No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Cell Wall of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Waldemar Vollmer1, Orietta Massidda2, Alexander Tomasz3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
    Affiliations: 1: Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom; 2: Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; 3: The Rockefeller University, New York, NY; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
  • Received 11 January 2018 Accepted 19 April 2019 Published 07 June 2019
  • Alexander Tomasz, [email protected]
image of The Cell Wall of <span class="jp-italic">Streptococcus pneumoniae</span>
    Preview this microbiology spectrum article:
    Zoom in

    The Cell Wall of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0018-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0018-2018-2.gif
  • Abstract:

    has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)—products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of -acetylglucosamine residues and -acetylation of -acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.

  • Citation: Vollmer W, Massidda O, Tomasz A. 2019. The Cell Wall of . Microbiol Spectrum 7(3):GPP3-0018-2018. doi:10.1128/microbiolspec.GPP3-0018-2018.


1. Morlot C, Noirclerc-Savoye M, Zapun A, Dideberg O, Vernet T. 2004. The d, d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol Microbiol 51:1641–1648 http://dx.doi.org/10.1046/j.1365-2958.2003.03953.x. [PubMed]
2. Morlot C, Zapun A, Dideberg O, Vernet T. 2003. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol Microbiol 50:845–855 http://dx.doi.org/10.1046/j.1365-2958.2003.03767.x. [PubMed]
3. Fadda D, Santona A, D’Ulisse V, Ghelardini P, Ennas MG, Whalen MB, Massidda O. 2007. Streptococcus pneumoniae DivIVA: localization and interactions in a MinCD-free context. J Bacteriol 189:1288–1298 http://dx.doi.org/10.1128/JB.01168-06. [PubMed]
4. Zapun A, Vernet T, Pinho MG. 2008. The different shapes of cocci. FEMS Microbiol Rev 32:345–360 http://dx.doi.org/10.1111/j.1574-6976.2007.00098.x. [PubMed]
5. Land AD, Tsui HC, Kocaoglu O, Vella SA, Shaw SL, Keen SK, Sham LT, Carlson EE, Winkler ME. 2013. Requirement of essential Pbp2x and GpsB for septal ring closure in Streptococcus pneumoniae D39. Mol Microbiol 90:939–955 http://dx.doi.org/10.1111/mmi.12408. [PubMed]
6. Morlot C, Bayle L, Jacq M, Fleurie A, Tourcier G, Galisson F, Vernet T, Grangeasse C, Di Guilmi AM. 2013. Interaction of penicillin-binding protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. Mol Microbiol 90:88–102. [PubMed]
7. Tsui HT, Boersma MJ, Vella SA, Kocaoglu O, Kuru E, Peceny JK, Carlson EE, VanNieuwenhze MS, Brun YV, Shaw SL, Winkler ME. 2014. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol Microbiol 94:21–40 http://dx.doi.org/10.1111/mmi.12745. [PubMed]
8. Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening JW. 2009. Cellular localization of choline-utilization proteins in Streptococcus pneumoniae using novel fluorescent reporter systems. Mol Microbiol 74:395–408 http://dx.doi.org/10.1111/j.1365-2958.2009.06872.x. [PubMed]
9. Henriques MX, Catalão MJ, Figueiredo J, Gomes JP, Filipe SR. 2013. Construction of improved tools for protein localization studies in Streptococcus pneumoniae. PLoS One 8:e55049 http://dx.doi.org/10.1371/journal.pone.0055049. [PubMed]
10. Kamerling JP. 2000. Pneumococcal polysaccharides: a chemical view, p 81–114. In Tomasz A (ed), Streptococcus pneumoniae: Molecular Biology & Mechanisms of Disease. Mary Ann Liebert, Inc., Larchmont, NY.
11. Jennings HJ, Lugowski C, Young NM. 1980. Structure of the complex polysaccharide C-substance from Streptococcus pneumoniae type 1. Biochemistry 19:4712–4719 http://dx.doi.org/10.1021/bi00561a026. [PubMed]
12. Sørensen UB, Henrichsen J. 1987. Cross-reactions between pneumococci and other streptococci due to C polysaccharide and F antigen. J Clin Microbiol 25:1854–1859.
13. Heß N, Waldow F, Kohler TP, Rohde M, Kreikemeyer B, Gómez-Mejia A, Hain T, Schwudke D, Vollmer W, Hammerschmidt S, Gisch N. 2017. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nat Commun 8:2093 http://dx.doi.org/10.1038/s41467-017-01720-z. [PubMed]
14. Tomasz A. 1967. Choline in the cell wall of a bacterium: novel type of polymer-linked choline in pneumococcus. Science 157:694–697 http://dx.doi.org/10.1126/science.157.3789.694. [PubMed]
15. Brundish DE, Baddiley J. 1968. Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate. Biochem J 110:573–582 http://dx.doi.org/10.1042/bj1100573. [PubMed]
16. Mosser JL, Tomasz A. 1970. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem 245:287–298.
17. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell B, Reeves PR, Parkhill J, Spratt BG. 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31 http://dx.doi.org/10.1371/journal.pgen.0020031. [PubMed]
18. Tomasz A. 2000. Streptococcus pneumoniae: functional anatomy, p 9–21. In Tomasz A (ed), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., New York, NY.
19. Skov Sørensen UB, Blom J, Birch-Andersen A, Henrichsen J. 1988. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect Immun 56:1890–1896.
