1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Sporulation and Germination in Clostridial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Aimee Shen1, Adrianne N. Edwards2, Mahfuzur R. Sarker3,4, Daniel Paredes-Sabja5
  • Editors: Vincent A. Fischetti6, Richard P. Novick7, Joseph J. Ferretti8, Daniel A. Portnoy9, Miriam Braunstein10, Julian I. Rood11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Biology and Microbiology, Tufts University Medical School, Boston, MA; 2: Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA; 3: Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR; 4: Department of Microbiology, College of Science, Oregon State University, Corvallis, OR; 5: Department of Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biolo gicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile; 6: The Rockefeller University, New York, NY; 7: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 8: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 9: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 10: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 11: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
  • Received 10 April 2018 Accepted 11 April 2018 Published 19 December 2019
  • Aimee Shen, [email protected]
image of Sporulation and Germination in Clostridial Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Sporulation and Germination in Clostridial Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/6/GPP3-0017-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/6/GPP3-0017-2018-2.gif
  • Abstract:

    As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in and , striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically , , and , induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.

  • Citation: Shen A, Edwards A, Sarker M, Paredes-Sabja D. 2019. Sporulation and Germination in Clostridial Pathogens. Microbiol Spectrum 7(6):GPP3-0017-2018. doi:10.1128/microbiolspec.GPP3-0017-2018.

References

1. Yutin N, Galperin MY. 2013. A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15:2631–2641. [PubMed]
2. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE, Seth-Smith HM, Quail MA, Rance R, Brooks K, Churcher C, Harris D, Bentley SD, Burrows C, Clark L, Corton C, Murray V, Rose G, Thurston S, van Tonder A, Walker D, Wren BW, Dougan G, Parkhill J. 2010. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A 107:7527–7532 http://dx.doi.org/10.1073/pnas.0914322107. [PubMed]
3. Miyamoto K, Li J, McClane BA. 2012. Enterotoxigenic Clostridium perfringens: detection and identification. Microbes Environ 27:343–349 http://dx.doi.org/10.1264/jsme2.ME12002.[PubMed]
4. Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT. 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16:1031–1040 http://dx.doi.org/10.1101/gr.5238106. [PubMed]
5. Smith TJ, Hill KK, Raphael BH. 2015. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 166:290–302 http://dx.doi.org/10.1016/j.resmic.2014.09.007.
6. Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD. 2012. The Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 80:2704–2711 http://dx.doi.org/10.1128/IAI.00147-12. [PubMed]
7. Setlow P. 2014. Spore resistance properties. Microbiol Spectr 2:TBS-0003-2012. doi:10.1128/microbiolspec.TBS-0003-2012. [PubMed]
8. Swick MC, Koehler TM, Driks A. 2016. Surviving between hosts: sporulation and transmission. Microbiol Spectr 4:VMBF-0029-2015.
9. Stevens DL, Aldape MJ, Bryant AE. 2012. Life-threatening clostridial infections. Anaerobe 18:254–259 http://dx.doi.org/10.1016/j.anaerobe.2011.11.001. [PubMed]
10. Li J, Paredes-Sabja D, Sarker MR, McClane BA. 2016. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4:TBS-0022-2015. doi:10.1128/microbiolspec.TBS-0022-2015. [PubMed]
11. Deguchi A, Miyamoto K, Kuwahara T, Miki Y, Kaneko I, Li J, McClane BA, Akimoto S. 2009. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One 4:e5598 http://dx.doi.org/10.1371/journal.pone.0005598. [PubMed]
12. Li J, McClane BA. 2006. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol 72:4561–4568 http://dx.doi.org/10.1128/AEM.00177-06. [PubMed]
13. Sarker MR, Shivers RP, Sparks SG, Juneja VK, McClane BA. 2000. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl Environ Microbiol 66:3234–3240 http://dx.doi.org/10.1128/AEM.66.8.3234-3240.2000. [PubMed]
14. Peck MW. 2009. Biology and genomic analysis of Clostridium botulinum. Adv Microb Physiol 55:183–265, 320 http://dx.doi.org/10.1016/S0065-2911(09)05503-9.
15. Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. 2017. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel) 9:E38 http://dx.doi.org/10.3390/toxins9010038. [PubMed]
16. Grabowski NT, Klein G. 2017. Microbiology and foodborne pathogens in honey. Crit Rev Food Sci Nutr 57:1852–1862. [PubMed]
17. Dahlsten E, Lindström M, Korkeala H. 2015. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum. Res Microbiol 166:344–352 http://dx.doi.org/10.1016/j.resmic.2014.09.011. [PubMed]
18. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC. 2015. Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834 http://dx.doi.org/10.1056/NEJMoa1408913. [PubMed]
19. Nagy E. 2018. What do we know about the diagnostics, treatment and epidemiology of Clostridioides (Clostridium) difficile infection in Europe? J Infect Chemother 24:164–170 http://dx.doi.org/10.1016/j.jiac.2017.12.003. [PubMed]
20. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. 2016. Clostridium difficile infection. Nat Rev Dis Primers 2:16020 http://dx.doi.org/10.1038/nrdp.2016.20. [PubMed]
21. Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Z Li J, Young VB. 2014. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114 http://dx.doi.org/10.1038/ncomms4114. [PubMed]
22. Edwards AN, Karim ST, Pascual RA, Jowhar LM, Anderson SE, McBride SM. 2016. Chemical and stress resistances of Clostridium difficile spores and vegetative cells. Front Microbiol 7:1698 http://dx.doi.org/10.3389/fmicb.2016.01698. [PubMed]
23. Lawley TD, Clare S, Deakin LJ, Goulding D, Yen JL, Raisen C, Brandt C, Lovell J, Cooke F, Clark TG, Dougan G. 2010. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl Environ Microbiol 76:6895–6900 http://dx.doi.org/10.1128/AEM.00718-10. [PubMed]
24. Jou J, Ebrahim J, Shofer FS, Hamilton KW, Stern J, Han JH, Program CDCPE, CDC Prevention Epicenters Program. 2015. Environmental transmission of Clostridium difficile: association between hospital room size and C. difficile infection. Infect Control Hosp Epidemiol 36:564–568 http://dx.doi.org/10.1017/ice.2015.18. [PubMed]
25. Tan IS, Ramamurthi KS. 2014. Spore formation in Bacillus subtilis. Environ Microbiol Rep 6:212–225 http://dx.doi.org/10.1111/1758-2229.12130. [PubMed]
26. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525 http://dx.doi.org/10.1111/j.1365-2672.2005.02736.x. [PubMed]
27. Imae Y, Strominger JL. 1976. Cortex content of asporogenous mutants of Bacillus subtilis. J Bacteriol 126:914–918. [PubMed]
28. Setlow P, Wang S, Li YQ. 2017. Germination of spores of the orders Bacillales and Clostridiales. Annu Rev Microbiol 71:459–477 http://dx.doi.org/10.1146/annurev-micro-090816-093558. [PubMed]
29. Huang IH, Waters M, Grau RR, Sarker MR. 2004. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233:233–240 http://dx.doi.org/10.1111/j.1574-6968.2004.tb09487.x. [PubMed]
30. Mascher G, Mertaoja A, Korkeala H, Lindström M. 2017. Neurotoxin synthesis is positively regulated by the sporulation transcription factor Spo0A in Clostridium botulinum type E. Environ Microbiol 19:4287–4300 http://dx.doi.org/10.1111/1462-2920.13892. [PubMed]
31. Rosenbusch KE, Bakker D, Kuijper EJ, Smits WK. 2012. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PLoS One 7:e48608 http://dx.doi.org/10.1371/journal.pone.0048608. [PubMed]
32. Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Wilcox MH, Stephenson K. 2009. Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 191:7296–7305 http://dx.doi.org/10.1128/JB.00882-09. [PubMed]
33. Wörner K, Szurmant H, Chiang C, Hoch JA. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol Microbiol 59:1000–1012 http://dx.doi.org/10.1111/j.1365-2958.2005.04988.x. [PubMed]
34. Green BD, Olmedo G, Youngman P. 1991. A genetic analysis of Spo0A structure and function. Res Microbiol 142:825–830 http://dx.doi.org/10.1016/0923-2508(91)90061-E.
35. Sonenshein AL. 2000. Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3:561–566 http://dx.doi.org/10.1016/S1369-5274(00)00141-7.
36. Burbulys D, Trach KA, Hoch JA. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552 http://dx.doi.org/10.1016/0092-8674(91)90238-T.
37. Perego M, Hanstein C, Welsh KM, Djavakhishvili T, Glaser P, Hoch JA. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell 79:1047–1055 http://dx.doi.org/10.1016/0092-8674(94)90035-3.
38. Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS, Losick RM. 2010. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 107:8486–8491 http://dx.doi.org/10.1073/pnas.1002499107. [PubMed]
39. Mirouze N, Prepiak P, Dubnau D. 2011. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis. PLoS Genet 7:e1002048 http://dx.doi.org/10.1371/journal.pgen.1002048. [PubMed]
40. Russell JR, Cabeen MT, Wiggins PA, Paulsson J, Losick R. 2017. Noise in a phosphorelay drives stochastic entry into sporulation in Bacillus subtilis. EMBO J 36:2856–2869 http://dx.doi.org/10.15252/embj.201796988. [PubMed]
41. Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ. 2012. Genomic determinants of sporulation in bacilli and clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 14:2870–2890 http://dx.doi.org/10.1111/j.1462-2920.2012.02841.x. [PubMed]
42. Paredes CJ, Alsaker KV, Papoutsakis ET. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978 http://dx.doi.org/10.1038/nrmicro1288. [PubMed]
43. Dürre P, Hollergschwandner C. 2004. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10:69–74 http://dx.doi.org/10.1016/j.anaerobe.2003.11.001. [PubMed]
44. Mearls EB, Lynd LR. 2014. The identification of four histidine kinases that influence sporulation in Clostridium thermocellum. Anaerobe 28:109–119 http://dx.doi.org/10.1016/j.anaerobe.2014.06.004. [PubMed]
45. Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M. 2011. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 80:641–654 http://dx.doi.org/10.1111/j.1365-2958.2011.07608.x. [PubMed]
46. Stephenson K, Lewis RJ. 2005. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol Rev 29:281–301 http://dx.doi.org/10.1016/j.fmrre.2004.10.003. [PubMed]
47. Childress KO, Edwards AN, Nawrocki KL, Anderson SE, Woods EC, McBride SM. 2016. The phosphotransfer protein CD1492 represses sporulation initiation in Clostridium difficile. Infect Immun 84:3434–3444 http://dx.doi.org/10.1128/IAI.00735-16. [PubMed]
48. Aguilar C, Vlamakis H, Guzman A, Losick R, Kolter R. 2010. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. MBio 1:e00035-10 http://dx.doi.org/10.1128/mBio.00035-10. [PubMed]
49. Jiang M, Shao W, Perego M, Hoch JA. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542 http://dx.doi.org/10.1046/j.1365-2958.2000.02148.x. [PubMed]
50. Edwards AN, McBride SM. 2017. Determination of the in vitro sporulation frequency of Clostridium difficile. Bio Protoc 7:e2125 http://dx.doi.org/10.21769/BioProtoc.2125. [PubMed]
51. Edwards AN, Tamayo R, McBride SM. 2016. A novel regulator controls Clostridium difficile sporulation, motility and toxin production. Mol Microbiol 100:954–971 http://dx.doi.org/10.1111/mmi.13361. [PubMed]
52. Neiditch MB, Capodagli GC, Prehna G, Federle MJ. 2017. Genetic and structural analyses of RRNPP intercellular peptide signaling of Gram-positive bacteria. Annu Rev Genet 51:311–333 http://dx.doi.org/10.1146/annurev-genet-120116-023507. [PubMed]
53. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M. 2010. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol 87:913–923 http://dx.doi.org/10.1007/s00253-010-2651-y. [PubMed]
54. Kotte A, Severn O, Bean Z, Schwarz K, Minton NP, Winzer K. 2017. RNPP-type quorum sensing regualtes solvent formation and sporulation in Clostridium acetobutylicum. bioRxiv https://doi.org/10.1101/106666.
55. Edwards AN, Nawrocki KL, McBride SM. 2014. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile. Infect Immun 82:4276–4291 http://dx.doi.org/10.1128/IAI.02323-14. [PubMed]
56. Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B. 2012. Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acids Res 40:10701–10718 http://dx.doi.org/10.1093/nar/gks864. [PubMed]
57. Antunes A, Martin-Verstraete I, Dupuy B. 2011. CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 79:882–899 http://dx.doi.org/10.1111/j.1365-2958.2010.07495.x. [PubMed]
58. Dineen SS, McBride SM, Sonenshein AL. 2010. Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 192:5350–5362 http://dx.doi.org/10.1128/JB.00341-10. [PubMed]
59. Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL. 2007. Repression of Clostridium difficile toxin gene expression by CodY. Mol Microbiol 66:206–219 http://dx.doi.org/10.1111/j.1365-2958.2007.05906.x. [PubMed]
60. Girinathan BP, Ou J, Dupuy B, Govind R. 2018. Pleiotropic roles of Clostridium difficile sin locus. PLoS Pathog 14:e1006940 http://dx.doi.org/10.1371/journal.ppat.1006940. [PubMed]
61. Nawrocki KL, Edwards AN, Daou N, Bouillaut L, McBride SM. 2016. CodY-dependent regulation of sporulation in Clostridium difficile. J Bacteriol 198:2113–2130 http://dx.doi.org/10.1128/JB.00220-16. [PubMed]
62. Kint N, Janoir C, Monot M, Hoys S, Soutourina O, Dupuy B, Martin-Verstraete I. 2017. The alternative sigma factor σ B plays a crucial role in adaptive strategies of Clostridium difficile during gut infection. Environ Microbiol 19:1933–1958 http://dx.doi.org/10.1111/1462-2920.13696. [PubMed]
63. Edwards AN, McBride SM. 2014. Initiation of sporulation in Clostridium difficile: a twist on the classic model. FEMS Microbiol Lett 358:110–118 http://dx.doi.org/10.1111/1574-6968.12499. [PubMed]
64. Janoir C, Denève C, Bouttier S, Barbut F, Hoys S, Caleechum L, Chapetón-Montes D, Pereira FC, Henriques AO, Collignon A, Monot M, Dupuy B. 2013. Adaptive strategies and pathogenesis of Clostridium difficile from in vivo transcriptomics. Infect Immun 81:3757–3769 http://dx.doi.org/10.1128/IAI.00515-13. [PubMed]
65. Harry KH, Zhou R, Kroos L, Melville SB. 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J Bacteriol 191:2728–2742 http://dx.doi.org/10.1128/JB.01839-08. [PubMed]
66. Li J, Chen J, Vidal JE, McClane BA. 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79:2451–2459 http://dx.doi.org/10.1128/IAI.00169-11. [PubMed]
67. Li J, Freedman JC, Evans DR, McClane BA. 2017. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect Immun 85:85 http://dx.doi.org/10.1128/IAI.00855-16. [PubMed]
68. Varga J, Stirewalt VL, Melville SB. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene ( cpe) regulation in Clostridium perfringens. J Bacteriol 186:5221–5229 http://dx.doi.org/10.1128/JB.186.16.5221-5229.2004. [PubMed]
69. Li J, Ma M, Sarker MR, McClane BA. 2013. CodY is a global regulator of virulence-associated properties for Clostridium perfringens type D strain CN3718. MBio 4:e00770-13 http://dx.doi.org/10.1128/mBio.00770-13. [PubMed]
70. Ohtani K, Hirakawa H, Paredes-Sabja D, Tashiro K, Kuhara S, Sarker MR, Shimizu T. 2013. Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens. J Bacteriol 195:2931–2936 http://dx.doi.org/10.1128/JB.02152-12. [PubMed]
71. Talukdar PK, Olguín-Araneda V, Alnoman M, Paredes-Sabja D, Sarker MR. 2015. Updates on the sporulation process in Clostridium species. Res Microbiol 166:225–235 http://dx.doi.org/10.1016/j.resmic.2014.12.001. [PubMed]
72. Yasugi M, Okuzaki D, Kuwana R, Takamatsu H, Fujita M, Sarker MR, Miyake M. 2016. Transcriptional profile during deoxycholate-induced sporulation in a Clostridium perfringens isolate causing foodborne illness. Appl Environ Microbiol 82:2929–2942 http://dx.doi.org/10.1128/AEM.00252-16. [PubMed]
73. Philippe VA, Méndez MB, Huang IH, Orsaria LM, Sarker MR, Grau RR. 2006. Inorganic phosphate induces spore morphogenesis and enterotoxin production in the intestinal pathogen Clostridium perfringens. Infect Immun 74:3651–3656 http://dx.doi.org/10.1128/IAI.02090-05. [PubMed]
74. Kirk DG, Dahlsten E, Zhang Z, Korkeala H, Lindström M. 2012. Involvement of Clostridium botulinum ATCC 3502 sigma factor K in early-stage sporulation. Appl Environ Microbiol 78:4590–4596 http://dx.doi.org/10.1128/AEM.00304-12. [PubMed]
75. Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP. 2010. Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76:4448–4460 http://dx.doi.org/10.1128/AEM.03038-09. [PubMed]
76. Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D. 2013. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile. PLoS One 8:e79666 http://dx.doi.org/10.1371/journal.pone.0079666. [PubMed]
77. Collie RE, McClane BA. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 36:30–36. [PubMed]
78. Sparks SG, Carman RJ, Sarker MR, McClane BA. 2001. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J Clin Microbiol 39:883–888 http://dx.doi.org/10.1128/JCM.39.3.883-888.2001. [PubMed]
79. Collie RE, Kokai-Kun JF, McClane BA. 1998. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 4:69–79 http://dx.doi.org/10.1006/anae.1998.0152. [PubMed]
80. Czeczulin JR, Collie RE, McClane BA. 1996. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Infect Immun 64:3301–3309. [PubMed]
81. Duncan CL, Strong DH, Sebald M. 1972. Sporulation and enterotoxin production by mutants of Clostridium perfringens. J Bacteriol 110:378–391. [PubMed]
82. Kokai-Kun JF, Songer JG, Czeczulin JR, Chen F, McClane BA. 1994. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J Clin Microbiol 32:2533–2539. [PubMed]
83. Zhao Y, Melville SB. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene ( cpe) of Clostridium perfringens. J Bacteriol 180:136–142. [PubMed]
