1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Capsular Polysaccharide

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: James C. Paton1, Claudia Trappetti2
  • Editors: Vincent A. Fischetti3, Richard P. Novick4, Joseph J. Ferretti5, Daniel A. Portnoy6, Miriam Braunstein7, Julian I. Rood8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia; 2: Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia; 3: The Rockefeller University, New York, NY; 4: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 5: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 6: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 7: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 8: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0019-2018
  • Received 23 January 2018 Accepted 15 February 2019 Published 12 April 2019
  • James Patton, [email protected]
image of <span class="jp-italic">Streptococcus pneumoniae</span> Capsular Polysaccharide
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Capsular Polysaccharide, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0019-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0019-2018-2.gif
  • Abstract:

    The polysaccharide capsule of is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.

  • Citation: Paton J, Trappetti C. 2019. Capsular Polysaccharide. Microbiol Spectrum 7(2):GPP3-0019-2018. doi:10.1128/microbiolspec.GPP3-0019-2018.

References

1. Austrian R. 1981. Pneumococcus: the first one hundred years. Rev Infect Dis 3:183–189 http://dx.doi.org/10.1093/clinids/3.2.183. [PubMed]
2. Austrian R. 1981. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev Infect Dis 3(Suppl) :S1–S17 http://dx.doi.org/10.1093/clinids/3.Supplement_1.S1.
3. Dochez AR, Avery OT. 1917. The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 26:477–493 http://dx.doi.org/10.1084/jem.26.4.477.
4. Avery OT, Heidelberger M. 1925. Immunological relationships of cell constituents of pneumococcus. J Exp Med 42:367–376 http://dx.doi.org/10.1084/jem.42.3.367. [PubMed]
5. Avery OT, Morgan HJ. 1925. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J Exp Med 42:347–353 http://dx.doi.org/10.1084/jem.42.3.347.
6. Skov Sørensen UB, Blom J, Birch-Andersen A, Henrichsen J. 1988. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect Immun 56:1890–1896. [PubMed]
7. Sørensen UBS, Henrichsen J, Chen HC, Szu SC. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb Pathog 8:325–334 http://dx.doi.org/10.1016/0882-4010(90)90091-4.
8. Geno KA, Saad JS, Nahm MH. 2017. Discovery of novel pneumococcal serotype 35D, a natural WciG-deficient variant of serotype 35B. J Clin Microbiol 55:1416–1425 http://dx.doi.org/10.1128/JCM.00054-17. [PubMed]
9. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MH. 2015. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 28:871–899 http://dx.doi.org/10.1128/CMR.00024-15.
10. Avery OT, Dubos R. 1931. The protective action of a specific enzyme against type III pneumococcus infections in mice. J Exp Med 54:73–89 http://dx.doi.org/10.1084/jem.54.1.73. [PubMed]
11. Bender MH, Yother J. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J Biol Chem 276:47966–47974 http://dx.doi.org/10.1074/jbc.M105448200. [PubMed]
12. Hardy GG, Magee AD, Ventura CL, Caimano MJ, Yother J. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect Immun 69:2309–2317 http://dx.doi.org/10.1128/IAI.69.4.2309-2317.2001. [PubMed]
13. Magee AD, Yother J. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect Immun 69:3755–3761 http://dx.doi.org/10.1128/IAI.69.6.3755-3761.2001. [PubMed]
14. Morona JK, Miller DC, Morona R, Paton JC. 2004. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB, and cpsD have on virulence of Streptococcus pneumoniae. J Infect Dis 189:1905–1913 http://dx.doi.org/10.1086/383352. [PubMed]
15. Marsh R, Smith-Vaughan H, Hare KM, Binks M, Kong F, Warning J, Gilbert GL, Morris P, Leach AJ. 2010. The nonserotypeable pneumococcus: phenotypic dynamics in the era of anticapsular vaccines. J Clin Microbiol 48:831–835 http://dx.doi.org/10.1128/JCM.01701-09. [PubMed]
16. Keller LE, Robinson DA, McDaniel LS. 2016. Nonencapsulated Streptococcus pneumoniae: emergence and pathogenesis. MBio 7:e01792 http://dx.doi.org/10.1128/mBio.01792-15. [PubMed]
17. Griffith F. 1928. The significance of pneumococcal types. J Hyg (Lond) 27:113–159 http://dx.doi.org/10.1017/S0022172400031879.
18. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158 http://dx.doi.org/10.1084/jem.79.2.137. [PubMed]
19. Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ, Weiser JN. 2007. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 75:83–90 http://dx.doi.org/10.1128/IAI.01475-06. [PubMed]
20. Hyams C, Camberlein E, Cohen JM, Bax K, Brown JS. 2010. The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect Immun 78:704–715 http://dx.doi.org/10.1128/IAI.00881-09. [PubMed]
21. Abeyta M, Hardy GG, Yother J. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 71:218–225 http://dx.doi.org/10.1128/IAI.71.1.218-225.2003. [PubMed]
22. Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S, Henriques-Normark B. 2007. Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell Microbiol 9:1162–1171 http://dx.doi.org/10.1111/j.1462-5822.2006.00857.x. [PubMed]
23. de Vos AF, Dessing MC, Lammers AJ, de Porto AP, Florquin S, de Boer OJ, de Beer R, Terpstra S, Bootsma HJ, Hermans PW, van ’t Veer C, van der Poll T. 2015. The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice. PLoS One 10:e0118181 http://dx.doi.org/10.1371/journal.pone.0118181. [PubMed]
24. MacLEOD CM, Kraus MR. 1950. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J Exp Med 92:1–9 http://dx.doi.org/10.1084/jem.92.1.1.
25. Hyams C, Yuste J, Bax K, Camberlein E, Weiser JN, Brown JS. 2010. Streptococcus pneumoniae resistance to complement-mediated immunity is dependent on the capsular serotype. Infect Immun 78:716–725 http://dx.doi.org/10.1128/IAI.01056-09. [PubMed]
26. Kelly T, Dillard JP, Yother J. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect Immun 62:1813–1819. [PubMed]
27. Nesin M, Ramirez M, Tomasz A. 1998. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J Infect Dis 177:707–713 http://dx.doi.org/10.1086/514242. [PubMed]
28. Trzciński K, Li Y, Weinberger DM, Thompson CM, Cordy D, Bessolo A, Malley R, Lipsitch M. 2015. Effect of serotype on pneumococcal competition in a mouse colonization model. MBio 6:e00902-15 http://dx.doi.org/10.1128/mBio.00902-15. [PubMed]
29. Zafar MA, Hamaguchi S, Zangari T, Cammer M, Weiser JN. 2017. Capsule type and amount affect shedding and transmission of Streptococcus pneumoniae. MBio 8:e00989-17 http://dx.doi.org/10.1128/mBio.00989-17. [PubMed]
30. Hyams C, Trzcinski K, Camberlein E, Weinberger DM, Chimalapati S, Noursadeghi M, Lipsitch M, Brown JS. 2013. Streptococcus pneumoniae capsular serotype invasiveness correlates with the degree of factor H binding and opsonization with C3b/iC3b. Infect Immun 81:354–363 http://dx.doi.org/10.1128/IAI.00862-12. [PubMed]
31. Lee CJ, Banks SD, Li JP. 1991. Virulence, immunity, and vaccine related to Streptococcus pneumoniae. Crit Rev Microbiol 18:89–114 http://dx.doi.org/10.3109/10408419109113510. [PubMed]
32. Douglas RM, Paton JC, Duncan SJ, Hansman DJ. l983. Antibody response to pneumococcal vaccination in children younger than five years of age. J Infect Dis 48:131–137.