20. Schuster C, Dobrinski B, Hakenbeck R. 1990. Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the d, d-carboxypeptidase penicillin-binding protein 3. J Bacteriol 172:6499–6505 http://dx.doi.org/10.1128/jb.172.11.6499-6505.1990. [PubMed]
21. Ng WL, Kazmierczak KM, Winkler ME. 2004. Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161–1175 http://dx.doi.org/10.1111/j.1365-2958.2004.04196.x. [PubMed]
22. Barendt SM, Land AD, Sham LT, Ng WL, Tsui HC, Arnold RJ, Winkler ME. 2009. Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae. J Bacteriol 191:3024–3040 http://dx.doi.org/10.1128/JB.01505-08. [PubMed]
23. Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C, Martínez-Ripoll M, Håvarstein LS, Hermoso JA. 2014. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat Commun 5:3842 http://dx.doi.org/10.1038/ncomms4842. [PubMed]
24. García P, González MP, García E, López R, García JL. 1999. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol Microbiol 31:1275–1281 http://dx.doi.org/10.1046/j.1365-2958.1999.01238.x. [PubMed]
25. Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence. Sci Rep 5:16198 http://dx.doi.org/10.1038/srep16198. [PubMed]
26. Hakenbeck R, König A, Kern I, van der Linden M, Keck W, Billot-Klein D, Legrand R, Schoot B, Gutmann L. 1998. Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level beta-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 180:1831–1840.
27. Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W. 2012. Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 421:657–666 http://dx.doi.org/10.1016/j.ab.2011.11.026. [PubMed]
28. Garcia-Bustos JF, Chait BT, Tomasz A. 1987. Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem 262:15400–15405.
29. Severin A, Tomasz A. 1996. Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J Bacteriol 178:168–174 http://dx.doi.org/10.1128/jb.178.1.168-174.1996. [PubMed]
30. Harz H, Burgdorf K, Höltje JV. 1990. Isolation and separation of the glycan strands from murein of Escherichia coli by reversed-phase high-performance liquid chromatography. Anal Biochem 190:120–128 http://dx.doi.org/10.1016/0003-2697(90)90144-X.
31. Boneca IG, Huang ZH, Gage DA, Tomasz A. 2000. Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new beta- N-acetylglucosaminidase activity. J Biol Chem 275:9910–9918 http://dx.doi.org/10.1074/jbc.275.14.9910. [PubMed]
32. Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ. 2011. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 82:1096–1109 http://dx.doi.org/10.1111/j.1365-2958.2011.07871.x. [PubMed]
33. Zapun A, Philippe J, Abrahams KA, Signor L, Roper DI, Breukink E, Vernet T. 2013. In vitro reconstitution of peptidoglycan assembly from the Gram-positive pathogen Streptococcus pneumoniae. ACS Chem Biol 8:2688–2696 http://dx.doi.org/10.1021/cb400575t. [PubMed]
34. Johnston C, Bootsma HJ, Aldridge C, Manuse S, Gisch N, Schwudke D, Hermans PW, Grangeasse C, Polard P, Vollmer W, Claverys JP. 2015. Co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. PLoS One 10:e0123702 http://dx.doi.org/10.1371/journal.pone.0123702. [PubMed]
35. Schweizer I, Blättner S, Maurer P, Peters K, Vollmer D, Vollmer W, Hakenbeck R, Denapaite D. 2017. New aspects of the interplay between penicillin binding proteins, murM, and the two-component system CiaRH of penicillin-resistant Streptococcus pneumoniae serotype 19A isolates from Hungary. Antimicrob Agents Chemother 61:e00414-17 http://dx.doi.org/10.1128/AAC.00414-17. [PubMed]
36. Todorova K, Maurer P, Rieger M, Becker T, Bui NK, Gray J, Vollmer W, Hakenbeck R. 2015. Transfer of penicillin resistance from Streptococcus oralis to Streptococcus pneumoniae identifies murE as resistance determinant. Mol Microbiol 97:866–880 http://dx.doi.org/10.1111/mmi.13070. [PubMed]
37. den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. 2008. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32:321–344 http://dx.doi.org/10.1111/j.1574-6976.2007.00090.x. [PubMed]
38. Typas A, Banzhaf M, Gross CA, Vollmer W. 2011. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10:123–136 http://dx.doi.org/10.1038/nrmicro2677. [PubMed]
39. Massidda O, Nováková L, Vollmer W. 2013. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 15:3133–3157 http://dx.doi.org/10.1111/1462-2920.12189. [PubMed]
40. Figueiredo TA, Sobral RG, Ludovice AM, Almeida JM, Bui NK, Vollmer W, de Lencastre H, Tomasz A. 2012. Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 8:e1002508 http://dx.doi.org/10.1371/journal.ppat.1002508. [PubMed]
41. Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, Knoops K, Sorg RA, Zhang JR, Veening JW. 2017. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 13:931 http://dx.doi.org/10.15252/msb.20167449. [PubMed]
42. Filipe SR, Pinho MG, Tomasz A. 2000. Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J Biol Chem 275:27768–27774. [PubMed]
43. Filipe SR, Severina E, Tomasz A. 2001. Functional analysis of Streptococcus pneumoniae MurM reveals the region responsible for its specificity in the synthesis of branched cell wall peptides. J Biol Chem 276:39618–39628 http://dx.doi.org/10.1074/jbc.M106425200. [PubMed]
44. Paik J, Kern I, Lurz R, Hakenbeck R. 1999. Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J Bacteriol 181:3852–3856.
