1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genomics and Genetics of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Francesco Santoro1, Francesco Iannelli2, Gianni Pozzi3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy; 2: Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy; 3: Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
  • Received 06 February 2018 Accepted 18 September 2018 Published 17 May 2019
  • Francesco Iannelli, [email protected]
image of Genomics and Genetics of <span class="jp-italic">Streptococcus pneumoniae</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Genomics and Genetics of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0025-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0025-2018-2.gif
  • Abstract:

    Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.

  • Citation: Santoro F, Iannelli F, Pozzi G. 2019. Genomics and Genetics of . Microbiol Spectrum 7(3):GPP3-0025-2018. doi:10.1128/microbiolspec.GPP3-0025-2018.

References

1. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158 http://dx.doi.org/10.1084/jem.79.2.137. [PubMed]
2. Ravin AW. 1959. Reciprocal capsular transformations of pneumococci. J Bacteriol 77:296–309.
3. Tiraby G, Fox MS, Bernheimer H. 1975. Marker discrimination in deoxyribonucleic acid-mediated transformation of various Pneumococcus strains. J Bacteriol 121:608–618.
4. Smith MD, Guild WR. 1979. A plasmid in Streptococcus pneumoniae. J Bacteriol 137:735–739.
5. Bricker AL, Camilli A. 1999. Transformation of a type 4 encapsulated strain of Streptococcus pneumoniae. FEMS Microbiol Lett 172:131–135 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13460.x. [PubMed]
6. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506 http://dx.doi.org/10.1126/science.1061217. [PubMed]
7. Pozzi G, Masala L, Iannelli F, Manganelli R, Havarstein LS, Piccoli L, Simon D, Morrison DA. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J Bacteriol 178:6087–6090 http://dx.doi.org/10.1128/jb.178.20.6087-6090.1996. [PubMed]
8. Pearce BJ, Iannelli F, Pozzi G. 2002. Construction of new unencapsulated (rough) strains of Streptococcus pneumoniae. Res Microbiol 153:243–247 http://dx.doi.org/10.1016/S0923-2508(02)01312-8.
9. Dopazo J, Mendoza A, Herrero J, Caldara F, Humbert Y, Friedli L, Guerrier M, Grand-Schenk E, Gandin C, de Francesco M, Polissi A, Buell G, Feger G, García E, Peitsch M, García-Bustos JF. 2001. Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb Drug Resist 7:99–125. [PubMed]
10. Porter RD, Shoemaker NB, Rampe G, Guild WR. 1979. Bacteriophage-associated gene transfer in pneumococcus: transduction or pseudotransduction? J Bacteriol 137:556–567.
11. Hoskins J, Alborn WE Jr, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu DJ, Fuller W, Geringer C, Gilmour R, Glass JS, Khoja H, Kraft AR, Lagace RE, LeBlanc DJ, Lee LN, Lefkowitz EJ, Lu J, Matsushima P, McAhren SM, McHenney M, McLeaster K, Mundy CW, Nicas TI, Norris FH, O’Gara M, Peery RB, Robertson GT, Rockey P, Sun PM, Winkler ME, Yang Y, Young-Bellido M, Zhao G, Zook CA, Baltz RH, Jaskunas SR, Rosteck PR Jr, Skatrud PL, Glass JI. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol 183:5709–5717 http://dx.doi.org/10.1128/JB.183.19.5709-5717.2001. [PubMed]
12. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. 2007. Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38–51 http://dx.doi.org/10.1128/JB.01148-06. [PubMed]
13. Treangen TJ, Salzberg SL. 2011. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46 http://dx.doi.org/10.1038/nrg3117. [PubMed]
14. Hahn C, Harrison EM, Parkhill J, Holmes MA, Paterson GK. 2015. Draft genome sequence of the Streptococcus pneumoniae Avery strain A66. Genome Announc 3:3 http://dx.doi.org/10.1128/genomeA.00697-15. [PubMed]
15. McGee L, McDougal L, Zhou J, Spratt BG, Tenover FC, George R, Hakenbeck R, Hryniewicz W, Lefévre JC, Tomasz A, Klugman KP. 2001. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the pneumococcal molecular epidemiology network. J Clin Microbiol 39:2565–2571 http://dx.doi.org/10.1128/JCM.39.7.2565-2571.2001. [PubMed]
16. Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. 2012. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PLoS One 7:e33320 http://dx.doi.org/10.1371/journal.pone.0033320. [PubMed]
17. Carvalho SM, Kloosterman TG, Kuipers OP, Neves AR. 2011. CcpA ensures optimal metabolic fitness of Streptococcus pneumoniae. PLoS One 6:e26707 http://dx.doi.org/10.1371/journal.pone.0026707. [PubMed]
18. Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, Keefe R, Ehrlich NE, Shen K, Hayes J, Barbadora K, Klimke W, Dernovoy D, Tatusova T, Parkhill J, Bentley SD, Post JC, Ehrlich GD, Hu FZ. 2007. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195 http://dx.doi.org/10.1128/JB.00690-07. [PubMed]
19. Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V. 2010. Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107 http://dx.doi.org/10.1186/gb-2010-11-10-r107. [PubMed]
20. Hollingshead SK, Becker R, Briles DE. 2000. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 68:5889–5900 http://dx.doi.org/10.1128/IAI.68.10.5889-5900.2000. [PubMed]
21. Iannelli F, Oggioni MR, Pozzi G. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284:63–71 http://dx.doi.org/10.1016/S0378-1119(01)00896-4.
22. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Kaltoft MS, Barrell B, Reeves PR, Parkhill J, Spratt BG. 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31 http://dx.doi.org/10.1371/journal.pgen.0020031. [PubMed]
23. Oggioni MR, Pozzi G. 2001. Comparative genomics for identification of clone-specific sequence blocks in Streptococcus pneumoniae. FEMS Microbiol Lett 200:137–143 http://dx.doi.org/10.1111/j.1574-6968.2001.tb10705.x.
24. Shoemaker NB, Smith MD, Guild WR. 1979. Organization and transfer of heterologous chloramphenicol and tetracycline resistance genes in pneumococcus. J Bacteriol 139:432–441.
25. Oggioni MR, Claverys JP. 1999. Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology 145:2647–2653 http://dx.doi.org/10.1099/00221287-145-10-2647. [PubMed]
26. Martin B, Humbert O, Camara M, Guenzi E, Walker J, Mitchell T, Andrew P, Prudhomme M, Alloing G, Hakenbeck R, Morrison DA, Boulnois GJ, Claverys J-P. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3483 http://dx.doi.org/10.1093/nar/20.13.3479. [PubMed]
27. Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. 2011. Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics 12:120 http://dx.doi.org/10.1186/1471-2164-12-120. [PubMed]
28. Knutsen E, Johnsborg O, Quentin Y, Claverys J-P, Håvarstein LS. 2006. BOX elements modulate gene expression in Streptococcus pneumoniae: impact on the fine-tuning of competence development. J Bacteriol 188:8307–8312 http://dx.doi.org/10.1128/JB.00850-06. [PubMed]
29. Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. 2014. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun 5:5471 http://dx.doi.org/10.1038/ncomms6471. [PubMed]
30. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. 2011. Rapid pneumococcal evolution in response to clinical interventions. Science 331:430–434 http://dx.doi.org/10.1126/science.1198545. [PubMed]
31. Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Pessia A, Aanensen DM, Mather AE, Page AJ, Salter SJ, Harris D, Nosten F, Goldblatt D, Corander J, Parkhill J, Turner P, Bentley SD. 2014. Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet 46:305–309 http://dx.doi.org/10.1038/ng.2895. [PubMed]
32. Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S, Sá-Leão R, de Lencastre H, Hermans P, Sadowy E, Turner P, Chewapreecha C, Diggle M, Pluschke G, McGee L, Köseoğlu Eser Ö, Low DE, Smith-Vaughan H, Endimiani A, Küffer M, Dupasquier M, Beaudoing E, Weber J, Bruggmann R, Hanage WP, Parkhill J, Hathaway LJ, Mühlemann K, Bentley SD. 2014. Global phylogenomic analysis of nonencapsulated Streptococcus pneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol Evol 6:3281–3294 http://dx.doi.org/10.1093/gbe/evu263. [PubMed]
33. Blomberg C, Dagerhamn J, Dahlberg S, Browall S, Fernebro J, Albiger B, Morfeldt E, Normark S, Henriques-Normark B. 2009. Pattern of accessory regions and invasive disease potential in Streptococcus pneumoniae. J Infect Dis 199:1032–1042 http://dx.doi.org/10.1086/597205. [PubMed]
34. Brown JS, Gilliland SM, Spratt BG, Holden DW. 2004. A locus contained within a variable region of pneumococcal pathogenicity island 1 contributes to virulence in mice. Infect Immun 72:1587–1593 http://dx.doi.org/10.1128/IAI.72.3.1587-1593.2004. [PubMed]
35. Brown JS, Gilliland SM, Holden DW. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585 http://dx.doi.org/10.1046/j.1365-2958.2001.02414.x. [PubMed]
36. Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, Yeo CC, Meinhart A. 2007. Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae. J Biol Chem 282:19606–19618 http://dx.doi.org/10.1074/jbc.M701703200. [PubMed]
37. Harvey RM, Stroeher UH, Ogunniyi AD, Smith-Vaughan HC, Leach AJ, Paton JC. 2011. A variable region within the genome of Streptococcus pneumoniae contributes to strain-strain variation in virulence. PLoS One 6:e19650 http://dx.doi.org/10.1371/journal.pone.0019650. [PubMed]
38. Chan WT, Espinosa M. 2016. The Streptococcus pneumoniae pezAT toxin-antitoxin system reduces β-lactam resistance and genetic competence. Front Microbiol 7:1322 http://dx.doi.org/10.3389/fmicb.2016.01322.
