterial virulence in Staphylococcus aureus. Proc Natl Acad Sci U S A 111:E4981–E4990 http://dx.doi.org/10.1073/pnas.1411077111. [CrossRef]
93. Hartmann T, Zhang B, Baronian G, Schulthess B, Homerova D, Grubmüller S, Kutzner E, Gaupp R, Bertram R, Powers R, Eisenreich W, Kormanec J, Herrmann M, Molle V, Somerville GA, Bischoff M. 2013. Catabolite control protein E (CcpE) is a LysR-type transcriptional regulator of tricarboxylic acid cycle activity in Staphylococcus aureus. J Biol Chem 288:36116–36128 http://dx.doi.org/10.1074/jbc.M113.516302. [CrossRef]
94. Li H, Ding Y, Lan L. 2015. Transcriptional profiling of CcpE-regulated genes in Staphylococcus aureus. Genom Data 5:157–158 http://dx.doi.org/10.1016/j.gdata.2015.06.005. [CrossRef]
95. Hartmann T, Baronian G, Nippe N, Voss M, Schulthess B, Wolz C, Eisenbeis J, Schmidt-Hohagen K, Gaupp R, Sunderkötter C, Beisswenger C, Bals R, Somerville GA, Herrmann M, Molle V, Bischoff M. 2014. The catabolite control protein E (CcpE) affects virulence determinant production and pathogenesis of Staphylococcus aureus. J Biol Chem 289:29701–29711 http://dx.doi.org/10.1074/jbc.M114.584979. [CrossRef]
96. Zhu Y, Nandakumar R, Sadykov MR, Madayiputhiya N, Luong TT, Gaupp R, Lee CY, Somerville GA. 2011. RpiR homologues may link Staphylococcus aureus RNAIII synthesis and pentose phosphate pathway regulation. J Bacteriol 193:6187–6196 http://dx.doi.org/10.1128/JB.05930-11. [CrossRef]
97. Gaupp R, Wirf J, Wonnenberg B, Biegel T, Eisenbeis J, Graham J, Herrmann M, Lee CY, Beisswenger C, Wolz C, Tschernig T, Bischoff M, Somerville GA. 2016. RpiRc is a pleiotropic effector of virulence determinant synthesis and attenuates pathogenicity in Staphylococcus aureus. Infect Immun 84:2031–2041 http://dx.doi.org/10.1128/IAI.00285-16. [PubMed][CrossRef]
98. Balasubramanian D, Ohneck EA, Chapman J, Weiss A, Kim MK, Reyes-Robles T, Zhong J, Shaw LN, Lun DS, Ueberheide B, Shopsin B, Torres VJ. 2016. Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. MBio 7:e00818–16 http://dx.doi.org/10.1128/mBio.00818-16. [PubMed][CrossRef]
99. Geiger T, Wolz C. 2014. Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria. Int J Med Microbiol 304:150–155 http://dx.doi.org/10.1016/j.ijmm.2013.11.013. [PubMed][CrossRef]
100. Waters NR, Samuels DJ, Behera RK, Livny J, Rhee KY, Sadykov MR, Brinsmade SR. 2016. A spectrum of CodY activities drives metabolic reorganization and virulence gene expression in Staphylococcus aureus. Mol Microbiol 101:495–514 http://dx.doi.org/10.1111/mmi.13404. [PubMed][CrossRef]
101. Roux A, Todd DA, Velázquez JV, Cech NB, Sonenshein AL. 2014. CodY-mediated regulation of the Staphylococcus aureus Agr system integrates nutritional and population density signals. J Bacteriol 196:1184–1196 http://dx.doi.org/10.1128/JB.00128-13. [CrossRef]
102. Montgomery CP, Boyle-Vavra S, Roux A, Ebine K, Sonenshein AL, Daum RS. 2012. CodY deletion enhances in vivo virulence of community-associated methicillin-resistant Staphylococcus aureus clone USA300. Infect Immun 80:2382–2389 http://dx.doi.org/10.1128/IAI.06172-11. [CrossRef]
103. Atwood DN, Loughran AJ, Courtney AP, Anthony AC, Meeker DG, Spencer HJ, Gupta RK, Lee CY, Beenken KE, Smeltzer MS. 2015. Comparative impact of diverse regulatory loci on Staphylococcus aureus biofilm formation. MicrobiologyOpen 4:436–451 http://dx.doi.org/10.1002/mbo3.250. [CrossRef]
104. Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz TL, Smeltzer MS. 2017. Impact of Staphylococcus aureus regulatory mutations that modulate biofilm formation in the USA300 strain LAC on virulence in a murine bacteremia model. Virulence 8:1776–1790 http://dx.doi.org/10.1080/21505594.2017.1373926. [CrossRef]
105. Pagels M, Fuchs S, Pané-Farré J, Kohler C, Menschner L, Hecker M, McNamarra PJ, Bauer MC, von Wachenfeldt C, Liebeke M, Lalk M, Sander G, von Eiff C, Proctor RA, Engelmann S. 2010. Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus. Mol Microbiol 76:1142–1161 http://dx.doi.org/10.1111/j.1365-2958.2010.07105.x. [CrossRef]
106. Gunsalus RP, Park SJ. 1994. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 145:437–450 http://dx.doi.org/10.1016/0923-2508(94)90092-2. [PubMed][CrossRef]
107. Kohler C, von Eiff C, Liebeke M, McNamara PJ, Lalk M, Proctor RA, Hecker M, Engelmann S. 2008. A defect in menadione biosynthesis induces global changes in gene expression in Staphylococcus aureus. J Bacteriol 190:6351–6364 http://dx.doi.org/10.1128/JB.00505-08. [CrossRef]
108. Ulrich M, Bastian M, Cramton SE, Ziegler K, Pragman AA, Bragonzi A, Memmi G, Wolz C, Schlievert PM, Cheung A, Döring G. 2007. The staphylococcal respiratory response regulator SrrAB induces ica gene transcription and polysaccharide intercellular adhesin expression, protecting Staphylococcus aureus from neutrophil killing under anaerobic growth conditions. Mol Microbiol 65:1276–1287 http://dx.doi.org/10.1111/j.1365-2958.2007.05863.x. [CrossRef]
109. Windham IH, Chaudhari SS, Bose JL, Thomas VC, Bayles KW. 2016. SrrAB modulates Staphylococcus aureus cell death through regulation of cidABC transcription. J Bacteriol 198:1114–1122 http://dx.doi.org/10.1128/JB.00954-15. [CrossRef]
110. Mashruwala AA, Guchte AV, Boyd JM. 2017. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus. eLife 6:569 http://dx.doi.org/10.7554/eLife.23845. [CrossRef]
111. Kinkel TL, Roux CM, Dunman PM, Fang FC. 2013. The Staphylococcus aureus SrrAB two-component system promotes resistance to nitrosative stress and hypoxia. MBio 4:e00696–13 http://dx.doi.org/10.1128/mBio.00696-13. [PubMed][CrossRef]
112. Richardson AR, Dunman PM, Fang FC. 2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61:927–939 http://dx.doi.org/10.1111/j.1365-2958.2006.05290.x. [CrossRef]
113. Pragman AA, Yarwood JM, Tripp TJ, Schlievert PM. 2004. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. J Bacteriol 186:2430–2438 http://dx.doi.org/10.1128/JB.186.8.2430-2438.2004. [CrossRef]
114. Grosser MR, Weiss A, Shaw LN, Richardson AR. 2016. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol 198:2043–2055 http://dx.doi.org/10.1128/JB.00229-16. [CrossRef]
115. Mashruwala AA, Boyd JM. 2017. The Staphylococcus aureus SrrAB regulatory system modulates hydrogen peroxide resistance factors, which imparts protection to aconitase during aerobic growth. PLoS One 12:e0170283 http://dx.doi.org/10.1371/journal.pone.0170283. [PubMed][CrossRef]
116. Wilde AD, Snyder DJ, Putnam NE, Valentino MD, Hammer ND, Lonergan ZR, Hinger SA, Aysanoa EE, Blanchard C, Dunman PM, Wasserman GA, Chen J, Shopsin B, Gilmore MS, Skaar EP, Cassat JE. 2015. Bacterial hypoxic responses revealed as critical determinants of the host-pathogen outcome by TnSeq analysis of Staphylococcus aureus invasive infection. PLoS Pathog 11:e1005341 http://dx.doi.org/10.1371/journal.ppat.1005341. [PubMed][CrossRef]
117. Jenul C, Horswill AR. 2018. Regulation of Staphylococcus aureus Virulence. Microbiol Spectrum in press. [CrossRef]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0011-2018
2019-04-26
2019-09-19