45. Berg KH, Stamsås GA, Straume D, Håvarstein LS. 2013. Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. J Bacteriol 195:4342–4354 http://dx.doi.org/10.1128/JB.00184-13. [PubMed]
46. Peters K, Schweizer I, Beilharz K, Stahlmann C, Veening JW, Hakenbeck R, Denapaite D. 2014. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance. Mol Microbiol 92:733–755 http://dx.doi.org/10.1111/mmi.12588. [PubMed]
47. Morlot C, Pernot L, Le Gouellec A, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. 2005. Crystal structure of a peptidoglycan synthesis regulatory factor (PBP3) from Streptococcus pneumoniae. J Biol Chem 280:15984–15991 http://dx.doi.org/10.1074/jbc.M408446200. [PubMed]
48. Severin A, Horne D, Tomasz A. 1997. Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb Drug Resist 3:391–400 http://dx.doi.org/10.1089/mdr.1997.3.391. [PubMed]
49. Severin A, Severina E, Tomasz A. 1997. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob Agents Chemother 41:504–510 http://dx.doi.org/10.1128/AAC.41.3.504. [PubMed]
50. Barendt SM, Sham LT, Winkler ME. 2011. Characterization of mutants deficient in the l, d-carboxypeptidase (DacB) and WalRK (VicRK) regulon, involved in peptidoglycan maturation of Streptococcus pneumoniae serotype 2 strain D39. J Bacteriol 193:2290–2300 http://dx.doi.org/10.1128/JB.01555-10. [PubMed]
51. Abdullah MR, Gutiérrez-Fernández J, Pribyl T, Gisch N, Saleh M, Rohde M, Petruschka L, Burchhardt G, Schwudke D, Hermoso JA, Hammerschmidt S. 2014. Structure of the pneumococcal l, d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 93:1183–1206. [PubMed]
52. Hoyland CN, Aldridge C, Cleverley RM, Duchêne MC, Minasov G, Onopriyenko O, Sidiq K, Stogios PJ, Anderson WF, Daniel RA, Savchenko A, Vollmer W, Lewis RJ. 2014. Structure of the LdcB ld-carboxypeptidase reveals the molecular basis of peptidoglycan recognition. Structure 22:949–960 http://dx.doi.org/10.1016/j.str.2014.04.015. [PubMed]
53. Tsui HC, Zheng JJ, Magallon AN, Ryan JD, Yunck R, Rued BE, Bernhardt TG, Winkler ME. 2016. Suppression of a deletion mutation in the gene encoding essential PBP2b reveals a new lytic transglycosylase involved in peripheral peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol Microbiol 100:1039–1065 http://dx.doi.org/10.1111/mmi.13366. [PubMed]
54. Sham LT, Barendt SM, Kopecky KE, Winkler ME. 2011. Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci USA 108:E1061–E1069 http://dx.doi.org/10.1073/pnas.1108323108. [PubMed]
55. Sham LT, Jensen KR, Bruce KE, Winkler ME. 2013. Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. MBio 4:e00431-13 http://dx.doi.org/10.1128/mBio.00431-13. [PubMed]
56. Bai XH, Chen HJ, Jiang YL, Wen Z, Huang Y, Cheng W, Li Q, Qi L, Zhang JR, Chen Y, Zhou CZ. 2014. Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis. J Biol Chem 289:23403–23416 http://dx.doi.org/10.1074/jbc.M114.579714. [PubMed]
57. De Las Rivas B, García JL, López R, García P. 2002. Purification and polar localization of pneumococcal LytB, a putative endo-beta- N-acetylglucosaminidase: the chain-dispersing murein hydrolase. J Bacteriol 184:4988–5000 http://dx.doi.org/10.1128/JB.184.18.4988-5000.2002. [PubMed]
58. Laitinen H, Tomasz A. 1990. Changes in composition of peptidoglycan during maturation of the cell wall in pneumococci. J Bacteriol 172:5961–5967 http://dx.doi.org/10.1128/jb.172.10.5961-5967.1990. [PubMed]
59. Boersma MJ, Kuru E, Rittichier JT, VanNieuwenhze MS, Brun YV, Winkler ME. 2015. Minimal peptidoglycan (PG) turnover in wild-type and PG hydrolase and cell division mutants of Streptococcus pneumoniae D39 growing planktonically and in host-relevant biofilms. J Bacteriol 197:3472–3485 http://dx.doi.org/10.1128/JB.00541-15. [PubMed]
60. Vollmer W, Tomasz A. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 275:20496–20501 http://dx.doi.org/10.1074/jbc.M910189199. [PubMed]
61. Blair DE, Schüttelkopf AW, MacRae JI, van Aalten DM. 2005. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc Natl Acad Sci USA 102:15429–15434 http://dx.doi.org/10.1073/pnas.0504339102. [PubMed]
62. Bui NK, Turk S, Buckenmaier S, Stevenson-Jones F, Zeuch B, Gobec S, Vollmer W. 2011. Development of screening assays and discovery of initial inhibitors of pneumococcal peptidoglycan deacetylase PgdA. Biochem Pharmacol 82:43–52 http://dx.doi.org/10.1016/j.bcp.2011.03.028. [PubMed]
63. Vollmer W, Tomasz A. 2002. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immun 70:7176–7178 http://dx.doi.org/10.1128/IAI.70.12.7176-7178.2002. [PubMed]
64. Vollmer W. 2008. Structural variation in the glycan strands of bacterial peptidoglycan. FEMS Microbiol Rev 32:287–306 http://dx.doi.org/10.1111/j.1574-6976.2007.00088.x. [PubMed]
65. Crisóstomo MI, Vollmer W, Kharat AS, Inhülsen S, Gehre F, Buckenmaier S, Tomasz A. 2006. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol Microbiol 61:1497–1509 http://dx.doi.org/10.1111/j.1365-2958.2006.05340.x. [PubMed]
66. Bera A, Herbert S, Jakob A, Vollmer W, Götz F. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787 http://dx.doi.org/10.1111/j.1365-2958.2004.04446.x. [PubMed]
67. Bonnet J, Durmort C, Jacq M, Mortier-Barrière I, Campo N, VanNieuwenhze MS, Brun YV, Arthaud C, Gallet B, Moriscot C, Morlot C, Vernet T, Di Guilmi AM. 2017. Peptidoglycan O-acetylation is functionally related to cell wall biosynthesis and cell division in Streptococcus pneumoniae. Mol Microbiol 106:832–846 http://dx.doi.org/10.1111/mmi.13849. [PubMed]
68. Cossart P, Jonquières R. 2000. Sortase, a universal target for therapeutic agents against Gram-positive bacteria? Proc Natl Acad Sci USA 97:5013–5015 http://dx.doi.org/10.1073/pnas.97.10.5013. [PubMed]
69. de las Rivas B, García JL, López R, García P. 2001. Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb Drug Resist 7:213–222 http://dx.doi.org/10.1089/10766290152652756. [PubMed]
70. Vollmer W, Tomasz A. 2001. Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 39:1610–1622 http://dx.doi.org/10.1046/j.1365-2958.2001.02349.x. [PubMed]
71. Garcia JL, Sanchez-Beato AR, Medrano FJ, Lopez R. 2000. Versatility of choline-binding domain, p 231–244. In Tomasz A (ed), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., Larchmont, NY.