39. Croucher NJ, Walker D, Romero P, Lennard N, Paterson GK, Bason NC, Mitchell AM, Quail MA, Andrew PW, Parkhill J, Bentley SD, Mitchell TJ. 2009. Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniae Spain23F ST81. J Bacteriol 191:1480–1489 http://dx.doi.org/10.1128/JB.01343-08. [PubMed]
40. Iannelli F, Santoro F, Oggioni MR, Pozzi G. 2014. Nucleotide sequence analysis of integrative conjugative element Tn 5253 of Streptococcus pneumoniae. Antimicrob Agents Chemother 58:1235–1239 http://dx.doi.org/10.1128/AAC.01764-13. [PubMed]
41. Ambroset C, Coluzzi C, Guédon G, Devignes MD, Loux V, Lacroix T, Payot S, Leblond-Bourget N. 2016. New insights into the classification and integration specificity of Streptococcus integrative conjugative elements through extensive genome exploration. Front Microbiol 6:1483 http://dx.doi.org/10.3389/fmicb.2015.01483. [PubMed]
42. Kilian M, Poulsen K, Blomqvist T, Håvarstein LS, Bek-Thomsen M, Tettelin H, Sørensen UB. 2008. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 3:e2683 http://dx.doi.org/10.1371/journal.pone.0002683. [PubMed]
43. Prudhomme M, Libante V, Claverys J-P. 2002. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 99:2100–2105 http://dx.doi.org/10.1073/pnas.032262999. [PubMed]
44. Tomasz A, Hotchkiss RD. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc Natl Acad Sci U S A 51:480–487 http://dx.doi.org/10.1073/pnas.51.3.480. [PubMed]
45. Chen JD, Morrison DA. 1987. Modulation of competence for genetic transformation in Streptococcus pneumoniae. J Gen Microbiol 133:1959–1967. [PubMed]
46. Porter RD, Guild WR. 1969. Number of transformable units per cell in Diplococcus pneumoniae. J Bacteriol 97:1033–1035.
47. Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. 2012. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog 8:e1002745 http://dx.doi.org/10.1371/journal.ppat.1002745. [PubMed]
48. Håvarstein LS, Coomaraswamy G, Morrison DA. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92:11140–11144 http://dx.doi.org/10.1073/pnas.92.24.11140. [PubMed]
49. Yother J, McDaniel LS, Briles DE. 1986. Transformation of encapsulated Streptococcus pneumoniae. J Bacteriol 168:1463–1465 http://dx.doi.org/10.1128/jb.168.3.1463-1465.1986. [PubMed]
50. Dillard JP, Yother J. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol Microbiol 12:959–972 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01084.x. [PubMed]
51. Whatmore AM, Barcus VA, Dowson CG. 1999. Genetic diversity of the streptococcal competence ( com) gene locus. J Bacteriol 181:3144–3154.
52. Miller EL, Evans BA, Cornejo OE, Roberts IS, Rozen DE. 2017. Pherotype polymorphism in Streptococcus pneumoniae has no obvious effects on population structure and recombination. Genome Biol Evol 9:2546–2559 http://dx.doi.org/10.1093/gbe/evx188. [PubMed]
53. Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, Luo P, Walling J, Li H, Mintz M, Tsegaye G, Burr PC, Do Y, Ahn S, Gilbert J, Fleischmann RD, Morrison DA. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51:1051–1070 http://dx.doi.org/10.1046/j.1365-2958.2003.03907.x. [PubMed]
54. Peterson S, Cline RT, Tettelin H, Sharov V, Morrison DA. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J Bacteriol 182:6192–6202 http://dx.doi.org/10.1128/JB.182.21.6192-6202.2000. [PubMed]
55. Rimini R, Jansson B, Feger G, Roberts TC, de Francesco M, Gozzi A, Faggioni F, Domenici E, Wallace DM, Frandsen N, Polissi A. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol Microbiol 36:1279–1292 http://dx.doi.org/10.1046/j.1365-2958.2000.01931.x.
56. Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K, Reuter M, Martin B, Wells J, Claverys JP. 2004. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086 http://dx.doi.org/10.1111/j.1365-2958.2003.03892.x. [PubMed]
57. Alloing G, Martin B, Granadel C, Claverys JP. 1998. Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol Microbiol 29:75–83 http://dx.doi.org/10.1046/j.1365-2958.1998.00904.x. [PubMed]
58. Hui FM, Zhou L, Morrison DA. 1995. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153:25–31 http://dx.doi.org/10.1016/0378-1119(94)00841-F.
59. Pestova EV, Håvarstein LS, Morrison DA. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21:853–862 http://dx.doi.org/10.1046/j.1365-2958.1996.501417.x. [PubMed]
60. Prudhomme M, Berge M, Martin B, Polard P. 2016. Pneumococcal competence coordination relies on a cell-contact sensing mechanism. PLoS Genet 12:e1006113 http://dx.doi.org/10.1371/journal.pgen.1006113. [PubMed]
61. Iannelli F, Oggioni MR, Pozzi G. 2005. Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiol Lett 252:321–326 http://dx.doi.org/10.1016/j.femsle.2005.09.008. [PubMed]
62. Lacks SA, Greenberg B. 2001. Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol Microbiol 42:1035–1045 http://dx.doi.org/10.1046/j.1365-2958.2001.02697.x. [PubMed]