33. O’Brien KL, Millar EV, Zell ER, Bronsdon M, Weatherholtz R, Reid R, Becenti J, Kvamme S, Whitney CG, Santosham M. 2007. Effect of pneumococcal conjugate vaccine on nasopharyngeal colonization among immunized and unimmunized children in a community-randomized trial. J Infect Dis 196:1211–1220 http://dx.doi.org/10.1086/521833. [PubMed]
34. Centers for Disease Control and Prevention (CDC). 2005. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease--United States, 1998-2003. MMWR Morb Mortal Wkly Rep 54:893–897. [PubMed]
35. Brueggemann AB, Pai R, Crook DW, Beall B. 2007. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog 3:e168 http://dx.doi.org/10.1371/journal.ppat.0030168. [PubMed]
36. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, Reingold A, Farley MM, Whitney CG. 2007. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998-2004. J Infect Dis 196:1346–1354 http://dx.doi.org/10.1086/521626. [PubMed]
37. Klugman KP. 2009. The significance of serotype replacement for pneumococcal disease and antibiotic resistance. Adv Exp Med Biol 634:121–128 http://dx.doi.org/10.1007/978-0-387-79838-7_11. [PubMed]
38. von Gottberg A, de Gouveia L, Tempia S, Quan V, Meiring S, von Mollendorf C, Madhi SA, Zell ER, Verani JR, O’Brien KL, Whitney CG, Klugman KP, Cohen C, GERMS-SA Investigators. 2014. Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med 371:1889–1899 http://dx.doi.org/10.1056/NEJMoa1401914. [PubMed]
39. Austrian R, Bernheimer HP, Smith EEB, Mills GT. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J Exp Med 110:585–602 http://dx.doi.org/10.1084/jem.110.4.585. [PubMed]
40. Bernheimer HP, Wermundsen IE, Austrian R. 1967. Qualitative differences in the behavior of pneumoncoccal deoxyribonucleic acids transforming to the same capsular type. J Bacteriol 93:320–333. [PubMed]
41. Guidolin A, Morona JK, Morona R, Hansman D, Paton JC. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect Immun 62:5384–5396. [PubMed]
42. Dillard JP, Vandersea MW, Yother J. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J Exp Med 181:973–983 http://dx.doi.org/10.1084/jem.181.3.973. [PubMed]
43. Arrecubieta C, García E, López R. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167:1–7 http://dx.doi.org/10.1016/0378-1119(95)00657-5.
44. Morona JK, Morona R, Paton JC. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol Microbiol 23:751–763 http://dx.doi.org/10.1046/j.1365-2958.1997.2551624.x. [PubMed]
45. Morona JK, Morona R, Paton JC. 1997. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 19B. J Bacteriol 179:4953–4958 http://dx.doi.org/10.1128/jb.179.15.4953-4958.1997. [PubMed]
46. Kolkman MAB, van der Zeijst BAM, Nuijten PJM. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J Biol Chem 272:19502–19508 http://dx.doi.org/10.1074/jbc.272.31.19502. [PubMed]
47. Kolkman MAB, Wakarchuk W, Nuijten PJM, van der Zeijst BAM. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol Microbiol 26:197–208 http://dx.doi.org/10.1046/j.1365-2958.1997.5791940.x. [PubMed]
48. Muñoz R, Mollerach M, López R, García E. 1997. Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25:79–92 http://dx.doi.org/10.1046/j.1365-2958.1997.4341801.x.
49. Llull D, López R, García E, Muñoz R. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim Biophys Acta 1443:217–224 http://dx.doi.org/10.1016/S0167-4781(98)00213-9.
50. Ramirez M, Tomasz A. 1998. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J Bacteriol 180:5273–5278. [PubMed]
51. Morona JK, Morona R, Paton JC. 1999. Analysis of the 5′ portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. J Bacteriol 181:3599–3605. [PubMed]
52. Morona JK, Morona R, Paton JC. 1999. Comparative genetics of capsular polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J Bacteriol 181:5355–5364. [PubMed]
53. Morona JK, Miller DC, Coffey TJ, Vindurampulle CJ, Spratt BG, Morona R, Paton JC. 1999. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 23F. Microbiology 145:781–789 http://dx.doi.org/10.1099/13500872-145-4-781. [PubMed]
54. Llull D, Muñoz R, López R, García E. 1999. A single gene ( tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J Exp Med 190:241–251 http://dx.doi.org/10.1084/jem.190.2.241. [PubMed]
55. Muñoz R, Mollerach M, López R, García E. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J Bacteriol 181:6214–6219.