72. Hoskins J, Alborn WE, Jr, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matsushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O’Gara M, Peery RB, Robertson GT, Rockey P, Sun PM, Winkler ME, Yang Y, Young-Bellido M, Zhao G, Zook CA, Baltz RH, Jaskunas SR, Rosteck PR Jr, Skatrud PL, Glass JI. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 http://dx.doi.org/10.1128/JB.183.19.5709-5717.2001. [PubMed]
73. Kharat AS, Tomasz A. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun 71:2758–2765 http://dx.doi.org/10.1128/IAI.71.5.2758-2765.2003. [PubMed]
74. Zighelboim S, Tomasz A. 1980. Penicillin-binding proteins of multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob Agents Chemother 17:434–442 http://dx.doi.org/10.1128/AAC.17.3.434. [PubMed]
75. Garcia-Bustos J, Tomasz A. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc Natl Acad Sci USA 87:5415–5419 http://dx.doi.org/10.1073/pnas.87.14.5415. [PubMed]
76. Weber B, Ehlert K, Diehl A, Reichmann P, Labischinski H, Hakenbeck R. 2000. The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. FEMS Microbiol Lett 188:81–85. [PubMed]
77. Rohrer S, Berger-Bächi B. 2003. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in Gram-positive cocci. Antimicrob Agents Chemother 47:837–846 http://dx.doi.org/10.1128/AAC.47.3.837-846.2003. [PubMed]
78. Filipe SR, Severina E, Tomasz A. 2000. Distribution of the mosaic structured murM genes among natural populations of Streptococcus pneumoniae. J Bacteriol 182:6798–6805 http://dx.doi.org/10.1128/JB.182.23.6798-6805.2000. [PubMed]
79. Smith AM, Klugman KP. 2000. Non-penicillin-binding protein mediated high-level penicillin and cephalosporin resistance in a Hungarian clone of Streptococcus pneumoniae. Microb Drug Resist 6:105–110 http://dx.doi.org/10.1089/107662900419401. [PubMed]
80. Severin A, Figueiredo AM, Tomasz A. 1996. Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus pneumoniae. J Bacteriol 178:1788–1792 http://dx.doi.org/10.1128/jb.178.7.1788-1792.1996. [PubMed]
81. Severin A, Vaz Pato MV, Sá Figueiredo AM, Tomasz A. 1995. Drastic changes in the peptidoglycan composition of penicillin resistant laboratory mutants of Streptococcus pneumoniae. FEMS Microbiol Lett 130:31–35. [PubMed]
82. Fiser A, Filipe SR, Tomasz A. 2003. Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol 11:547–553 http://dx.doi.org/10.1016/j.tim.2003.10.003. [PubMed]
83. Tillett WS, Goebel WF, Avery OT. 1930. Chemical and immunological properties of a species-specific carbohydrate of pneumococci. J Exp Med 52:895–900 http://dx.doi.org/10.1084/jem.52.6.895. [PubMed]
84. Goebel WF, Shedlovsky T, Lavin GI, Adams MH. 1943. The heterophile antigen of pneumococcus. J Biol Chem 148:1–15.
85. Behr T, Fischer W, Peter-Katalinić J, Egge H. 1992. The structure of pneumococcal lipoteichoic acid. Improved preparation, chemical and mass spectrometric studies. Eur J Biochem 207:1063–1075 http://dx.doi.org/10.1111/j.1432-1033.1992.tb17143.x. [PubMed]
86. Briles EB, Tomasz A. 1975. Membrane lipoteichoic acid is not a precursor to wall teichoic acid in pneumococci. J Bacteriol 122:335–337.