63. Lee MS, Morrison DA. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181:5004–5016.
64. Ween O, Gaustad P, Håvarstein LS. 1999. Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol 33:817–827 http://dx.doi.org/10.1046/j.1365-2958.1999.01528.x. [PubMed]
65. Luo P, Morrison DA. 2003. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J Bacteriol 185:349–358 http://dx.doi.org/10.1128/JB.185.1.349-358.2003. [PubMed]
66. Campbell EA, Choi SY, Masure HR. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol Microbiol 27:929–939 http://dx.doi.org/10.1046/j.1365-2958.1998.00737.x. [PubMed]
67. Morrison DA, Baker MF. 1979. Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature 282:215–217 http://dx.doi.org/10.1038/282215a0. [PubMed]
68. Luo P, Li H, Morrison DA. 2003. ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol Microbiol 50:623–633 http://dx.doi.org/10.1046/j.1365-2958.2003.03714.x. [PubMed]
69. Luo P, Li H, Morrison DA. 2004. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae. Mol Microbiol 54:172–183 http://dx.doi.org/10.1111/j.1365-2958.2004.04254.x. [PubMed]
70. Giammarinaro P, Sicard M, Gasc AM. 1999. Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145:1859–1869 http://dx.doi.org/10.1099/13500872-145-8-1859. [PubMed]
71. Guenzi E, Gasc AM, Sicard MA, Hakenbeck R. 1994. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12:505–515 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01038.x. [PubMed]
72. Martin B, Prudhomme M, Alloing G, Granadel C, Claverys JP. 2000. Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol Microbiol 38:867–878 http://dx.doi.org/10.1046/j.1365-2958.2000.02187.x. [PubMed]
73. Mascher T, Zähner D, Merai M, Balmelle N, de Saizieu AB, Hakenbeck R. 2003. The Streptococcus pneumoniaecia regulon: CiaR target sites and transcription profile analysis. J Bacteriol 185:60–70 http://dx.doi.org/10.1128/JB.185.1.60-70.2003. [PubMed]
74. Chastanet A, Prudhomme M, Claverys JP, Msadek T. 2001. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J Bacteriol 183:7295–7307 http://dx.doi.org/10.1128/JB.183.24.7295-7307.2001. [PubMed]
75. Robertson GT, Ng W-L, Foley J, Gilmour R, Winkler ME. 2002. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol 184:3508–3520 http://dx.doi.org/10.1128/JB.184.13.3508-3520.2002. [PubMed]
76. Pearce BJ, Naughton AM, Masure HR. 1994. Peptide permeases modulate transformation in Streptococcus pneumoniae. Mol Microbiol 12:881–892 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01076.x. [PubMed]
77. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys J-P. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92 http://dx.doi.org/10.1126/science.1127912. [PubMed]
78. Slager J, Kjos M, Attaiech L, Veening J-W. 2014. Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157:395–406 http://dx.doi.org/10.1016/j.cell.2014.01.068. [PubMed]
79. Dintilhac A, Alloing G, Granadel C, Claverys JP. 1997. Competence and virulence of Streptococcus pneumoniae: adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 http://dx.doi.org/10.1046/j.1365-2958.1997.5111879.x. [PubMed]
80. Moscoso M, Claverys J-P. 2004. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol Microbiol 54:783–794 http://dx.doi.org/10.1111/j.1365-2958.2004.04305.x. [PubMed]
81. Ottolenghi E, Hotchkiss RD. 1960. Appearance of genetic transforming activity in pneumococcal cultures. Science 132:1257–1258.
82. Steinmoen H, Knutsen E, Håvarstein LS. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A 99:7681–7686 http://dx.doi.org/10.1073/pnas.112464599. [PubMed]
83. Steinmoen H, Teigen A, Håvarstein LS. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J Bacteriol 185:7176–7183 http://dx.doi.org/10.1128/JB.185.24.7176-7183.2003. [PubMed]
84. Fox MS, Hotchkiss RD. 1957. Initiation of bacterial transformation. Nature 179:1322–1325 http://dx.doi.org/10.1038/1791322a0.
85. Lacks S, Neuberger M. 1975. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J Bacteriol 124:1321–1329.
86. Puyet A, Greenberg B, Lacks SA. 1990. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J Mol Biol 213:727–738 http://dx.doi.org/10.1016/S0022-2836(05)80259-1.
87. Morrison DA, Guild WR. 1972. Transformation and deoxyribonucleic acid size: extent of degradation on entry varies with size of donor. J Bacteriol 112:1157–1168.
88. Méjean V, Claverys JP. 1993. DNA processing during entry in transformation of Streptococcus pneumoniae. J Biol Chem 268:5594–5599.
89. Bergé M, Moscoso M, Prudhomme M, Martin B, Claverys J-P. 2002. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol Microbiol 45:411–421 http://dx.doi.org/10.1046/j.1365-2958.2002.03013.x. [PubMed]
90. Dubnau D. 1999. DNA uptake in bacteria. Annu Rev Microbiol 53:217–244 http://dx.doi.org/10.1146/annurev.micro.53.1.217. [PubMed]
91. Claverys J-P, Martin B, Polard P. 2009. The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33:643–656 http://dx.doi.org/10.1111/j.1574-6976.2009.00164.x. [PubMed]
92. Vijayakumar MN, Morrison DA. 1983. Fate of DNA in eclipse complex during genetic transformation in Streptococcus pneumoniae. J Bacteriol 156:644–648.