84. McClane BA, Robertson SL, Li J (ed). 2013. Clostridium Perfringens. ASM Press, Washington, DC.
85. Al-Hinai MA, Jones SW, Papoutsakis ET. 2015. The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79:19–37 http://dx.doi.org/10.1128/MMBR.00025-14. [PubMed]
86. Li J, McClane BA. 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 78:4286–4293 http://dx.doi.org/10.1128/IAI.00528-10. [PubMed]
87. Raju D, Sarker MR. 2005. Comparison of the levels of heat resistance of wild-type, cpe knockout, and cpe plasmid-cured Clostridium perfringens type A strains. Appl Environ Microbiol 71:7618–7620 http://dx.doi.org/10.1128/AEM.71.11.7618-7620.2005. [PubMed]
88. Schirmer J, Aktories K. 2004. Large clostridial cytotoxins: cellular biology of Rho/Ras-glucosylating toxins. Biochim Biophys Acta 1673:66–74 http://dx.doi.org/10.1016/j.bbagen.2004.03.014. [PubMed]
89. Chalmers G, Bruce HL, Hunter DB, Parreira VR, Kulkarni RR, Jiang YF, Prescott JF, Boerlin P. 2008. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. J Clin Microbiol 46:3957–3964 http://dx.doi.org/10.1128/JCM.01548-08. [PubMed]
90. Gurjar A, Li J, McClane BA. 2010. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 78:4860–4869 http://dx.doi.org/10.1128/IAI.00715-10. [PubMed]
91. Sayeed S, Li J, McClane BA. 2010. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 78:495–504 http://dx.doi.org/10.1128/IAI.00838-09. [PubMed]
92. Paredes-Sabja D, Sarker N, Sarker MR. 2011. Clostridium perfringens tpeL is expressed during sporulation. Microb Pathog 51:384–388 http://dx.doi.org/10.1016/j.micpath.2011.05.006. [PubMed]
93. Carter GP, Larcombe S, Li L, Jayawardena D, Awad MM, Songer JG, Lyras D. 2014. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int J Med Microbiol 304:1147–1159 http://dx.doi.org/10.1016/j.ijmm.2014.08.008. [PubMed]
94. Hielm S, Hyytiä E, Andersin AB, Korkeala H. 1998. A high prevalence of Clostridium botulinum type E in Finnish freshwater and Baltic Sea sediment samples. J Appl Microbiol 84:133–137 http://dx.doi.org/10.1046/j.1365-2672.1997.00331.x. [PubMed]
95. Leclair D, Farber JM, Doidge B, Blanchfield B, Suppa S, Pagotto F, Austin JW. 2013. Distribution of Clostridium botulinum type E strains in Nunavik, Northern Quebec, Canada. Appl Environ Microbiol 79:646–654 http://dx.doi.org/10.1128/AEM.05999-11.
96. Marvaud JC, Gibert M, Inoue K, Fujinaga Y, Oguma K, Popoff MR. 1998. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol Microbiol 29:1009–1018 http://dx.doi.org/10.1046/j.1365-2958.1998.00985.x. [PubMed]
97. Carter GP, Rood JI, Lyras D. 2010. The role of toxin A and toxin B in Clostridium difficile-associated disease: past and present perspectives. Gut Microbes 1:58–64 http://dx.doi.org/10.4161/gmic.1.1.10768. [PubMed]
98. Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP. 2010. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713 http://dx.doi.org/10.1038/nature09397. [PubMed]
99. Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, Poon R, Adams V, Vedantam G, Johnson S, Gerding DN, Rood JI. 2009. Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179 http://dx.doi.org/10.1038/nature07822. [PubMed]
100. Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP, Barquist L, Martin MJ, Goulding D, Duncan SH, Flint HJ, Dougan G, Choudhary JS, Lawley TD. 2014. Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics 15:160 http://dx.doi.org/10.1186/1471-2164-15-160. [PubMed]
101. Saujet L, Monot M, Dupuy B, Soutourina O, Martin-Verstraete I. 2011. The key sigma factor of transition phase, SigH, controls sporulation, metabolism, and virulence factor expression in Clostridium difficile. J Bacteriol 193:3186–3196 http://dx.doi.org/10.1128/JB.00272-11. [PubMed]
102. Karlsson S, Burman LG, Akerlund T. 1999. Suppression of toxin production in Clostridium difficile VPI 10463 by amino acids. Microbiology 145:1683–1693 http://dx.doi.org/10.1099/13500872-145-7-1683. [PubMed]
103. Mani N, Dupuy B. 2001. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci U S A 98:5844–5849 http://dx.doi.org/10.1073/pnas.101126598. [PubMed]
104. El Meouche I, Peltier J, Monot M, Soutourina O, Pestel-Caron M, Dupuy B, Pons JL. 2013. Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR. PLoS One 8:e83748 http://dx.doi.org/10.1371/journal.pone.0083748. [PubMed]
105. McKee RW, Mangalea MR, Purcell EB, Borchardt EK, Tamayo R. 2013. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J Bacteriol 195:5174–5185 http://dx.doi.org/10.1128/JB.00501-13. [PubMed]
106. Girinathan BP, Monot M, Boyle D, McAllister KN, Sorg JA, Dupuy B, Govind R. 2017. Effect of tcdR mutation on sporulation in the epidemic Clostridium difficile strain R20291. MSphere 2:e00383-16 http://dx.doi.org/10.1128/mSphere.00383-16. [PubMed]
107. Fimlaid KA, Shen A. 2015. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 24:88–95 http://dx.doi.org/10.1016/j.mib.2015.01.006. [PubMed]
108. Losick R, Stragier P. 1992. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355:601–604 http://dx.doi.org/10.1038/355601a0. [PubMed]
109. Eswaramoorthy P, Winter PW, Wawrzusin P, York AG, Shroff H, Ramamurthi KS. 2014. Asymmetric division and differential gene expression during a bacterial developmental program requires DivIVA. PLoS Genet 10:e1004526 http://dx.doi.org/10.1371/journal.pgen.1004526. [PubMed]
110. Feucht A, Magnin T, Yudkin MD, Errington J. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev 10:794–803 http://dx.doi.org/10.1101/gad.10.7.794. [PubMed]
111. Duncan L, Alper S, Arigoni F, Losick R, Stragier P. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641–644 http://dx.doi.org/10.1126/science.270.5236.641. [PubMed]
112. Hofmeister AE, Londoño-Vallejo A, Harry E, Stragier P, Losick R. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83:219–226 http://dx.doi.org/10.1016/0092-8674(95)90163-9.
113. Karow ML, Glaser P, Piggot PJ. 1995. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 92:2012–2016 http://dx.doi.org/10.1073/pnas.92.6.2012. [PubMed]
114. Londoño-Vallejo JA, Stragier P. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev 9:503–508 http://dx.doi.org/10.1101/gad.9.4.503.
115. Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J, González-Pastor JE, Fujita M, Ben-Yehuda S, Stragier P, Liu JS, Losick R. 2003. The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327:945–972 http://dx.doi.org/10.1016/S0022-2836(03)00205-5.
116. Frandsen N, Stragier P. 1995. Identification and characterization of the Bacillus subtilis spoIIP locus. J Bacteriol 177:716–722 http://dx.doi.org/10.1128/jb.177.3.716-722.1995. [PubMed]
117. Lopez-Diaz I, Clarke S, Mandelstam J. 1986. spoIID operon of Bacillus subtilis: cloning and sequence. J Gen Microbiol 132:341–354.
118. Smith K, Bayer ME, Youngman P. 1993. Physical and functional characterization of the Bacillus subtilis spoIIM gene. J Bacteriol 175:3607–3617 http://dx.doi.org/10.1128/jb.175.11.3607-3617.1993. [PubMed]
119. Driks A, Eichenberger P. 2016. The spore coat. Microbiol Spectr 4:TBS-0023-2016.
120. Camp AH, Losick R. 2008. A novel pathway of intercellular signalling in Bacillus subtilis involves a protein with similarity to a component of type III secretion channels. Mol Microbiol 69:402–417 http://dx.doi.org/10.1111/j.1365-2958.2008.06289.x. [PubMed]
121. Kroos L, Kunkel B, Losick R. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526–529 http://dx.doi.org/10.1126/science.2492118. [PubMed]
122. Kunkel B, Kroos L, Poth H, Youngman P, Losick R. 1989. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. Genes Dev 3:1735–1744 http://dx.doi.org/10.1101/gad.3.11.1735. [PubMed]
123. Lu S, Cutting S, Kroos L. 1995. Sporulation protein SpoIVFB from Bacillus subtilis enhances processing of the sigma factor precursor Pro-sigma K in the absence of other sporulation gene products. J Bacteriol 177:1082–1085 http://dx.doi.org/10.1128/jb.177.4.1082-1085.1995. [PubMed]
124. Pan Q, Losick R, Rudner DZ. 2003. A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J Bacteriol 185:6051–6056 http://dx.doi.org/10.1128/JB.185.20.6051-6056.2003. [PubMed]
125. Cutting S, Roels S, Losick R. 1991. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J Mol Biol 221:1237–1256 http://dx.doi.org/10.1016/0022-2836(91)90931-U.