56. Iannelli F, Pearce BJ, Pozzi G. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J Bacteriol 181:2652–2654. [PubMed]
57. Jiang SM, Wang L, Reeves PR. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect Immun 69:1244–1255 http://dx.doi.org/10.1128/IAI.69.3.1244-1255.2001. [PubMed]
58. van Selm S, Kolkman MA, van der Zeijst BA, Zwaagstra KA, Gaastra W, van Putten JP. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148:1747–1755 http://dx.doi.org/10.1099/00221287-148-6-1747. [PubMed]
59. van Selm S, van Cann LM, Kolkman MA, van der Zeijst BA, van Putten JP. 2003. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect Immun 71:6192–6198 http://dx.doi.org/10.1128/IAI.71.11.6192-6198.2003. [PubMed]
60. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell B, Reeves PR, Parkhill J, Spratt BG. 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31 http://dx.doi.org/10.1371/journal.pgen.0020031. [PubMed]
61. Dillard JP, Yother J. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol Microbiol 12:959–972 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01084.x. [PubMed]
62. García E, García P, López R. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol Gen Genet 239:188–195. [PubMed]
63. Arrecubieta C, López R, García E. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J Bacteriol 176:6375–6383 http://dx.doi.org/10.1128/jb.176.20.6375-6383.1994. [PubMed]
64. Arrecubieta C, López R, García E. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J Exp Med 184:449–455 http://dx.doi.org/10.1084/jem.184.2.449. [PubMed]
65. DeAngelis PL, Papaconstantinou J, Weigel PH. 1993. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J Biol Chem 268:19181–19184. [PubMed]
66. Keenleyside WJ, Whitfield C. 1996. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592 http://dx.doi.org/10.1074/jbc.271.45.28581. [PubMed]
67. Mollerach M, López R, García E. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 188:2047–2056 http://dx.doi.org/10.1084/jem.188.11.2047. [PubMed]
68. Cartee RT, Forsee WT, Jensen JW, Yother J. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. J Biol Chem 276:48831–48839 http://dx.doi.org/10.1074/jbc.M106481200. [PubMed]
69. Llull D, García E, López R. 2001. Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J Biol Chem 276:21053–21061 http://dx.doi.org/10.1074/jbc.M010287200. [PubMed]
70. Yother J. 2011. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 65:563–581 http://dx.doi.org/10.1146/annurev.micro.62.081307.162944. [PubMed]
71. Whitfield C, Paiment A. 2003. Biosynthesis and assembly of group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 338:2491–2502 http://dx.doi.org/10.1016/j.carres.2003.08.010. [PubMed]
72. Kolkman MAB, Morrison DA, Van Der Zeijst BAM, Nuijten PJM. 1996. The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyl transferase gene cps14E. J Bacteriol 178:3736–3741 http://dx.doi.org/10.1128/jb.178.13.3736-3741.1996. [PubMed]
73. Larson TR, Yother J. 2017. Streptococcus pneumoniae capsular polysaccharide is linked to peptidoglycan via a direct glycosidic bond to β- d- N-acetylglucosamine. Proc Natl Acad Sci U S A 114:5695–5700 http://dx.doi.org/10.1073/pnas.1620431114. [PubMed]
74. Eberhardt A, Hoyland CN, Vollmer D, Bisle S, Cleverley RM, Johnsborg O, Håvarstein LS, Lewis RJ, Vollmer W. 2012. Attachment of capsular polysaccharide to the cell wall in Streptococcus pneumoniae. Microb Drug Resist 18:240–255 http://dx.doi.org/10.1089/mdr.2011.0232. [PubMed]
75. Morona JK, Morona R, Paton JC. 2006. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc Natl Acad Sci U S A 103:8505–8510 http://dx.doi.org/10.1073/pnas.0602148103. [PubMed]