87. Fischer W. 1990. Bacterial phosphoglycolipids and lipoteichoic acids, p 123–234. In Kates M (ed), Glycolipids, Phosphoglycolipids, and Sulfoglycolipids, vol 6. Plenum Press, New York, NY. [PubMed]
88. Gisch N, Kohler T, Ulmer AJ, Müthing J, Pribyl T, Fischer K, Lindner B, Hammerschmidt S, Zähringer U. 2013. Structural reevaluation of Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. J Biol Chem 288:15654–15667 http://dx.doi.org/10.1074/jbc.M112.446963. [PubMed]
89. Denapaite D, Brückner R, Hakenbeck R, Vollmer W. 2012. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 18:344–358 http://dx.doi.org/10.1089/mdr.2012.0026. [PubMed]
90. Klein RA, Hartmann R, Egge H, Behr T, Fischer W. 1996. The aqueous solution structure of a lipoteichoic acid from Streptococcus pneumoniae strain R6 containing 2,4-diamino-2,4,6-trideoxy-galactose: evidence for conformational mobility of the galactopyranose ring. Carbohydr Res 281:79–98 http://dx.doi.org/10.1016/0008-6215(95)00336-3.
91. Liu TY, Gotschlich EC. 1967. Muramic acid phosphate as a component of the mucopeptide of Gram-positive bacteria. J Biol Chem 242:471–476.
92. García P, García JL, García E, López R. 1989. Purification and characterization of the autolytic glycosidase of Streptococcus pneumoniae. Biochem Biophys Res Commun 158:251–256 http://dx.doi.org/10.1016/S0006-291X(89)80205-0.
93. Baur S, Marles-Wright J, Buckenmaier S, Lewis RJ, Vollmer W. 2009. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae. J Bacteriol 191:1200–1210 http://dx.doi.org/10.1128/JB.01120-08. [PubMed]
94. Damjanovic M, Kharat AS, Eberhardt A, Tomasz A, Vollmer W. 2007. The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J Bacteriol 189:7105–7111 http://dx.doi.org/10.1128/JB.00681-07. [PubMed]
95. Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J. 2011. A widespread family of bacterial cell wall assembly proteins. EMBO J 30:4931–4941 http://dx.doi.org/10.1038/emboj.2011.358. [PubMed]
96. Eberhardt A, Hoyland CN, Vollmer D, Bisle S, Cleverley RM, Johnsborg O, Håvarstein LS, Lewis RJ, Vollmer W. 2012. Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18:240–255 http://dx.doi.org/10.1089/mdr.2011.0232. [PubMed]
97. Larson TR, Yother J. 2017. Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β- d- N-acetylglucosamine. Proc Natl Acad Sci USA 114:5695–5700 http://dx.doi.org/10.1073/pnas.1620431114. [PubMed]
98. Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R. 2006. A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805 http://dx.doi.org/10.1128/JB.00336-06. [PubMed]
99. Höltje JV, Tomasz A. 1974. Teichoic acid phosphorylcholine esterase. A novel enzyme activity in pneumococcus. J Biol Chem 249:7032–7034.
100. Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68:5690–5695 http://dx.doi.org/10.1128/IAI.68.10.5690-5695.2000. [PubMed]
101. Hermoso JA, Lagartera L, González A, Stelter M, García P, Martínez-Ripoll M, García JL, Menéndez M. 2005. Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nat Struct Mol Biol 12:533–538 http://dx.doi.org/10.1038/nsmb940. [PubMed]
102. Rane L, Subbarow Y. 1940. Nutritional requirements of the pneumococcus. I. Growth factors for types I, II, V, VII, VIII. J Bacteriol 40:695–704.
103. Tomasz A. 1968. Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: chanin formation, loss of transformability, and loss of autolysis. Proc Natl Acad Sci USA 59:86–93 http://dx.doi.org/10.1073/pnas.59.1.86. [PubMed]
104. Lopez R, Garcia E, Garcia P, Garcia JL. 2000. The pneumococcal cell wall degrading enzymes: a modular design to create new lysins?, p 197–211. In Tomasz A (ed), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., Larchmont, New York, NY.
105. Giudicelli S, Tomasz A. 1984. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158:1188–1190.
106. Höltje JV, Tomasz A. 1975. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl- l-alanine amidase of pneumococcus. J Biol Chem 250:6072–6076.
107. Fernández-Tornero C, García E, López R, Giménez-Gallego G, Romero A. 2002. Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodimer. J Mol Biol 321:163–173 http://dx.doi.org/10.1016/S0022-2836(02)00596-X.
108. Pérez-Dorado I, González A, Morales M, Sanles R, Striker W, Vollmer W, Mobashery S, García JL, Martínez-Ripoll M, García P, Hermoso JA. 2010. Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nat Struct Mol Biol 17:576–581 http://dx.doi.org/10.1038/nsmb.1817. [PubMed]
109. Yother J, Leopold K, White J, Fischer W. 1998. Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth. J Bacteriol 180:2093–2101.
110. Gehre F, Spisek R, Kharat AS, Matthews P, Kukreja A, Anthony RM, Dhodapkar MV, Vollmer W, Tomasz A. 2009. Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae. Infect Immun 77:2824–2831 http://dx.doi.org/10.1128/IAI.00986-08. [PubMed]
111. Wagner M. 1964. Studies with fluorescent antibodies of growing bacteria. I. Regeneration of the cell wall in Diplococcus pneumoniae. Zentralbl Bakteriol Orig 195:87–93. (In German.)
112. Briles EB, Tomasz A. 1970. Radioautographic evidence for equatorial wall growth in a Gram-positive bacterium. Segregation of choline-3H-labeled teichoic acid. J Cell Biol 47:786–790 http://dx.doi.org/10.1083/jcb.47.3.786. [PubMed]
113. Daniel RA, Errington J. 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776 http://dx.doi.org/10.1016/S0092-8674(03)00421-5.
114. Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun YV, VanNieuwenhze MS. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew Chem Int Ed Engl 51:12519–12523 http://dx.doi.org/10.1002/anie.201206749. [PubMed]
115. Sham LT, Tsui HC, Land AD, Barendt SM, Winkler ME. 2012. Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr Opin Microbiol 15:194–203 http://dx.doi.org/10.1016/j.mib.2011.12.013. [PubMed]
116. Pinho MG, Kjos M, Veening JW. 2013. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 11:601–614 http://dx.doi.org/10.1038/nrmicro3088. [PubMed]
117. Philippe J, Vernet T, Zapun A. 2014. The elongation of ovococci. Microb Drug Resist 20:215–221 http://dx.doi.org/10.1089/mdr.2014.0032. [PubMed]
118. Fenton AK, El Mortaji L, Lau DT, Rudner DZ, Bernhardt TG. 2017. Erratum: CozE is a member of the MreCD complex that directs cell elongation in Streptococcus pneumoniae. Nat Microbiol 2:17011 http://dx.doi.org/10.1038/nmicrobiol.2017.11. [PubMed]
119. Busiek KK, Margolin W. 2015. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 25:R243–R254 http://dx.doi.org/10.1016/j.cub.2015.01.030. [PubMed]
120. Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C. 2014. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 10:e1004275 http://dx.doi.org/10.1371/journal.pgen.1004275. [PubMed]
121. Mura A, Fadda D, Perez AJ, Danforth ML, Musu D, Rico AI, Krupka M, Denapaite D, Tsui HT, Winkler ME, Branny P, Vicente M, Margolin W, Massidda O. 2016. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. J Bacteriol http://dx.doi.org/10.1128/JB.00608-16. [PubMed]
122. Rued BE, Zheng JJ, Mura A, Tsui HT, Boersma MJ, Mazny JL, Corona F, Perez AJ, Fadda D, Doubravová L, Buriánková K, Branny P, Massidda O, Winkler ME. 2017. Suppression and synthetic-lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin-binding protein interactions in Streptococcus pneumoniae D39. Mol Microbiol 103:931–957 http://dx.doi.org/10.1111/mmi.13613. [PubMed]
123. Zheng JJ, Perez AJ, Tsui HT, Massidda O, Winkler ME. 2017. Absence of the KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement for PBP2b by overproduction of FtsA in Streptococcus pneumoniae D39. Mol Microbiol 106:793–814 http://dx.doi.org/10.1111/mmi.13847. [PubMed]
124. Land AD, Winkler ME. 2011. The requirement for pneumococcal MreC and MreD is relieved by inactivation of the gene encoding PBP1a. J Bacteriol 193:4166–4179 http://dx.doi.org/10.1128/JB.05245-11. [PubMed]
125. Le Gouëllec A, Roux L, Fadda D, Massidda O, Vernet T, Zapun A. 2008. Roles of pneumococcal DivIB in cell division. J Bacteriol 190:4501–4511 http://dx.doi.org/10.1128/JB.00376-08. [PubMed]
126. Lara B, Rico AI, Petruzzelli S, Santona A, Dumas J, Biton J, Vicente M, Mingorance J, Massidda O. 2005. Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 55:699–711 http://dx.doi.org/10.1111/j.1365-2958.2004.04432.x. [PubMed]
127. Jacq M, Adam V, Bourgeois D, Moriscot C, Di Guilmi AM, Vernet T, Morlot C. 2015. Remodeling of the Z-ring nanostructure during the Streptococcus pneumoniae cell cycle revealed by photoactivated localization microscopy. MBio 6:e01108-15 http://dx.doi.org/10.1128/mBio.01108-15. [PubMed]
128. Fadda D, Pischedda C, Caldara F, Whalen MB, Anderluzzi D, Domenici E, Massidda O. 2003. Characterization of divIVA and other genes located in the chromosomal region downstream of the dcw cluster in Streptococcus pneumoniae. J Bacteriol 185:6209–6214 http://dx.doi.org/10.1128/JB.185.20.6209-6214.2003. [PubMed]
129. Ishikawa S, Kawai Y, Hiramatsu K, Kuwano M, Ogasawara N. 2006. A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol Microbiol 60:1364–1380 http://dx.doi.org/10.1111/j.1365-2958.2006.05184.x. [PubMed]
130. Tavares JR, de Souza RF, Meira GL, Gueiros-Filho FJ. 2008. Cytological characterization of YpsB, a novel component of the Bacillus subtilis divisome. J Bacteriol 190:7096–7107 http://dx.doi.org/10.1128/JB.00064-08. [PubMed]
131. Krupka M, Cabré EJ, Jiménez M, Rivas G, Rico AI, Vicente M. 2014. Role of the FtsA C terminus as a switch for polymerization and membrane association. MBio 5:e02221 http://dx.doi.org/10.1128/mBio.02221-14. [PubMed]
132. Ulrych A, Holečková N, Goldová J, Doubravová L, Benada O, Kofroňová O, Halada P, Branny P. 2016. Characterization of pneumococcal Ser/Thr protein phosphatase phpP mutant and identification of a novel PhpP substrate, putative RNA binding protein Jag. BMC Microbiol 16:247 http://dx.doi.org/10.1186/s12866-016-0865-6. [PubMed]
133. Stamsås GA, Straume D, Ruud Winther A, Kjos M, Frantzen CA, Håvarstein LS. 2017. Identification of EloR (Spr1851) as a regulator of cell elongation in Streptococcus pneumoniae. Mol Microbiol 105:954–967 http://dx.doi.org/10.1111/mmi.13748. [PubMed]
134. Echenique J, Kadioglu A, Romao S, Andrew PW, Trombe MC. 2004. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect Immun 72:2434–2437 http://dx.doi.org/10.1128/IAI.72.4.2434-2437.2004. [PubMed]
135. Nováková L, Sasková L, Pallová P, Janecek J, Novotná J, Ulrych A, Echenique J, Trombe MC, Branny P. 2005. Characterization of a eukaryotic type serine/threonine protein kinase and protein phosphatase of Streptococcus pneumoniae and identification of kinase substrates. FEBS J 272:1243–1254 http://dx.doi.org/10.1111/j.1742-4658.2005.04560.x. [PubMed]
136. Yeats C, Finn RD, Bateman A. 2002. The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27:438–440 http://dx.doi.org/10.1016/S0968-0004(02)02164-3.