126. Camp AH, Losick R. 2009. A feeding tube model for activation of a cell-specific transcription factor during sporulation in Bacillus subtilis. Genes Dev 23:1014–1024 http://dx.doi.org/10.1101/gad.1781709. [PubMed]
127. Doan T, Morlot C, Meisner J, Serrano M, Henriques AO, Moran CP Jr, Rudner DZ. 2009. Novel secretion apparatus maintains spore integrity and developmental gene expression in Bacillus subtilis. PLoS Genet 5:e1000566 http://dx.doi.org/10.1371/journal.pgen.1000566. [PubMed]
128. Meisner J, Wang X, Serrano M, Henriques AO, Moran CP Jr. 2008. A channel connecting the mother cell and forespore during bacterial endospore formation. Proc Natl Acad Sci U S A 105:15100–15105 http://dx.doi.org/10.1073/pnas.0806301105. [PubMed]
129. Rodrigues CD, Ramírez-Guadiana FH, Meeske AJ, Wang X, Rudner DZ. 2016. GerM is required to assemble the basal platform of the SpoIIIA-SpoIIQ transenvelope complex during sporulation in Bacillus subtilis. Mol Microbiol 102:260–273 http://dx.doi.org/10.1111/mmi.13457. [PubMed]
130. Flanagan KA, Comber JD, Mearls E, Fenton C, Wang Erickson AF, Camp AH. 2016. A membrane-embedded amino acid couples the SpoIIQ channel protein to anti-sigma factor transcriptional repression during Bacillus subtilis sporulation. J Bacteriol 198:1451–1463 http://dx.doi.org/10.1128/JB.00958-15. [PubMed]
131. Regan G, Itaya M, Piggot PJ. 2012. Coupling of σG activation to completion of engulfment during sporulation of Bacillus subtilis survives large perturbations to DNA translocation and replication. J Bacteriol 194:6264–6271 http://dx.doi.org/10.1128/JB.01470-12. [PubMed]
132. Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D, Sato T, Setlow P, Losick R, Eichenberger P. 2006. The forespore line of gene expression in Bacillus subtilis. J Mol Biol 358:16–37 http://dx.doi.org/10.1016/j.jmb.2006.01.059. [PubMed]
133. Fukushima T, Yamamoto H, Atrih A, Foster SJ, Sekiguchi J. 2002. A polysaccharide deacetylase gene ( pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184:6007–6015 http://dx.doi.org/10.1128/JB.184.21.6007-6015.2002. [PubMed]
134. Halberg R, Kroos L. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J Mol Biol 243:425–436 http://dx.doi.org/10.1006/jmbi.1994.1670. [PubMed]
135. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2:e328 http://dx.doi.org/10.1371/journal.pbio.0020328. [PubMed]
136. de Hoon MJ, Eichenberger P, Vitkup D. 2010. Hierarchical evolution of the bacterial sporulation network. Curr Biol 20:R735–R745 http://dx.doi.org/10.1016/j.cub.2010.06.031. [PubMed]
137. Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A. 2013. Global analysis of the sporulation pathway of Clostridium difficile. PLoS Genet 9:e1003660 http://dx.doi.org/10.1371/journal.pgen.1003660. [PubMed]
138. Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I. 2013. Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 9:e1003756 http://dx.doi.org/10.1371/journal.pgen.1003756. [PubMed]
139. Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. 2013. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 9:e1003782 http://dx.doi.org/10.1371/journal.pgen.1003782. [PubMed]
140. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M, Lawley TD, Fairweather NF, Fagan RP. 2015. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. MBio 6:e02383 http://dx.doi.org/10.1128/mBio.02383-14. [PubMed]
141. Fimlaid KA, Jensen O, Donnelly ML, Siegrist MS, Shen A. 2015. Regulation of Clostridium difficile spore formation by the SpoIIQ and SpoIIIA proteins. PLoS Genet 11:e1005562 http://dx.doi.org/10.1371/journal.pgen.1005562. [PubMed]
142. Serrano M, Crawshaw AD, Dembek M, Monteiro JM, Pereira FC, Pinho MG, Fairweather NF, Salgado PS, Henriques AO. 2016. The SpoIIQ-SpoIIIAH complex of Clostridium difficile controls forespore engulfment and late stages of gene expression and spore morphogenesis. Mol Microbiol 100:204–228 http://dx.doi.org/10.1111/mmi.13311. [PubMed]
143. Haraldsen JD, Sonenshein AL. 2003. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol Microbiol 48:811–821 http://dx.doi.org/10.1046/j.1365-2958.2003.03471.x. [PubMed]
144. Pishdadian K, Fimlaid KA, Shen A. 2015. SpoIIID-mediated regulation of σK function during Clostridium difficile sporulation. Mol Microbiol 95:189–208 http://dx.doi.org/10.1111/mmi.12856. [PubMed]
145. Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, Henriques AO, Martin-Verstraete I. 2016. A recombination directionality factor controls the cell type-specific activation of σK and the fidelity of spore development in Clostridium difficile. PLoS Genet 12:e1006312 http://dx.doi.org/10.1371/journal.pgen.1006312. [PubMed]
146. Ichikawa H, Kroos L. 2000. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J Biol Chem 275:13849–13855 http://dx.doi.org/10.1074/jbc.275.18.13849. [PubMed]
147. Al-Hinai MA, Jones SW, Papoutsakis ET. 2014. σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation. J Bacteriol 196:287–299 http://dx.doi.org/10.1128/JB.01103-13. [PubMed]
148. Kirk DG, Zhang Z, Korkeala H, Lindström M. 2014. Alternative sigma factors SigF, SigE, and SigG are essential for sporulation in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 80:5141–5150 http://dx.doi.org/10.1128/AEM.01015-14. [PubMed]
149. Hosomi K, Kuwana R, Takamatsu H, Kohda T, Kozaki S, Mukamoto M. 2015. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation. Anaerobe 33:55–63 http://dx.doi.org/10.1016/j.anaerobe.2015.01.012. [PubMed]
150. Meyer P, Gutierrez J, Pogliano K, Dworkin J. 2010. Cell wall synthesis is necessary for membrane dynamics during sporulation of Bacillus subtilis. Mol Microbiol 76:956–970 http://dx.doi.org/10.1111/j.1365-2958.2010.07155.x. [PubMed]
151. Ojkic N, López-Garrido J, Pogliano K, Endres RG. 2016. Cell-wall remodeling drives engulfment during Bacillus subtilis sporulation. eLife 5:e18657 http://dx.doi.org/10.7554/eLife.18657. [PubMed]
152. Morlot C, Uehara T, Marquis KA, Bernhardt TG, Rudner DZ. 2010. A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis. Genes Dev 24:411–422 http://dx.doi.org/10.1101/gad.1878110. [PubMed]
153. Gutierrez J, Smith R, Pogliano K. 2010. SpoIID-mediated peptidoglycan degradation is required throughout engulfment during Bacillus subtilis sporulation. J Bacteriol 192:3174–3186 http://dx.doi.org/10.1128/JB.00127-10. [PubMed]
154. Chastanet A, Losick R. 2007. Engulfment during sporulation in Bacillus subtilis is governed by a multi-protein complex containing tandemly acting autolysins. Mol Microbiol 64:139–152 http://dx.doi.org/10.1111/j.1365-2958.2007.05652.x. [PubMed]
155. Dembek M, Kelly A, Salgado P. 2016. Structural and functional studies of sporulation determinants in Clostridium difficile. Presented at the 7th European Spores Conference, London, UK, 18 to 20 April 2016 https://www.ncbi.nlm.nih.gov/pubmed/30066424.
156. Ribis JW, Fimlaid KA, Shen A. 2017. Differential requirements for conserved components of a conserved peptidoglycan remodeling machine during Clostridium difficile sporulation. ASM General Meeting 2017 https://www.ncbi.nlm.nih.gov/pubmed/30066347.
157. Nocadello S, Minasov G, Shuvalova LS, Dubrovska I, Sabini E, Anderson WF. 2016. Crystal structures of the SpoIID lytic transglycosylases essential for bacterial sporulation. J Biol Chem 291:14915–14926 http://dx.doi.org/10.1074/jbc.M116.729749. [PubMed]
158. Rodrigues CD, Marquis KA, Meisner J, Rudner DZ. 2013. Peptidoglycan hydrolysis is required for assembly and activity of the transenvelope secretion complex during sporulation in Bacillus subtilis. Mol Microbiol 89:1039–1052 http://dx.doi.org/10.1111/mmi.12322. [PubMed]
159. Broder DH, Pogliano K. 2006. Forespore engulfment mediated by a ratchet-like mechanism. Cell 126:917–928 http://dx.doi.org/10.1016/j.cell.2006.06.053. [PubMed]
160. Henriques AO, Moran CP Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61:555–588 http://dx.doi.org/10.1146/annurev.micro.61.080706.093224. [PubMed]
161. Ramamurthi KS, Clapham KR, Losick R. 2006. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol Microbiol 62:1547–1557 http://dx.doi.org/10.1111/j.1365-2958.2006.05468.x. [PubMed]
162. Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 2009. Geometric cue for protein localization in a bacterium. Science 323:1354–1357 http://dx.doi.org/10.1126/science.1169218. [PubMed]
163. Ramamurthi KS, Losick R. 2008. ATP-driven self-assembly of a morphogenetic protein in Bacillus subtilis. Mol Cell 31:406–414 http://dx.doi.org/10.1016/j.molcel.2008.05.030. [PubMed]
164. Wang KH, Isidro AL, Domingues L, Eskandarian HA, McKenney PT, Drew K, Grabowski P, Chua MH, Barry SN, Guan M, Bonneau R, Henriques AO, Eichenberger P. 2009. The coat morphogenetic protein SpoVID is necessary for spore encasement in Bacillus subtilis. Mol Microbiol 74:634–649 http://dx.doi.org/10.1111/j.1365-2958.2009.06886.x. [PubMed]
165. McKenney PT, Driks A, Eichenberger P. 2012. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat Rev Microbiol 11:33–44. [PubMed]
166. Costa T, Isidro AL, Moran CP Jr, Henriques AO. 2006. Interaction between coat morphogenetic proteins SafA and SpoVID. J Bacteriol 188:7731–7741 http://dx.doi.org/10.1128/JB.00761-06. [PubMed]
167. de Francesco M, Jacobs JZ, Nunes F, Serrano M, McKenney PT, Chua MH, Henriques AO, Eichenberger P. 2012. Physical interaction between coat morphogenetic proteins SpoVID and CotE is necessary for spore encasement in Bacillus subtilis. J Bacteriol 194:4941–4950 http://dx.doi.org/10.1128/JB.00914-12. [PubMed]
168. Cutting S, Anderson M, Lysenko E, Page A, Tomoyasu T, Tatematsu K, Tatsuta T, Kroos L, Ogura T. 1997. SpoVM, a small protein essential to development in Bacillus subtilis, interacts with the ATP-dependent protease FtsH. J Bacteriol 179:5534–5542 http://dx.doi.org/10.1128/jb.179.17.5534-5542.1997. [PubMed]
169. Levin PA, Fan N, Ricca E, Driks A, Losick R, Cutting S. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol Microbiol 9:761–771 http://dx.doi.org/10.1111/j.1365-2958.1993.tb01736.x. [PubMed]
170. Roels S, Driks A, Losick R. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J Bacteriol 174:575–585 http://dx.doi.org/10.1128/jb.174.2.575-585.1992. [PubMed]
171. Ebmeier SE, Tan IS, Clapham KR, Ramamurthi KS. 2012. Small proteins link coat and cortex assembly during sporulation in Bacillus subtilis. Mol Microbiol 84:682–696 http://dx.doi.org/10.1111/j.1365-2958.2012.08052.x.