76. Lawrence ER, Griffiths DB, Martin SA, George RC, Hall LM. 2003. Evaluation of semiautomated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups. J Clin Microbiol 41:601–607 http://dx.doi.org/10.1128/JCM.41.2.601-607.2003. [PubMed]
77. Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ, Turner P, Aanensen DM, Bentley SD, Didelot X, Fraser C. 2017. Pneumococcal capsule synthesis locus cps as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol Biol Evol 34:2537–2554 http://dx.doi.org/10.1093/molbev/msx173. [PubMed]
78. Barnes DM, Whittier S, Gilligan PH, Soares S, Tomasz A, Henderson FW. 1995. Transmission of multidrug-resistant serotype 23F Streptococcus pneumoniae in group day care: evidence suggesting capsular transformation of the resistant strain in vivo. J Infect Dis 171:890–896 http://dx.doi.org/10.1093/infdis/171.4.890. [PubMed]
79. Coffey TJ, Dowson CG, Daniels M, Zhou J, Martin C, Spratt BG, Musser JM. 1991. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol Microbiol 5:2255–2260 http://dx.doi.org/10.1111/j.1365-2958.1991.tb02155.x. [PubMed]
80. Coffey TJ, Enright MC, Daniels M, Wilkinson P, Berrón S, Fenoll A, Spratt BG. 1998. Serotype 19A variants of the Spanish serotype 23F multiresistant clone of Streptococcus pneumoniae. Microb Drug Resist 4:51–55 http://dx.doi.org/10.1089/mdr.1998.4.51. [PubMed]
81. Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27:73–83 http://dx.doi.org/10.1046/j.1365-2958.1998.00658.x. [PubMed]
82. Kroll JS, Loynds BM, Moxon ER. 1991. The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol Microbiol 5:1549–1560 http://dx.doi.org/10.1111/j.1365-2958.1991.tb00802.x. [PubMed]
83. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F, Goldblatt D, Corander J, Parkhill J, Turner P, Bentley SD. 2014. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46:305–309 http://dx.doi.org/10.1038/ng.2895. [PubMed]
84. Chaguza C, Andam CP, Harris SR, Cornick JE, Yang M, Bricio-Moreno L, Kamng’ona AW, Parkhill J, French N, Heyderman RS, Kadioglu A, Everett DB, Bentley SD, Hanage WP. 2016. Recombination in Streptococcus pneumoniae lineages increase with carriage duration and size of the polysaccharide capsule. MBio 7:e01053-16 http://dx.doi.org/10.1128/mBio.01053-16. [PubMed]
85. Marks LR, Reddinger RM, Hakansson AP. 2012. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. MBio 3:e00200-12 http://dx.doi.org/10.1128/mBio.00200-12. [PubMed]
86. Skov Sørensen UB, Yao K, Yang Y, Tettelin H, Kilian M. 2016. Capsular polysaccharide expression in commensal Streptococcus species: genetic and antigenic similarities to Streptococcus pneumoniae. MBio 7:e01844-16 http://dx.doi.org/10.1128/mBio.01844-16. [PubMed]
87. Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI. 2004. Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72:5582–5596 http://dx.doi.org/10.1128/IAI.72.10.5582-5596.2004. [PubMed]
88. Ogunniyi AD, Mahdi LK, Trappetti C, Verhoeven N, Mermans D, Van der Hoek MB, Plumptre CD, Paton JC. 2012. Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infect Immun 80:3268–3278 http://dx.doi.org/10.1128/IAI.00295-12. [PubMed]
89. Talbot UM, Paton AW, Paton JC. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect Immun 64:3772–3777. [PubMed]
90. Morona JK, Paton JC, Miller DC, Morona R. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol 35:1431–1442 http://dx.doi.org/10.1046/j.1365-2958.2000.01808.x. [PubMed]
91. Cieslewicz MJ, Kasper DL, Wang Y, Wessels MR. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem 276:139–146 http://dx.doi.org/10.1074/jbc.M005702200. [PubMed]
92. Morona JK, Morona R, Miller DC, Paton JC. 2003. Mutational analysis of the carboxy-terminal (YGX) 4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol 185:3009–3019 http://dx.doi.org/10.1128/JB.185.10.3009-3019.2003. [PubMed]