93. Morrison DA, Mortier-Barrière I, Attaiech L, Claverys J-P. 2007. Identification of the major protein component of the pneumococcal eclipse complex. J Bacteriol 189:6497–6500 http://dx.doi.org/10.1128/JB.00687-07. [PubMed]
94. Steffen SE, Bryant FR. 2000. Purification and characterization of the RecA protein from Streptococcus pneumoniae. Arch Biochem Biophys 382:303–309 http://dx.doi.org/10.1006/abbi.2000.2029. [PubMed]
95. Pearce BJ, Naughton AM, Campbell EA, Masure HR. 1995. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J Bacteriol 177:86–93 http://dx.doi.org/10.1128/jb.177.1.86-93.1995. [PubMed]
96. Mortier-Barrière I, de Saizieu A, Claverys JP, Martin B. 1998. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol 27:159–170 http://dx.doi.org/10.1046/j.1365-2958.1998.00668.x. [PubMed]
97. Tocci N, Iannelli F, Bidossi A, Ciusa ML, Decorosi F, Viti C, Pozzi G, Ricci S, Oggioni MR. 2013. Functional analysis of pneumococcal drug efflux pumps associates the MATE DinF transporter with quinolone susceptibility. Antimicrob Agents Chemother 57:248–253 http://dx.doi.org/10.1128/AAC.01298-12. [PubMed]
98. Masure HR, Pearce BJ, Shio H, Spellerberg B. 1998. Membrane targeting of RecA during genetic transformation. Mol Microbiol 27:845–852 http://dx.doi.org/10.1046/j.1365-2958.1998.00732.x. [PubMed]
99. Kaimer C, Graumann PL. 2010. Bacillus subtilis CinA is a stationary phase-induced protein that localizes to the nucleoid and plays a minor role in competent cells. Arch Microbiol 192:549–557 http://dx.doi.org/10.1007/s00203-010-0583-7. [PubMed]
100. Martin B, Sharples GJ, Humbert O, Lloyd RG, Claverys JP. 1996. The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination. Mol Microbiol 19:1035–1045 http://dx.doi.org/10.1046/j.1365-2958.1996.445975.x. [PubMed]
101. Morrison DA, Lacks SA, Guild WR, Hageman JM. 1983. Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J Bacteriol 156:281–290.
102. Reizer J, Reizer A, Bairoch A, Saier MH Jr. 1993. A diverse transketolase family that includes the RecP protein of Streptococcus pneumoniae, a protein implicated in genetic recombination. Res Microbiol 144:341–347 http://dx.doi.org/10.1016/0923-2508(93)90191-4.
103. Saunders CW, Guild WR. 1981. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol Gen Genet 181:57–62 http://dx.doi.org/10.1007/BF00339005.
104. Stassi DL, Lopez P, Espinosa M, Lacks SA. 1981. Cloning of chromosomal genes in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 78:7028–7032 http://dx.doi.org/10.1073/pnas.78.11.7028. [PubMed]
105. LeFrançois J, Gasc AM, Sicard M. 1997. Electrotransformation of Streptococcus pneumoniae: evidence for restriction of the DNA on entry. Microb Drug Resist 3:101–104. [PubMed]
106. Lefrançois J, Samrakandi MM, Sicard AM. 1998. Electrotransformation and natural transformation of Streptococcus pneumoniae: requirement of DNA processing for recombination. Microbiology 144:3061–3068 http://dx.doi.org/10.1099/00221287-144-11-3061. [PubMed]
107. Smith MD, Shoemaker NB, Burdett V, Guild WR. 1980. Transfer of plasmids by conjugation in Streptococcus pneumonias. Plasmid 3:70–79 http://dx.doi.org/10.1016/S0147-619X(80)90035-9.
108. Buu-Hoï A, Horodniceanu T. 1980. Conjugative transfer of multiple antibiotic resistance markers in Streptococcus pneumoniae. J Bacteriol 143:313–320.
109. Engel HW, Soedirman N, Rost JA, van Leeuwen WJ, van Embden JD. 1980. Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci, Streptococcus pneumoniae, and Staphylococcus aureus. J Bacteriol 142:407–413.
110. Santoro F, Oggioni MR, Pozzi G, Iannelli F. 2010. Nucleotide sequence and functional analysis of the tet(M)-carrying conjugative transposon Tn 5251 of Streptococcus pneumoniae. FEMS Microbiol Lett 308:150–158. [PubMed]
111. Franke AE, Clewell DB. 1981. Evidence for a chromosome-borne resistance transposon (Tn 916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J Bacteriol 145:494–502.
112. Courvalin P, Carlier C. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol Gen Genet 205:291–297 http://dx.doi.org/10.1007/BF00430441.
113. Poyart-Salmeron C, Trieu-Cuot P, Carlier C, Courvalin P. 1990. The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol Microbiol 4:1513–1521 http://dx.doi.org/10.1111/j.1365-2958.1990.tb02062.x. [PubMed]
114. Trieu-Cuot P, Poyart-Salmeron C, Carlier C, Courvalin P. 1993. Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn 1545. Mol Microbiol 8:179–185 http://dx.doi.org/10.1111/j.1365-2958.1993.tb01214.x. [PubMed]
115. Roberts AP, Mullany P. 2009. A modular master on the move: the Tn 916 family of mobile genetic elements. Trends Microbiol 17:251–258 http://dx.doi.org/10.1016/j.tim.2009.03.002. [PubMed]
116. Palmieri C, Mingoia M, Massidda O, Giovanetti E, Varaldo PE. 2012. Streptococcus pneumoniae transposon Tn 1545/Tn 6003 changes to Tn 6002 due to spontaneous excision in circular form of the erm(B)- and aphA3-containing macrolide-aminoglycoside-streptothricin (MAS) element. Antimicrob Agents Chemother 56:5994–5997 http://dx.doi.org/10.1128/AAC.01487-12. [PubMed]
117. Del Grosso M, Camilli R, Iannelli F, Pozzi G, Pantosti A. 2006. The mef(E)-carrying genetic element (mega) of Streptococcus pneumoniae: insertion sites and association with other genetic elements. Antimicrob Agents Chemother 50:3361–3366 http://dx.doi.org/10.1128/AAC.00277-06. [PubMed]
118. Santoro F, Vianna ME, Roberts AP. 2014. Variation on a theme; an overview of the Tn 916/Tn 1545 family of mobile genetic elements in the oral and nasopharyngeal streptococci. Front Microbiol 5:535 http://dx.doi.org/10.3389/fmicb.2014.00535.