172. Tan IS, Weiss CA, Popham DL, Ramamurthi KS. 2015. A quality-control mechanism removes unfit cells from a population of sporulating bacteria. Dev Cell 34:682–693 http://dx.doi.org/10.1016/j.devcel.2015.08.009.
173. Ribis JW, Ravichandran P, Putnam EE, Pishdadian K, Shen A. 2017. The conserved spore coat protein SpoVM is largely dispensable in Clostridium difficile spore formation. MSphere 2:e00315-17 http://dx.doi.org/10.1128/mSphere.00315-17. [PubMed]
174. Putnam EE, Nock AM, Lawley TD, Shen A. 2013. SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 195:1214–1225 http://dx.doi.org/10.1128/JB.02181-12. [PubMed]
175. Decker AR, Ramamurthi KS. 2017. Cell death pathway that monitors spore morphogenesis. Trends Microbiol 25:637–647 http://dx.doi.org/10.1016/j.tim.2017.03.005. [PubMed]
176. Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G. 2009. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191:5377–5386 http://dx.doi.org/10.1128/JB.00597-09. [PubMed]
177. Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. 2013. In pursuit of protein targets: proteomic characterization of bacterial spore outer layers. J Proteome Res 12:4507–4521 http://dx.doi.org/10.1021/pr4005629. [PubMed]
178. Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. 2015. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 123:1–13 http://dx.doi.org/10.1016/j.jprot.2015.03.035. [PubMed]
179. Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM. 2011. Surface layers of Clostridium difficile endospores. J Bacteriol 193:6461–6470 http://dx.doi.org/10.1128/JB.05182-11. [PubMed]
180. Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson M-C, La Ragione R, Brisson AR, Fairweather N, Hong HA, Cutting SM. 2013. Functional characterization of Clostridium difficile spore coat proteins. J Bacteriol 195:1492–1503 http://dx.doi.org/10.1128/JB.02104-12. [PubMed]
181. Shrestha R, Lockless SW, Sorg JA. 2017. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J Biol Chem 292:10735–10742 http://dx.doi.org/10.1074/jbc.M117.791749. [PubMed]
182. Hong HA, Ferreira WT, Hosseini S, Anwar S, Hitri K, Wilkinson AJ, Vahjen W, Zentek J, Soloviev M, Cutting SM. 2017. The spore coat protein CotE facilitates host colonisation by Clostridium difficile. J Infect Dis 216:1452–1459 http://dx.doi.org/10.1093/infdis/jix488. [PubMed]
183. Paredes-Sabja D, Shen A, Sorg JA. 2014. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 22:406–416 http://dx.doi.org/10.1016/j.tim.2014.04.003. [PubMed]
184. Stewart GC. 2015. The exosporium layer of bacterial spores: a connection to the environment and the infected host. Microbiol Mol Biol Rev 79:437–457 http://dx.doi.org/10.1128/MMBR.00050-15. [PubMed]
185. Barra-Carrasco J, Olguín-Araneda V, Plaza-Garrido A, Miranda-Cárdenas C, Cofré-Araneda G, Pizarro-Guajardo M, Sarker MR, Paredes-Sabja D. 2013. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 195:3863–3875 http://dx.doi.org/10.1128/JB.00369-13. [PubMed]
186. Phetcharaburanin J, Hong HA, Colenutt C, Bianconi I, Sempere L, Permpoonpattana P, Smith K, Dembek M, Tan S, Brisson MC, Brisson AR, Fairweather NF, Cutting SM. 2014. The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol Microbiol 92:1025–1038 http://dx.doi.org/10.1111/mmi.12611. [PubMed]
187. Pizarro-Guajardo M, Olguín-Araneda V, Barra-Carrasco J, Brito-Silva C, Sarker MR, Paredes-Sabja D. 2014. Characterization of the collagen-like exosporium protein, BclA1, of Clostridium difficile spores. Anaerobe 25:18–30 http://dx.doi.org/10.1016/j.anaerobe.2013.11.003. [PubMed]
188. Boydston JA, Yue L, Kearney JF, Turnbough CL Jr. 2006. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis. J Bacteriol 188:7440–7448 http://dx.doi.org/10.1128/JB.00639-06. [PubMed]
189. Jiang S, Wan Q, Krajcikova D, Tang J, Tzokov SB, Barak I, Bullough PA. 2015. Diverse supramolecular structures formed by self-assembling proteins of the Bacillus subtilis spore coat. Mol Microbiol 97:347–359 http://dx.doi.org/10.1111/mmi.13030. [PubMed]
190. Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A. 2006. ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J Bacteriol 188:7905–7913 http://dx.doi.org/10.1128/JB.00997-06. [PubMed]
191. Terry C, Jiang S, Radford DS, Wan Q, Tzokov S, Moir A, Bullough PA. 2017. Molecular tiling on the surface of a bacterial spore: the exosporium of the Bacillus anthracis/cereus/thuringiensis group. Mol Microbiol 104:539–552 http://dx.doi.org/10.1111/mmi.13650. [PubMed]
192. Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. 2016. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 37:85–95 http://dx.doi.org/10.1016/j.anaerobe.2015.12.001. [PubMed]
193. Strong PC, Fulton KM, Aubry A, Foote S, Twine SM, Logan SM. 2014. Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 196:2627–2637 http://dx.doi.org10.1128/JB.01469-14. [PubMed]
194. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT, Krishna NR, Pritchard DG, Turnbough CL Jr. 2004. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J Biol Chem 279:30945–30953 http://dx.doi.org/10.1074/jbc.M401613200. [PubMed]
195. Mora-Uribe P, Miranda-Cárdenas C, Castro-Córdova P, Gil F, Calderón I, Fuentes JA, Rodas PI, Banawas S, Sarker MR, Paredes-Sabja D. 2016. Characterization of the adherence of Clostridium difficile spores: the integrity of the outermost layer affects adherence properties of spores of the epidemic strain R20291 to components of the intestinal mucosa. Front Cell Infect Microbiol 6:99 http://dx.doi.org/10.3389/fcimb.2016.00099. [PubMed]
196. Paredes-Sabja D, Setlow P, Sarker MR. 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19:85–94 http://dx.doi.org/10.1016/j.tim.2010.10.004. [PubMed]
197. Pizarro-Guajardo M, Calderón-Romero P, Castro-Córdova P, Mora-Uribe P, Paredes-Sabja D. 2016. Ultrastructural variability of the exosporium layer of Clostridium difficile spores. Appl Environ Microbiol 82:2202–2209 http://dx.doi.org/10.1128/AEM.03410-15. [PubMed]
198. Pizarro-Guajardo M, Calderón-Romero P, Paredes-Sabja D. 2016. Ultrastructure variability of the exosporium layer of Clostridium difficile spores from sporulating cultures and biofilms. Appl Environ Microbiol 82:5892–5898 http://dx.doi.org/10.1128/AEM.01463-16. [PubMed]
199. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190:2505–2512 http://dx.doi.org/10.1128/JB.01765-07. [PubMed]
200. Bhattacharjee D, McAllister KN, Sorg JA. 2016. Germinants and their receptors in clostridia. J Bacteriol 198:2767–2775 http://dx.doi.org/10.1128/JB.00405-16. [PubMed]
201. Sorg JA, Sonenshein AL. 2009. Chenodeoxycholate is an inhibitor of Clostridium difficile spore germination. J Bacteriol 191:1115–1117 http://dx.doi.org/10.1128/JB.01260-08. [PubMed]
202. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546 http://dx.doi.org/10.1038/nature17645. [PubMed]
203. Liggins M, Ramirez N, Magnuson N, Abel-Santos E. 2011. Progesterone analogs influence germination of Clostridium sordellii and Clostridium difficile spores in vitro. J Bacteriol 193:2776–2783 http://dx.doi.org/10.1128/JB.00058-11. [PubMed]
204. Shrestha R, Sorg JA. 2018. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe 49:41–47 http://dx.doi.org/10.1016/j.anaerobe.2017.12.001. [PubMed]
205. Kochan TJ, Somers MJ, Kaiser AM, Shoshiev MS, Hagan AK, Hastie JL, Giordano NP, Smith AD, Schubert AM, Carlson PE Jr, Hanna PC. 2017. Intestinal calcium and bile salts facilitate germination of Clostridium difficile spores. PLoS Pathog 13:e1006443 http://dx.doi.org/10.1371/journal.ppat.1006443. [PubMed]
206. Paredes-Sabja D, Torres JA, Setlow P, Sarker MR. 2008. Clostridium perfringens spore germination: characterization of germinants and their receptors. J Bacteriol 190:1190–1201 http://dx.doi.org/10.1128/JB.01748-07. [PubMed]
207. Paredes-Sabja D, Udompijitkul P, Sarker MR. 2009. Inorganic phosphate and sodium ions are cogerminants for spores of Clostridium perfringens type A food poisoning-related isolates. Appl Environ Microbiol 75:6299–6305 http://dx.doi.org/10.1128/AEM.00822-09. [PubMed]
208. Udompijitkul P, Alnoman M, Banawas S, Paredes-Sabja D, Sarker MR. 2014. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates. Food Microbiol 44:24–33 http://dx.doi.org/10.1016/j.fm.2014.04.011. [PubMed]
209. Alnoman M, Udompijitkul P, Banawas S, Sarker MR. 2018. Bicarbonate and amino acids are co-germinants for spores of Clostridium perfringens type A isolates carrying plasmid-borne enterotoxin gene. Food Microbiol 69:64–71 http://dx.doi.org/10.1016/j.fm.2017.06.020. [PubMed]
210. Alberto F, Broussolle V, Mason DR, Carlin F, Peck MW. 2003. Variability in spore germination response by strains of proteolytic Clostridium botulinum types A, B and F. Lett Appl Microbiol 36:41–45 http://dx.doi.org/10.1046/j.1472-765X.2003.01260.x.