93. Bender MH, Cartee RT, Yother J. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J Bacteriol 185:6057–6066 http://dx.doi.org/10.1128/JB.185.20.6057-6066.2003. [PubMed]
94. Glucksmann MA, Reuber TL, Walker GC. 1993. Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055 http://dx.doi.org/10.1128/jb.175.21.7045-7055.1993. [PubMed]
95. Morona R, Van Den Bosch L, Daniels C. 2000. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:1–4 http://dx.doi.org/10.1099/00221287-146-1-1. [PubMed]
96. Morona JK, Morona R, Miller DC, Paton JC. 2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184:577–583 http://dx.doi.org/10.1128/JB.184.2.577-583.2002. [PubMed]
97. Weiser JN, Bae D, Epino H, Gordon SB, Kapoor M, Zenewicz LA, Shchepetov M. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect Immun 69:5430–5439 http://dx.doi.org/10.1128/IAI.69.9.5430-5439.2001. [PubMed]
98. Geno KA, Hauser JR, Gupta K, Yother J. 2014. Streptococcus pneumoniae phosphotyrosine phosphatase CpsB and alterations in capsule production resulting from changes in oxygen availability. J Bacteriol 196:1992–2003 http://dx.doi.org/10.1128/JB.01545-14. [PubMed]
99. Henriques MX, Rodrigues T, Carido M, Ferreira L, Filipe SR. 2011. Synthesis of capsular polysaccharide at the division septum of Streptococcus pneumoniae is dependent on a bacterial tyrosine kinase. Mol Microbiol 82:515–534 http://dx.doi.org/10.1111/j.1365-2958.2011.07828.x. [PubMed]
100. Nourikyan J, Kjos M, Mercy C, Cluzel C, Morlot C, Noirot-Gros MF, Guiral S, Lavergne JP, Veening JW, Grangeasse C. 2015. Autophosphorylation of the bacterial tyrosine-kinase CpsD connects capsule synthesis with the cell cycle in Streptococcus pneumoniae. PLoS Genet 11:e1005518 http://dx.doi.org/10.1371/journal.pgen.1005518. [PubMed]
101. Standish AJ, Whittall JJ, Morona R. 2014. Tyrosine phosphorylation enhances activity of pneumococcal autolysin LytA. Microbiology 160:2745–2754 http://dx.doi.org/10.1099/mic.0.080747-0. [PubMed]
102. Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M. 2005. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 http://dx.doi.org/10.1128/IAI.73.8.4653-4667.2005. [PubMed]
103. Kietzman CC, Gao G, Mann B, Myers L, Tuomanen EI. 2016. Dynamic capsule restructuring by the main pneumococcal autolysin LytA in response to the epithelium. Nat Commun 7:10859 http://dx.doi.org/10.1038/ncomms10859. [PubMed]
104. Ogunniyi AD, Giammarinaro P, Paton JC. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148:2045–2053 http://dx.doi.org/10.1099/00221287-148-7-2045. [PubMed]
105. Giammarinaro P, Paton JC. 2002. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect Immun 70:5454–5461 http://dx.doi.org/10.1128/IAI.70.10.5454-5461.2002. [PubMed]
106. Wen Z, Sertil O, Cheng Y, Zhang S, Liu X, Wang WC, Zhang JR. 2015. Sequence elements upstream of the core promoter are necessary for full transcription of the capsule gene operon in Streptococcus pneumoniae strain D39. Infect Immun 83:1957–1972 http://dx.doi.org/10.1128/IAI.02944-14. [PubMed]
107. Shainheit MG, Mulé M, Camilli A. 2014. The core promoter of the capsule operon of Streptococcus pneumoniae is necessary for colonization and invasive disease. Infect Immun 82:694–705 http://dx.doi.org/10.1128/IAI.01289-13. [PubMed]
108. Wen Z, Liu Y, Qu F, Zhang JR. 2016. Allelic variation of the capsule promoter diversifies encapsulation and virulence in Streptococcus pneumoniae. Sci Rep 6:30176 http://dx.doi.org/10.1038/srep30176. [PubMed]
109. Wu K, Xu H, Zheng Y, Wang L, Zhang X, Yin Y. 2016. CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci Rep 6:29255 http://dx.doi.org/10.1038/srep29255. [PubMed]