119. Chancey ST, Agrawal S, Schroeder MR, Farley MM, Tettelin H, Stephens DS. 2015. Composite mobile genetic elements disseminating macrolide resistance in Streptococcus pneumoniae. Front Microbiol 6:26 http://dx.doi.org/10.3389/fmicb.2015.00026. [PubMed]
120. Vijayakumar MN, Priebe SD, Guild WR. 1986. Structure of a conjugative element in Streptococcus pneumoniae. J Bacteriol 166:978–984 http://dx.doi.org/10.1128/jb.166.3.978-984.1986. [PubMed]
121. Ayoubi P, Kilic AO, Vijayakumar MN. 1991. Tn 5253, the pneumococcal omega (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn 5251 and Tn 5252. J Bacteriol 173:1617–1622 http://dx.doi.org/10.1128/jb.173.5.1617-1622.1991. [PubMed]
122. Vijayakumar MN, Ayalew S. 1993. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn 5252. J Bacteriol 175:2713–2719 http://dx.doi.org/10.1128/jb.175.9.2713-2719.1993. [PubMed]
123. Santagati M, Iannelli F, Oggioni MR, Stefani S, Pozzi G. 2000. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob Agents Chemother 44:2585–2587 http://dx.doi.org/10.1128/AAC.44.9.2585-2587.2000. [PubMed]
124. Del Grosso M, Iannelli F, Messina C, Santagati M, Petrosillo N, Stefani S, Pozzi G, Pantosti A. 2002. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J Clin Microbiol 40:774–778 http://dx.doi.org/10.1128/JCM.40.3.774-778.2002. [PubMed]
125. Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. 2014. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn 1207.3) carrying the mef(A)/ msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front Microbiol 5:687 http://dx.doi.org/10.3389/fmicb.2014.00687. [PubMed]
126. Santagati M, Iannelli F, Cascone C, Campanile F, Oggioni MR, Stefani S, Pozzi G. 2003. The novel conjugative transposon Tn 1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb Drug Resist 9:243–247. [PubMed]
127. Oggioni MR, Iannelli F, Pozzi G. 1999. Characterization of cryptic plasmids pDP1 and pSMB1 of Streptococcus pneumoniae. Plasmid 41:70–72 http://dx.doi.org/10.1006/plas.1998.1364. [PubMed]
128. Sibold C, Markiewicz Z, Latorre C, Hakenbeck R. 1991. Novel plasmids in clinical strains of Streptococcus pneumoniae. FEMS Microbiol Lett 61:91–95 http://dx.doi.org/10.1111/j.1574-6968.1991.tb04327.x.
129. Schuster C, van der Linden M, Hakenbeck R. 1998. Small cryptic plasmids of Streptococcus pneumoniae belong to the pC194/pUB110 family of rolling circle plasmids. FEMS Microbiol Lett 164:427–431 http://dx.doi.org/10.1111/j.1574-6968.1998.tb13119.x.
130. Horinouchi S, Weisblum B. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825.
131. Bernheimer HP. 1977. Lysogeny in pneumococci freshly isolated from man. Science 195:66–68 http://dx.doi.org/10.1126/science.12565. [PubMed]
132. García P, Martín AC, López R. 1997. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb Drug Resist 3:165–176. [PubMed]
133. Mcdonnell M, Lain R, Tomasz A. 1975. “Diplophage”: a bacteriophage of Diplococcus pneumoniae. Virology 63:577–582 http://dx.doi.org/10.1016/0042-6822(75)90329-3.
134. Porter RD, Guild WR. 1976. Characterization of some pneumococcal bacteriophages. J Virol 19:659–667.
135. Tiraby JG, Tiraby E, Fox MS. 1975. Pneumococcal bacteriophages. Virology 68:566–569 http://dx.doi.org/10.1016/0042-6822(75)90300-1.
136. Ronda C, García JL, López R. 1989. Infection of Streptococcus oralis NCTC 11427 by pneumococcal phages. FEMS Microbiol Lett 53:187–192 http://dx.doi.org/10.1111/j.1574-6968.1989.tb03620.x.
137. Ouennane S, Leprohon P, Moineau S. 2015. Diverse virulent pneumophages infect Streptococcus mitis. PLoS One 10:e0118807 http://dx.doi.org/10.1371/journal.pone.0118807. [PubMed]
138. Bernheimer HP. 1979. Lysogenic pneumococci and their bacteriophages. J Bacteriol 138:618–624.
139. Ramirez M, Severina E, Tomasz A. 1999. A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. J Bacteriol 181:3618–3625.
140. Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, García E, Mitchell TJ. 2009. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 191:4854–4862 http://dx.doi.org/10.1128/JB.01272-08. [PubMed]
141. Bernheimer HP, Tiraby JG. 1976. Inhibition of phage infection by pneumococcus capsule. Virology 73:308–309 http://dx.doi.org/10.1016/0042-6822(76)90085-4.