211. Brunt J, van Vliet AH, van den Bos F, Carter AT, Peck MW. 2016. Diversity of the germination apparatus in Clostridium botulinum groups I, II, III, and IV. Front Microbiol 7:1702 http://dx.doi.org/10.3389/fmicb.2016.01702.
212. Plowman J, Peck MW. 2002. Use of a novel method to characterize the response of spores of non-proteolytic Clostridium botulinum types B, E and F to a wide range of germinants and conditions. J Appl Microbiol 92:681–694 http://dx.doi.org/10.1046/j.1365-2672.2002.01569.x. [PubMed]
213. Herlinger H, Maglinte D, Birnbaum BA. 2001. Clinical Imaging of the Small Intestine. Springer, New York, NY. [PubMed]
214. Rode LJ, Foster JW. 1961. Germination of bacterial spores with alkyl primary amines. J Bacteriol 81:768–779. [PubMed]
215. Riemann H, Ordal ZJ. 1961. Germination of bacterial endospores with calcium and dipicolinic acid. Science 133:1703–1704 http://dx.doi.org/10.1126/science.133.3465.1703. [PubMed]
216. Francis MB, Allen CA, Sorg JA. 2015. Spore cortex hydrolysis precedes DPA release during Clostridium difficile spore germination. J Bacteriol 197:2276–2283 http://dx.doi.org/10.1128/JB.02575-14. [PubMed]
217. Wang S, Shen A, Setlow P, Li YQ. 2015. Characterization of the dynamic germination of individual Clostridium difficile spores using Raman spectroscopy and differential interference contrast microscopy. J Bacteriol 197:2361–2373 http://dx.doi.org/10.1128/JB.00200-15. [PubMed]
218. Paredes-Sabja D, Setlow P, Sarker MR. 2009. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfringens. J Bacteriol 191:2711–2720 http://dx.doi.org/10.1128/JB.01832-08. [PubMed]
219. Ishimori T, Takahashi K, Goto M, Nakagawa S, Kasai Y, Konagaya Y, Batori H, Kobayashi A, Urakami H. 2012. Synergistic effects of high hydrostatic pressure, mild heating, and amino acids on germination and inactivation of Clostridium sporogenes spores. Appl Environ Microbiol 78:8202–8207 http://dx.doi.org/10.1128/AEM.02007-12. [PubMed]
220. Doona CJ, Feeherry FE, Setlow B, Wang S, Li W, Nichols FC, Talukdar PK, Sarker MR, Li YQ, Shen A, Setlow P. 2016. Effects of high-pressure treatment on spores of Clostridium Species. Appl Environ Microbiol 82:5287–5297 http://dx.doi.org/10.1128/AEM.01363-16. [PubMed]
221. Banawas S, Paredes-Sabja D, Korza G, Li Y, Hao B, Setlow P, Sarker MR. 2013. The Clostridium perfringens germinant receptor protein GerKC is located in the spore inner membrane and is crucial for spore germination. J Bacteriol 195:5084–5091 http://dx.doi.org/10.1128/JB.00901-13. [PubMed]
222. Banawas S, Paredes-Sabja D, Setlow P, Sarker MR. 2016. Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969. Microbiology 162:1972–1983 http://dx.doi.org/10.1099/mic.0.000378. [PubMed]
223. Paredes-Sabja D, Setlow P, Sarker MR. 2009. Role of GerKB in germination and outgrowth of Clostridium perfringens spores. Appl Environ Microbiol 75:3813–3817 http://dx.doi.org/10.1128/AEM.00048-09. [PubMed]
224. Paidhungat M, Setlow P. 2001. Localization of a germinant receptor protein (GerBA) to the inner membrane of Bacillus subtilis spores. J Bacteriol 183:3982–3990 http://dx.doi.org/10.1128/JB.183.13.3982-3990.2001. [PubMed]
225. Alberto F, Botella L, Carlin F, Nguyen-The C, Broussolle V. 2005. The Clostridium botulinum GerAB germination protein is located in the inner membrane of spores. FEMS Microbiol Lett 253:231–235 http://dx.doi.org/10.1016/j.femsle.2005.09.037. [PubMed]
226. Gupta S, Zhou KX, Bailey DM, Christie G. 2015. Structure-function analysis of the Bacillus megaterium GerUD spore germinant receptor protein. FEMS Microbiol Lett 362:fnv210 http://dx.doi.org/10.1093/femsle/fnv210.
227. Ramirez-Peralta A, Gupta S, Butzin XY, Setlow B, Korza G, Leyva-Vazquez MA, Christie G, Setlow P. 2013. Identification of new proteins that modulate the germination of spores of Bacillus species. J Bacteriol 195:3009–3021 http://dx.doi.org/10.1128/JB.00257-13. [PubMed]
228. Clauwers C, Lood C, van Noort V, Michiels CW. 2017. Canonical germinant receptor is dispensable for spore germination in Clostridium botulinum group II strain NCTC 11219. Sci Rep 7:15426 http://dx.doi.org/10.1038/s41598-017-15839-y. [PubMed]
229. Wang G, Zhang P, Paredes-Sabja D, Green C, Setlow P, Sarker MR, Li YQ. 2011. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. J Appl Microbiol 111:1212–1223 http://dx.doi.org/10.1111/j.1365-2672.2011.05135.x. [PubMed]
230. Wang S, Brunt J, Peck MW, Setlow P, Li YQ. 2017. Analysis of the germination of individual Clostridium sporogenes spores with and without germinant receptors and cortex-lytic enzymes. Front Microbiol 8:2047 http://dx.doi.org/10.3389/fmicb.2017.02047. [PubMed]
231. Dembek M, Stabler RA, Witney AA, Wren BW, Fairweather NF. 2013. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores. PLoS One 8:e64011 http://dx.doi.org/10.1371/journal.pone.0064011. [PubMed]
232. Francis MB, Allen CA, Shrestha R, Sorg JA. 2013. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 9:e1003356 http://dx.doi.org/10.1371/journal.ppat.1003356. [PubMed]
233. Adams CM, Eckenroth BE, Putnam EE, Doublié S, Shen A. 2013. Structural and functional analysis of the CspB protease required for Clostridium spore germination. PLoS Pathog 9:e1003165 http://dx.doi.org/10.1371/journal.ppat.1003165. [PubMed]
234. Kevorkian Y, Shen A. 2017. Revisiting the role of Csp family proteins in regulating Clostridium difficile spore germination. J Bacteriol 199:199 http://dx.doi.org/10.1128/JB.00266-17. [PubMed]
235. Kevorkian Y, Shirley DJ, Shen A. 2016. Regulation of Clostridium difficile spore germination by the CspA pseudoprotease domain. Biochimie 122:243–254 http://dx.doi.org/10.1016/j.biochi.2015.07.023. [PubMed]
236. Meaney CA, Cartman ST, McClure PJ, Minton NP. 2015. Optimal spore germination in Clostridium botulinum ATCC 3502 requires the presence of functional copies of SleB and YpeB, but not CwlJ. Anaerobe 34:86–93 http://dx.doi.org/10.1016/j.anaerobe.2015.04.015.