Abstract:

is clearly the most pathogenic member of the . This is in large part due to the acquisition of an impressive arsenal of virulence factors that are coordinately regulated by a series of dedicated transcription factors. What is becoming more and more appreciated in the field is the influence of the metabolic state of on the activity of these virulence regulators and their roles in modulating metabolic gene expression. Here I highlight recent advances in metabolism as it pertains to virulence. Specifically, mechanisms of nutrient acquisition are outlined including carbohydrate and non-carbohydrate carbon/energy sources as well as micronutrient (Fe, Mn, Zn and S) acquisition. Additionally, energy producing strategies (respiration versus fermentation) are discussed and put in the context of pathogenesis. Finally, transcriptional regulators that coordinate metabolic gene expression are outlined, particularly those that affect the activities of major virulence factor regulators. This chapter essentially connects many recent observations that link the metabolism of to its overall pathogenesis and hints that the mere presence of a plethora of virulence factors may not entirely explain the extraordinary pathogenic potential of .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Biosynthetic pathway for bacillithiol in . The major low-molecular-weight thiol in is bacillithiol, which is synthesized from UDP-GlcNAc, malate, and cysteine by BshABC. In , the genes encoding these biosynthetic pathways are not linked in a discreet operon but are located individually throughout the genome.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0011-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Branched respiratory scheme in . The left side lists all of the known/putative quinone-oxidoreductases in along with their substrates. Electrons are passed via these enzymes to the menaquinone pool and then to one of many terminal oxidases (right side with substrates). While most organisms possess QoxBACD, CydAB, and NarGHJI, NorB seems to be limited to strains in clonal complex 30 (e.g., UAMS-1 and MRSA252).

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0011-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Loss of cytochrome C synthesis while retaining SrrAB. In other , SrrAB homologues (termed ResDE) are encoded in the same operon as ResABC, which are involved in cytochrome c biosynthesis. Across most staphylococci, the genes are missing, while () the two-component system was retained.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0011-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Dehydrogenases of

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0011-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error