110. Zheng Y, Zhang X, Wang X, Wang L, Zhang J, Yin Y. 2017. ComE, an essential response regulator, negatively regulates the expression of the capsular polysaccharide locus and attenuates the bacterial virulence in Streptococcus pneumoniae. Front Microbiol 8:277 http://dx.doi.org/10.3389/fmicb.2017.00277. [PubMed]
111. Weiser JN, Austrian R, Sreenivasan PK, Masure HR. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589. [PubMed]
112. Cundell DR, Weiser JN, Shen J, Young A, Tuomanen EI. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect Immun 63:757–761. [PubMed]
113. Kim JO, Weiser JN. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis 177:368–377 http://dx.doi.org/10.1086/514205. [PubMed]
114. Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, Trappetti C, Ogunniyi AD, Shewell LK, Boitano M, Clark TA, Korlach J, Blades M, Mirkes E, Gorban AN, Paton JC, Jennings MP, Oggioni MR. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 5:5055 http://dx.doi.org/10.1038/ncomms6055. [PubMed]
115. Trappetti C, Potter AJ, Paton AW, Oggioni MR, Paton JC. 2011. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect Immun 79:4550–4558 http://dx.doi.org/10.1128/IAI.05644-11. [PubMed]
116. Trappetti C, McAllister LJ, Chen A, Wang H, Paton AW, Oggioni MR, McDevitt CA, Paton JC. 2017. Autoinducer 2 signaling via the phosphotransferase FruA drives galactose utilization by Streptococcus pneumoniae, resulting in hypervirulence. MBio 8:e02269-16 http://dx.doi.org/10.1128/mBio.02269-16.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0019-2018
2019-04-12
2019-12-07

Abstract:

The polysaccharide capsule of is the dominant surface structure of the organism and plays a critical role in virulence, principally by interfering with host opsonophagocytic clearance mechanisms. The capsule is the target of current pneumococcal vaccines, but there are 98 currently recognised polysaccharide serotypes and protection is strictly serotype-specific. Widespread use of these vaccines is driving changes in serotype prevalence in both carriage and disease. This chapter summarises current knowledge on the role of the capsule and its regulation in pathogenesis, the mechanisms of capsule synthesis, the genetic basis for serotype differences, and provides insights into how so many structurally distinct capsular serotypes have evolved. Such knowledge will inform ongoing refinement of pneumococcal vaccination strategies.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Comparison of the CPS biological repeat unit structures of serotypes 6A, 6B, 14, 15B, 15C 19F, 19A, 19B, and 19C. These are based on published chemical repeat unit structures ( 9 ), adjusting for the fact that Glc is the first sugar of the biological repeat unit.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0019-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Organization of the loci from selected serotypes. Gene and locus designations are as published. Open reading frames (ORFs) within the DNA sequence are indicated by large boxed arrows. Highly conserved ORFs, or those encoding proteins belonging to a particular functional group, are identified as shown in the legend at the bottom of the figure. Assignment of an ORF to a given function-related group is based on the published information for each locus as well as on additional database comparisons for some of the ORFs. The short boxed arrows represent cryptic ORFs not required for CPS biosynthesis in the respective serotype.

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0019-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error