237. Popham DL, Helin J, Costello CE, Setlow P. 1996. Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci U S A 93:15405–15410 http://dx.doi.org/10.1073/pnas.93.26.15405. [PubMed]
238. Ando Y. 1979. Spore lytic enzyme released from Clostridium perfringens spores during germination. J Bacteriol 140:59–64. [PubMed]
239. Miyata S, Moriyama R, Sugimoto K, Makino S. 1995. Purification and partial characterization of a spore cortex-lytic enzyme of Clostridium perfringens S40 spores. Biosci Biotechnol Biochem 59:514–515 http://dx.doi.org/10.1271/bbb.59.514. [PubMed]
240. Gutelius D, Hokeness K, Logan SM, Reid CW. 2013. Functional analysis of SleC from Clostridium difficile: an essential lytic transglycosylase involved in spore germination. Microbiology 160:209–216. [PubMed]
241. Okamura S, Urakami K, Kimata M, Aoshima T, Shimamoto S, Moriyama R, Makino S. 2000. The N-terminal prepeptide is required for the production of spore cortex-lytic enzyme from its inactive precursor during germination of Clostridium perfringens S40 spores. Mol Microbiol 37:821–827 http://dx.doi.org/10.1046/j.1365-2958.2000.02047.x. [PubMed]
242. Shimamoto S, Moriyama R, Sugimoto K, Miyata S, Makino S. 2001. Partial characterization of an enzyme fraction with protease activity which converts the spore peptidoglycan hydrolase (SleC) precursor to an active enzyme during germination of Clostridium perfringens S40 spores and analysis of a gene cluster involved in the activity. J Bacteriol 183:3742–3751 http://dx.doi.org/10.1128/JB.183.12.3742-3751.2001. [PubMed]
243. Shinde U, Thomas G. 2011. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 768:59–106 http://dx.doi.org/10.1007/978-1-61779-204-5_4. [PubMed]
244. Miyata S, Moriyama R, Miyahara N, Makino S. 1995. A gene ( sleC) encoding a spore-cortex-lytic enzyme from Clostridium perfringens S40 spores; cloning, sequence analysis and molecular characterization. Microbiology 141:2643–2650 http://dx.doi.org/10.1099/13500872-141-10-2643. [PubMed]
245. Paredes-Sabja D, Setlow P, Sarker MR. 2009. The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology 155:3464–3472 http://dx.doi.org/10.1099/mic.0.030965-0. [PubMed]
246. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001 http://dx.doi.org/10.1073/pnas.022493799. [PubMed]
247. Chen Y, Miyata S, Makino S, Moriyama R. 1997. Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene. J Bacteriol 179:3181–3187 http://dx.doi.org/10.1128/jb.179.10.3181-3187.1997. [PubMed]
248. Fimlaid KA, Jensen O, Donnelly ML, Francis MB, Sorg JA, Shen A. 2015. Identification of a novel lipoprotein regulator of Clostridium difficile spore germination. PLoS Pathog 11:e1005239 http://dx.doi.org/10.1371/journal.ppat.1005239. [PubMed]
249. Urakami K, Miyata S, Moriyama R, Sugimoto K, Makino S. 1999. Germination-specific cortex-lytic enzymes from Clostridium perfringens S40 spores: time of synthesis, precursor structure and regulation of enzymatic activity. FEMS Microbiol Lett 173:467–473 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13540.x. [PubMed]
250. Banawas S, Korza G, Paredes-Sabja D, Li Y, Hao B, Setlow P, Sarker MR. 2015. Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiol 50:83–87 http://dx.doi.org/10.1016/j.fm.2015.04.001. [PubMed]
251. Miyata S, Kozuka S, Yasuda Y, Chen Y, Moriyama R, Tochikubo K, Makino S. 1997. Localization of germination-specific spore-lytic enzymes in Clostridium perfringens S40 spores detected by immunoelectron microscopy. FEMS Microbiol Lett 152:243–247 http://dx.doi.org/10.1111/j.1574-6968.1997.tb10434.x. [PubMed]
252. Bhattacharjee D, Francis MB, Ding X, McAllister KN, Shrestha R, Sorg JA. 2015. Reexamining the germination phenotypes of several Clostridium difficile strains suggests another role for the CspC germinant receptor. J Bacteriol 198:777–786 http://dx.doi.org/10.1128/JB.00908-15. [PubMed]
253. Donnelly ML, Li W, Li YQ, Hinkel L, Setlow P, Shen A. 2017. A Clostridium difficile-specific, gel-forming protein required for optimal spore germination. MBio 8:e02085-16 http://dx.doi.org/10.1128/mBio.02085-16. [PubMed]
254. Li Y, Butzin XY, Davis A, Setlow B, Korza G, Üstok FI, Christie G, Setlow P, Hao B. 2013. Activity and regulation of various forms of CwlJ, SleB, and YpeB proteins in degrading cortex peptidoglycan of spores of Bacillus species in vitro and during spore germination. J Bacteriol 195:2530–2540 http://dx.doi.org/10.1128/JB.00259-13. [PubMed]
255. Paidhungat M, Ragkousi K, Setlow P. 2001. Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca(2+)-dipicolinate. J Bacteriol 183:4886–4893 http://dx.doi.org/10.1128/JB.183.16.4886-4893.2001. [PubMed]
256. Paidhungat M, Setlow B, Driks A, Setlow P. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512 http://dx.doi.org/10.1128/JB.182.19.5505-5512.2000. [PubMed]
257. Chirakkal H, O’Rourke M, Atrih A, Foster SJ, Moir A. 2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–2392 http://dx.doi.org/10.1099/00221287-148-8-2383. [PubMed]
258. Daniel RA, Errington J. 1993. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J Mol Biol 232:468–483 http://dx.doi.org/10.1006/jmbi.1993.1403. [PubMed]
259. Ramírez-Guadiana FH, Meeske AJ, Rodrigues CDA, Barajas-Ornelas RDC, Kruse AC, Rudner DZ. 2017. A two-step transport pathway allows the mother cell to nurture the developing spore in Bacillus subtilis. PLoS Genet 13:e1007015 http://dx.doi.org/10.1371/journal.pgen.1007015. [PubMed]
260. Vepachedu VR, Setlow P. 2004. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon. FEMS Microbiol Lett 239:71–77 http://dx.doi.org/10.1016/j.femsle.2004.08.022. [PubMed]
261. Donnelly ML, Fimlaid KA, Shen A. 2016. Characterization of Clostridium difficile spores lacking either SpoVAC or dipicolinic acid synthetase. J Bacteriol 198:1694–1707 http://dx.doi.org/10.1128/JB.00986-15. [PubMed]
262. Paredes-Sabja D, Setlow B, Setlow P, Sarker MR. 2008. Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid. J Bacteriol 190:4648–4659 http://dx.doi.org/10.1128/JB.00325-08. [PubMed]
263. Orsburn BC, Melville SB, Popham DL. 2010. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens. Mol Microbiol 75:178–186 http://dx.doi.org/10.1111/j.1365-2958.2009.06975.x. [PubMed]
264. Velásquez J, Schuurman-Wolters G, Birkner JP, Abee T, Poolman B. 2014. Bacillus subtilis spore protein SpoVAC functions as a mechanosensitive channel. Mol Microbiol 92:813–823 http://dx.doi.org/10.1111/mmi.12591. [PubMed]
265. Francis MB, Sorg JA. 2016. Dipicolinic acid release by germinating Clostridium difficile spores occurs through a mechanosensing mechanism. MSphere 1:e00306-16 http://dx.doi.org/10.1128/mSphere.00306-16. [PubMed]
266. Illades-Aguiar B, Setlow P. 1994. Autoprocessing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. J Bacteriol 176:7032–7037 http://dx.doi.org/10.1128/jb.176.22.7032-7037.1994.