137. Osaki M, Arcondéguy T, Bastide A, Touriol C, Prats H, Trombe MC. 2009. The StkP/PhpP signaling couple in Streptococcus pneumoniae: cellular organization and physiological characterization. J Bacteriol 191:4943–4950 http://dx.doi.org/10.1128/JB.00196-09. [PubMed]
138. Pallová P, Hercík K, Sasková L, Nováková L, Branny P. 2007. A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo. Biochem Biophys Res Commun 355:526–530 http://dx.doi.org/10.1016/j.bbrc.2007.01.184. [PubMed]
139. Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, He QY. 2010. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 9:275–282 http://dx.doi.org/10.1021/pr900612v. [PubMed]
140. Nováková L, Bezousková S, Pompach P, Spidlová P, Sasková L, Weiser J, Branny P. 2010. Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol 192:3629–3638 http://dx.doi.org/10.1128/JB.01564-09. [PubMed]
141. Giefing C, Jelencsics KE, Gelbmann D, Senn BM, Nagy E. 2010. The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology 156:1697–1707 http://dx.doi.org/10.1099/mic.0.036335-0. [PubMed]
142. Fleurie A, Cluzel C, Guiral S, Freton C, Galisson F, Zanella-Cleon I, Di Guilmi AM, Grangeasse C. 2012. Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae. Mol Microbiol 83:746–758 http://dx.doi.org/10.1111/j.1365-2958.2011.07962.x. [PubMed]
143. Beilharz K, Nováková L, Fadda D, Branny P, Massidda O, Veening JW. 2012. Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci USA 109:E905–E913 http://dx.doi.org/10.1073/pnas.1119172109. [PubMed]
144. Falk SP, Weisblum B. 2013. Phosphorylation of the Streptococcus pneumoniae cell wall biosynthesis enzyme MurC by a eukaryotic-like Ser/Thr kinase. FEMS Microbiol Lett 340:19–23 http://dx.doi.org/10.1111/1574-6968.12067. [PubMed]
145. Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C, Lavergne JP, Franz-Wachtel M, Macek B, Combet C, Kuru E, VanNieuwenhze MS, Brun YV, Sherratt D, Grangeasse C. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:259–262 http://dx.doi.org/10.1038/nature13966. [PubMed]
146. Holečková N, Doubravová L, Massidda O, Molle V, Buriánková K, Benada O, Kofroňová O, Ulrych A, Branny P. 2014. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae. MBio 6:e01700-14 http://dx.doi.org/10.1128/mBio.01700-14. [PubMed]
147. Fenton AK, Manuse S, Flores-Kim J, Garcia PS, Mercy C, Grangeasse C, Bernhardt TG, Rudner DZ. 2018. Phosphorylation-dependent activation of the cell wall synthase PBP2a in Streptococcus pneumoniae by MacP. Proc Natl Acad Sci USA 115:2812–2817 http://dx.doi.org/10.1073/pnas.1715218115. [PubMed]
148. Sasková L, Nováková L, Basler M, Branny P. 2007. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 189:4168–4179 http://dx.doi.org/10.1128/JB.01616-06. [PubMed]
149. Burnside K, Lembo A, Harrell MI, Gurney M, Xue L, BinhTran NT, Connelly JE, Jewell KA, Schmidt BZ, de los Reyes M, Tao WA, Doran KS, Rajagopal L. 2011. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. J Biol Chem 286:44197–44210 http://dx.doi.org/10.1074/jbc.M111.313486. [PubMed]
150. Pompeo F, Foulquier E, Serrano B, Grangeasse C, Galinier A. 2015. Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity through a negative feedback loop in Bacillus subtilis. Mol Microbiol 97:139–150 http://dx.doi.org/10.1111/mmi.13015. [PubMed]
151. Straume D, Stamsås GA, Berg KH, Salehian Z, Håvarstein LS. 2017. Identification of pneumococcal proteins that are functionally linked to penicillin-binding protein 2b (PBP2b). Mol Microbiol 103:99–116 http://dx.doi.org/10.1111/mmi.13543. [PubMed]
152. Karimova G, Dautin N, Ladant D. 2005. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243 http://dx.doi.org/10.1128/JB.187.7.2233-2243.2005. [PubMed]
153. Massidda O, Anderluzzi D, Friedli L, Feger G. 1998. Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology 144:3069–3078 http://dx.doi.org/10.1099/00221287-144-11-3069. [PubMed]
154. Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH. 2008. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 68:1029–1046 http://dx.doi.org/10.1111/j.1365-2958.2008.06210.x. [PubMed]
155. Strahl H, Hamoen LW. 2012. Finding the corners in a cell. Curr Opin Microbiol 15:731–736 http://dx.doi.org/10.1016/j.mib.2012.10.006. [PubMed]
156. Rismondo J, Cleverley RM, Lane HV, Großhennig S, Steglich A, Möller L, Mannala GK, Hain T, Lewis RJ, Halbedel S. 2016. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins. Mol Microbiol 99:978–998 http://dx.doi.org/10.1111/mmi.13279. [PubMed]
157. Cleverley RM, Rismondo J, Lockhart-Cairns MP, Van Bentum PT, Egan AJ, Vollmer W, Halbedel S, Baldock C, Breukink E, Lewis RJ. 2016. Subunit arrangement in GpsB, a regulator of cell wall biosynthesis. Microb Drug Resist 22:446–460 http://dx.doi.org/10.1089/mdr.2016.0050. [PubMed]
158. Wu LJ, Errington J. 2011. Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 10:8–12 http://dx.doi.org/10.1038/nrmicro2671. [PubMed]
159. Monahan LG, Liew AT, Bottomley AL, Harry EJ. 2014. Division site positioning in bacteria: one size does not fit all. Front Microbiol 5:19 http://dx.doi.org/10.3389/fmicb.2014.00019. [PubMed]