267. Setlow P. 2013. Summer meeting 201--when the sleepers wake: the germination of spores of Bacillus species. J Appl Microbiol 115:1251–1268 http://dx.doi.org/10.1111/jam.12343. [PubMed]
268. Setlow B, Atluri S, Kitchel R, Koziol-Dube K, Setlow P. 2006. Role of dipicolinic acid in resistance and stability of spores of Bacillus subtilis with or without DNA-protective alpha/beta-type small acid-soluble proteins. J Bacteriol 188:3740–3747 http://dx.doi.org/10.1128/JB.00212-06. [PubMed]
269. Mason JM, Setlow P. 1986. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J Bacteriol 167:174–178 http://dx.doi.org/10.1128/jb.167.1.174-178.1986. [PubMed]
270. Moeller R, Setlow P, Reitz G, Nicholson WL. 2009. Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 75:5202–5208 http://dx.doi.org/10.1128/AEM.00789-09. [PubMed]
271. Orsburn B, Sucre K, Popham DL, Melville SB. 2009. The SpmA/B and DacF proteins of Clostridium perfringens play important roles in spore heat resistance. FEMS Microbiol Lett 291:188–194 http://dx.doi.org/10.1111/j.1574-6968.2008.01454.x. [PubMed]
272. Li J, McClane BA. 2008. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog 4:e1000056 http://dx.doi.org/10.1371/journal.ppat.1000056. [PubMed]
273. Ma M, Li J, McClane BA. 2012. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect Immun 80:4354–4363 http://dx.doi.org/10.1128/IAI.00818-12. [PubMed]
274. Raju D, Setlow P, Sarker MR. 2007. Antisense-RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of clostridium perfringens spores to moist heat and UV radiation. Appl Environ Microbiol 73:2048–2053 http://dx.doi.org/10.1128/AEM.02500-06. [PubMed]
275. Meaney CA, Cartman ST, McClure PJ, Minton NP. 2016. The role of small acid-soluble proteins (SASPs) in protection of spores of Clostridium botulinum against nitrous acid. Int J Food Microbiol 216:25–30 http://dx.doi.org/10.1016/j.ijfoodmicro.2015.08.024. [PubMed]
276. Setlow B, Setlow P. 1994. Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA. J Bacteriol 176:2111–2113 http://dx.doi.org/10.1128/jb.176.7.2111-2113.1994. [PubMed]
277. McAllister KN, Bouillaut L, Kahn JN, Self WT, Sorg JA. 2017. Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Sci Rep 7:14672 http://dx.doi.org/10.1038/s41598-017-15236-5. [PubMed]
278. Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP. 2013. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 8:e56051 http://dx.doi.org/10.1371/journal.pone.0056051. [PubMed]
279. Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP. 2012. Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78:4683–4690 http://dx.doi.org/10.1128/AEM.00249-12. [PubMed]
280. Rabi R, Turnbull L, Whitchurch CB, Awad M, Lyras D. 2017. Structural characterization of Clostridium sordellii spores of diverse human, animal, and environmental origin and comparison to Clostridium difficile spores. MSphere 2:e00343-17 http://dx.doi.org/10.1128/mSphere.00343-17. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0017-2018
2019-12-19
2020-01-26

Abstract:

As obligate anaerobes, clostridial pathogens depend on their metabolically dormant, oxygen-tolerant spore form to transmit disease. However, the molecular mechanisms by which those spores germinate to initiate infection and then form new spores to transmit infection remain poorly understood. While sporulation and germination have been well characterized in and , striking differences in the regulation of these processes have been observed between the bacilli and the clostridia, with even some conserved proteins exhibiting differences in their requirements and functions. Here, we review our current understanding of how clostridial pathogens, specifically , , and , induce sporulation in response to environmental cues, assemble resistant spores, and germinate metabolically dormant spores in response to environmental cues. We also discuss the direct relationship between toxin production and spore formation in these pathogens.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Lifecycle of endospore formers. Sporulation. Upon sensing certain environmental conditions, endospore formers activate Spo0A and initiate sporulation. The first morphological event is the formation of a polar septum, which creates a larger mother cell and smaller forespore. The mother cell engulfs the forespore, and the two cells work together to assemble the dormant spore. Calcium dipicolinic acid (Ca-DPA) is synthesized in the mother cell and transported into the forespore in exchange for water. The cortex is formed between the two membranes, and coat proteins polymerize on the surface of the mother cell-derived membrane. Once the spore is mature, the mother cell lyses and releases the dormant spore into the environment. Germination. Upon sensing the appropriate small molecule germinants, the spore initiates a signaling cascade that leads to activation of cortex hydrolases and core hydration, which is necessary for metabolism to resume in the germinating spore.

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sporulation initiation via Spo0A phosphorylation. Sigma factors are shown as circles, histidine kinases and phosphatases as hexagons (adapted from Al-Hinai et al. [ 85 ]). Positive regulators are shown in green (with the exception of σ, which is shown in purple), and negative regulators are shown in red. In , the KinA-E orphan histidine kinases phosphorylate the phosphotransfer protein Spo0F, the first component in the phosphorelay ( 25 ). The Rap phosphatases remove phosphates from phosphorylated Spo0F. The phosphate is transferred from Spo0F to Spo0B to Spo0A. In , the orphan histidine kinases CD1579 and CD2492 appear to phosphorylate Spo0A ( 32 ), while CD1492 likely dephosphorylates Spo0A ( 47 ). A more detailed description of Spo0A regulation is shown in Fig. 3 . Although all the putative orphan histidine kinases with the potential to phosphorylate Spo0A in and are shown, whether they act as positive or negative regulators remains unstudied. The stationary factor σ activates expression of in and ( 101 ), while σ activates transcription in ( 74 ) and possibly , the latter of which induces sporulation during log-phase growth ( 65 ).

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulatory pathway controlling Spo0A activation in . Early sporulation factors experimentally determined to function as positive regulators of Spo0A are highlighted in green, and those that inhibit Spo0A are highlighted in red ( 32 , 47 , 51 , 55 , 56 , 59 , 61 , 62 , 101 ). Hexagons indicate histidine kinase/phosphatases, rounded rectangles demarcate transcription factors, and circles highlight sigma factors. Red lines indicate negative regulation, and black lines indicate positive regulation. SinR and SinR′, orthologs for regulatory proteins characterized in (gray), were recently shown to promote sporulation ( 60 ). Solid lines indicate defined regulatory interactions, and dashed lines suggest proposed, and potentially indirect, regulatory effects. Branched-chain amino acids are a CodY cofactor ( 59 ), and their precursors are likely imported primarily through the Opp and App oligopeptide transporters ( 55 , 61 ). CcpA-independent carbon-specific regulation is not shown ( 56 ). The reciprocal transcriptional regulation of early sporulation factors by Spo0A has also been omitted for simplicity ( 100 ).

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Diversity in the regulation of the transcriptional programs controlling sporulation in the . The temporal progression of sporulation is shown from top to bottom. Transcription factors and sigma factors are shown in bold, and proteins enclosed in boxes directly participate in signaling between the mother cell and forespore (dashed boxes indicate that trans-septum signaling has not been tested yet). Text color denotes whether the factor has been detected at both the transcript and protein level (black), at either the transcript or protein level (purple), or has not been tested yet at the transcript or protein level (blue). Black arrows delineate transcriptional control of gene expression, red arrows indicate signaling pathways, dashed lines indicate that the regulatory relationship remains unknown, and thick arrows demarcate notable points of divergence from the pathway defined in . AND gates are indicated. The figure is adapted from Fimlaid et al. ( 137 ) under Creative Commons BY 4.0.

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Spore coat and exosporium structure in . Transmission electron microscopy sections of spores highlighting (from outside to inside) the bumpy, outermost exosporium (Ex) layer with its hair-like projections (HPs), outer coat (OC), inner coat (IC), cortex layer (Cx), germ cell wall (GCW), inner forespore membrane (IM), and spore core (cytosol). Scanning electron microscopy of spores reveals the bumpy surface created by the exosporium. Images used without modification from Rabi et al. ( 280 ) under Creative Commons BY 4.0. Schematic of spore coat layers highlighting morphogenetic factors identified as being important for the assembly of specific layers. Assembly of the outermost exosporium depends on the BclA collagen-like proteins, which likely create hair-like projections on the spore surface ( 186 , 187 ), CdeC ( 185 ), and CdeM (D. Paredes-Saja, unpublished data). The proteins that make up the outer and inner coat layers are unknown, but CotA and the mucinase, CotE, have been shown to be surface accessible ( 180 , 182 ). SpoIVA (IVA) and SipL are interacting coat morphogenetic proteins that are essential for recruiting coat proteins to the forespore and forming heat-resistant spores ( 173 , 174 ). The specific proteins recruited by SpoIVA, SipL, CdeC, and CdeM remain unknown.

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Putative locations of germination regulators in and . Germinant signaling proteins, CspC (pseudoprotease and germinant receptor) and its downstream effectors, the CspB protease, and cortex hydrolase, SleC, are all produced in the mother cell under the control of either σ or σ ( 137 139 ). CspB is produced as a fusion to the pseudoprotease, CspA, which is critical for CspC incorporation into mature spores ( 233 235 ); all three Csp proteins are incorporated into mature spores. GerG is required for optimal incorporation of CspC, CspB, and CspA into mature spores ( 253 ). The GerS lipoprotein ( 248 ) is produced in the mother cell and does not directly participate in spore germination (O. Diaz and A. Shen, unpublished data), even though it is required for spore germination to proceed. The ATP/GTP binding protein CD3298 presumably localizes to the cytosolic face of the outer forespore membrane and regulates calcium release and possibly internalization ( 205 ). Germinant sensing induces the proteolytic activation of SleC by CspB in both organisms, but CspA and/or CspC can cleave SleC in (marked in brackets) ( 218 , 242 , 245 ), since they are active proteases unlike their cognate partners in ( 233 ). also produces inner membrane-bound germinant receptors, similar to most spore-forming organisms, in the forespore, in contrast to the soluble CspC protein used by to sense germinant. The locations of all proteins in mature spores is putative, with the exception of SleC, which has been shown to localize to the cortex region by immuno-electron microscopy ( 251 ).

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Schematic of spore germination signaling pathways. Germinants that are sensed by , , , and are shown in dark blue; group I and III germinants are shown in the brackets (and include -Ala). Amino acid and calcium ion cogerminants are not pictured for ( 199 , 204 , 205 ). Germinant receptors are shown in green. The signaling pathway between and groups 1 and III (far left) differs from the other clostridial organisms mainly with respect to cortex hydrolase (shown in orange) activation mechanisms, with SleC being activated by proteolytic cleavage by Csp proteases, and the CwlJ and SleB cortex hydrolases being activated directly or indirectly by DPA release. Accordingly, the order of cortex hydrolysis and DPA release via SpoVAC differs between these two types of mechanisms. groups II and IV encode germinant receptors with variable numbers of A and B components. Adapted from reference 183 .

Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0017-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error