160. Rowlett VW, Margolin W. 2015. The Min system and other nucleoid-independent regulators of Z ring positioning. Front Microbiol 6:478 http://dx.doi.org/10.3389/fmicb.2015.00478. [PubMed]
161. Manuse S, Jean NL, Guinot M, Lavergne JP, Laguri C, Bougault CM, VanNieuwenhze MS, Grangeasse C, Simorre JP. 2016. Structure-function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ. Nat Commun 7:12071 http://dx.doi.org/10.1038/ncomms12071. [PubMed]
162. van Raaphorst R, Kjos M, Veening JW. 2017. Chromosome segregation drives division site selection in Streptococcus pneumoniae. Proc Natl Acad Sci USA 114:E5959–E5968 http://dx.doi.org/10.1073/pnas.1620608114. [PubMed]
163. Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. 2016b. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 40:41–56 http://dx.doi.org/10.1093/femsre/fuv041. [PubMed]

Article metrics loading...



has a complex cell wall that plays key roles in cell shape maintenance, growth and cell division, and interactions with components of the human host. The peptidoglycan has a heterogeneous composition with more than 50 subunits (muropeptides)—products of several peptidoglycan-modifying enzymes. The amidation of glutamate residues in the stem peptide is needed for efficient peptide cross-linking, and peptides with a dipeptide branch prevail in some beta-lactam-resistant strains. The glycan strands are modified by deacetylation of -acetylglucosamine residues and -acetylation of -acetylmuramic acid residues, and both modifications contribute to pneumococcal resistance to lysozyme. The glycan strands carry covalently attached wall teichoic acid and capsular polysaccharide. Pneumococci are unique in that the wall teichoic acid and lipoteichoic acid contain the same unusually complex repeating units decorated with phosphoryl choline residues, which anchor the choline-binding proteins. The structures of lipoteichoic acid and the attachment site of wall teichoic acid to peptidoglycan have recently been revised. During growth, pneumococci assemble their cell walls at midcell in coordinated rounds of cell elongation and division, leading to the typical ovococcal cell shape. Cell wall growth depends on the cytoskeletal FtsA and FtsZ proteins and is regulated by several morphogenesis proteins that also show patterns of dynamic localization at midcell. Some of the key regulators are phosphorylated by StkP and dephosphorylated by PhpP to facilitate robust selection of the division site and plane and to maintain cell shape.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagram of the cell wall complex of pneumococci. Some of the MurNAc and GlcNAc residues in the glycan chains of peptidoglycan are modified by -acetylation or -deacetylation, respectively. Direct and indirect peptide cross-links are shown. Capsular polysaccharides have been assumed to be connected to MurNAc residues in peptidoglycan, but recent work showed that they might be connected to GlcNAc residues. Surface proteins are covalently linked to peptides in peptidoglycan; choline-binding proteins attach noncovalently to phosphoryl choline residues in WTA.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Role of MurM and MurN in cell wall branching. The substrate of the MurM- and MurN-catalyzed branching reaction is lipid II, which is composed of -acetylated disaccharide units of glucosamine (hexagon with G) and muramic acid (hexagon with M) with the pentapeptide attached to the M residues. Lipid II is anchored on the plasma membrane through the carrier lipid bactoprenyl phosphate (zig-zag line). Attachment of the completed precursor to the preexisting cell wall occurs on the outer surface of the plasma membrane by the activity of glycosyltransferases and transpeptidases. Reproduced with permission from reference 82 .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

HPLC elution profiles of stem peptides of the peptidoglycan from the penicillin-susceptible strain R36A and several penicillin-resistant strains that carry different abnormal alleles. Structures of cell wall stem peptides identified in the pneumococcal peptidoglycan of penicillin-susceptible and -resistant strains of pneumococci. Reproduced with permission from reference 42 .

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Structure of the pneumococcal LTA and WTA. Both types of teichoic acid have identical chains (top) which carry phosphoryl choline and -alanine residues. In LTA the teichoic acid chains are β-glycosidically linked from AATGal to the lipid anchor (bottom left). In WTA the linkage occurs via an α-linkage from AATGal to MurNAc-phosphate in peptidoglycan. The figure was kindly provided by Nicolas Gisch (Research Centre Borstel, Germany). RU, repeating unit.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Cartoon of a cell wall growth and division complex at midcell showing elongation and cell division proteins and the peptidoglycan hydrolases PcsB and LytB, which cleave the septum for pole formation and cell separation.

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Cell wall peptide composition of several strains of

Source: microbiolspec June 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0018-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error