142. Magee AD, Yother J. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect Immun 69:3755–3761 http://dx.doi.org/10.1128/IAI.69.6.3755-3761.2001. [PubMed]
143. Weiser JN, Austrian R, Sreenivasan PK, Masure HR. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62:2582–2589.
144. López R, García E. 2004. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580 http://dx.doi.org/10.1016/j.femsre.2004.05.002. [PubMed]
145. Claverys JP, Lacks SA. 1986. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol Rev 50:133–165.
146. Hall MC, Matson SW. 1999. The Escherichia coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity. J Biol Chem 274:1306–1312 http://dx.doi.org/10.1074/jbc.274.3.1306. [PubMed]
147. Prudhomme M, Martin B, Mejean V, Claverys JP. 1989. Nucleotide sequence of the Streptococcus pneumoniae hexB mismatch repair gene: homology of HexB to MutL of Salmonella typhimurium and to PMS1 of Saccharomyces cerevisiae. J Bacteriol 171:5332–5338 http://dx.doi.org/10.1128/jb.171.10.5332-5338.1989. [PubMed]
148. Humbert O, Prudhomme M, Hakenbeck R, Dowson CG, Claverys JP. 1995. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc Natl Acad Sci U S A 92:9052–9056 http://dx.doi.org/10.1073/pnas.92.20.9052. [PubMed]
149. Samrakandi MM, Pasta F. 2000. Hyperrecombination in Streptococcus pneumoniae depends on an atypical mutY homologue. J Bacteriol 182:3353–3360 http://dx.doi.org/10.1128/JB.182.12.3353-3360.2000. [PubMed]
150. Gasc AM, Sicard N, Claverys JP, Sicard AM. 1980. Lack of SOS repair in Streptococcus pneumoniae. Mutat Res 70:157–165 http://dx.doi.org/10.1016/0027-5107(80)90155-4.
151. Munoz-Najar U, Vijayakumar MN. 1999. An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal conjugative transposon Tn 5252. J Bacteriol 181:2782–2788.
152. Martin B, García P, Castanié MP, Claverys JP. 1995. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 15:367–379 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02250.x. [PubMed]
153. Grist RW, Butler LO. 1983. Effect of transforming DNA on growth and frequency of mutation of Streptococcus pneumoniae. J Bacteriol 153:153–162.
154. Halpern D, Gruss A, Claverys J-P, El-Karoui M. 2004. rexAB mutants in Streptococcus pneumoniae. Microbiology 150:2409–2414 http://dx.doi.org/10.1099/mic.0.27106-0. [PubMed]
155. Lacks SA, Mannarelli BM, Springhorn SS, Greenberg B. 1986. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell 46:993–1000 http://dx.doi.org/10.1016/0092-8674(86)90698-7.
156. Sabelnikov AG, Greenberg B, Lacks SA. 1995. An extended -10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol 250:144–155 http://dx.doi.org/10.1006/jmbi.1995.0366. [PubMed]
157. Cerritelli S, Springhorn SS, Lacks SA. 1989. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function. Proc Natl Acad Sci U S A 86:9223–9227 http://dx.doi.org/10.1073/pnas.86.23.9223. [PubMed]
158. Lacks SA, Ayalew S, de la Campa AG, Greenberg B. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol Microbiol 35:1089–1098 http://dx.doi.org/10.1046/j.1365-2958.2000.01777.x. [PubMed]
159. Eutsey RA, Powell E, Dordel J, Salter SJ, Clark TA, Korlach J, Ehrlich GD, Hiller NL. 2015. Genetic stabilization of the drug-resistant PMEN1 Pneumococcus lineage by its distinctive DpnIII restriction-modification system. MBio 6:e00173 http://dx.doi.org/10.1128/mBio.00173-15. [PubMed]
160. Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M, Haigh R, Trappetti C, Ogunniyi AD, Shewell LK, Boitano M, Clark TA, Korlach J, Blades M, Mirkes E, Gorban AN, Paton JC, Jennings MP, Oggioni MR. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat Commun 5:5055 http://dx.doi.org/10.1038/ncomms6055. [PubMed]
161. Li J, Li JW, Feng Z, Wang J, An H, Liu Y, Wang Y, Wang K, Zhang X, Miao Z, Liang W, Sebra R, Wang G, Wang WC, Zhang JR. 2016. Epigenetic switch driven by DNA inversions dictates phase variation in Streptococcus pneumoniae. PLoS Pathog 12:e1005762 http://dx.doi.org/10.1371/journal.ppat.1005762. [PubMed]
162. Dillard JP, Yother J. 1991. Analysis of Streptococcus pneumoniae sequences cloned into Escherichia coli: effect of promoter strength and transcription terminators. J Bacteriol 173:5105–5109 http://dx.doi.org/10.1128/jb.173.16.5105-5109.1991. [PubMed]
163. Morrison DA, Trombe MC, Hayden MK, Waszak GA, Chen JD. 1984. Isolation of transformation-deficient Streptococcus pneumoniae mutants defective in control of competence, using insertion-duplication mutagenesis with the erythromycin resistance determinant of pAM beta 1. J Bacteriol 159:870–876.
164. Watson DA, Musher DM. 1990. Interruption of capsule production in Streptococcus pneumonia serotype 3 by insertion of transposon Tn 916. Infect Immun 58:3135–3138.
165. Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci U S A 95:8927–8932 http://dx.doi.org/10.1073/pnas.95.15.8927. [PubMed]
166. Horton RM, Cai ZL, Ho SN, Pease LR. 1990. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535.
167. Iannelli F, Pozzi G. 2004. Method for introducing specific and unmarked mutations into the chromosome of Streptococcus pneumoniae. Mol Biotechnol 26:81–86 http://dx.doi.org/10.1385/MB:26:1:81.
168. Sung CK, Li H, Claverys JP, Morrison DA. 2001. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67:5190–5196 http://dx.doi.org/10.1128/AEM.67.11.5190-5196.2001. [PubMed]
169. Li Y, Thompson CM, Lipsitch M. 2014. A modified Janus cassette (Sweet Janus) to improve allelic replacement efficiency by high-stringency negative selection in Streptococcus pneumoniae. PLoS One 9:e100510 http://dx.doi.org/10.1371/journal.pone.0100510. [PubMed]
170. Weng L, Biswas I, Morrison DA. 2009. A self-deleting Cre- lox- ermAM cassette, Cheshire, for marker-less gene deletion in Streptococcus pneumoniae. J Microbiol Methods 79:353–357 http://dx.doi.org/10.1016/j.mimet.2009.10.007. [PubMed]
171. Ding F, Tang P, Hsu MH, Cui P, Hu S, Yu J, Chiu CH. 2009. Genome evolution driven by host adaptations results in a more virulent and antimicrobial-resistant Streptococcus pneumoniae serotype 14. BMC Genomics 10:158 http://dx.doi.org/10.1186/1471-2164-10-158. [PubMed]
172. Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, Feltwell T, Fookes MC, Harris SR, Dordel J, Salter SJ, Browall S, Zemlickova H, Parkhill J, Normark S, Henriques-Normark B, Hinds J, Mitchell TJ, Bentley SD. 2013. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet 9:e1003868 http://dx.doi.org/10.1371/journal.pgen.1003868. [PubMed]
173. Camilli R, Bonnal RJ, Del Grosso M, Iacono M, Corti G, Rizzi E, Marchetti M, Mulas L, Iannelli F, Superti F, Oggioni MR, De Bellis G, Pantosti A. 2011. Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniae invasive isolate. BMC Microbiol 11:25 http://dx.doi.org/10.1186/1471-2180-11-25. [PubMed]
174. Li G, Hu FZ, Yang X, Cui Y, Yang J, Qu F, Gao GF, Zhang JR. 2012. Complete genome sequence of Streptococcus pneumoniae strain ST556, a multidrug-resistant isolate from an otitis media patient. J Bacteriol 194:3294–3295 http://dx.doi.org/10.1128/JB.00363-12. [PubMed]
175. Williams TM, Loman NJ, Ebruke C, Musher DM, Adegbola RA, Pallen MJ, Weinstock GM, Antonio M. 2012. Genome analysis of a highly virulent serotype 1 strain of Streptococcus pneumoniae from West Africa. PLoS One 7:e26742 http://dx.doi.org/10.1371/journal.pone.0026742. [PubMed]
176. Donner J, Bunk B, Schober I, Spröer C, Bergmann S, Jarek M, Overmann J, Wagner-Döbler I. 2017. Complete genome sequences of three multidrug-resistant clinical isolates of Streptococcus pneumoniae serotype 19A with different susceptibilities to the myxobacterial metabolite carolacton. Genome Announc 5:5 http://dx.doi.org/10.1128/genomeA.01641-16. [PubMed]
177. Chiba N, Murayama SY, Morozumi M, Iwata S, Ubukata K. 2017. Genome evolution to penicillin resistance in serotype 3 Streptococcus pneumoniae by capsular switching. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00478-17. [PubMed]
178. Herbert JA, Mitchell AM, Ritchie R, Ma J, Ross-Hutchinson K,Mitchell TJ. 2018. Expression of the lux genes in Streptococcus pneumoniae modulates pilus expression and virulence. PLoS One 13:e0189426 http://dx.doi.org/10.1371/journal.pone.0189426. [PubMed]
179. Morona JK, Guidolin A, Morona R, Hansman D, Paton JC. 1994. Isolation, characterization, and nucleotide sequence of IS 1202, an insertion sequence of Streptococcus pneumoniae. J Bacteriol 176:4437–4443 http://dx.doi.org/10.1128/jb.176.14.4437-4443.1994. [PubMed]
180. Zhou L, Hui FM, Morrison DA. 1995. Characterization of IS 1167, a new insertion sequence in Streptococcus pneumoniae. Plasmid 33:127–138 http://dx.doi.org/10.1006/plas.1995.1014. [PubMed]
181. Sánchez-Beato AR, García E, López R, García JL. 1997. Identification and characterization of IS 1381, a new insertion sequence in Streptococcus pneumoniae. J Bacteriol 179:2459–2463 http://dx.doi.org/10.1128/jb.179.7.2459-2463.1997. [PubMed]
182. Muñoz R, López R, García E. 1998. Characterization of IS 1515, a functional insertion sequence in Streptococcus pneumoniae. J Bacteriol 180:1381–1388.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0025-2018
2019-05-17
2019-11-20

Abstract:

Ninety years after the discovery of pneumococcal Transformation, and 74 years after the work of Avery and colleagues that identified DNA as the genetic material, is still one of the most important model organism to understand Bacterial Genetics and Genomics. In this Chapter special emphasis has been given to Genomics and to Mobile Genetic Elements (the Mobilome) which greatly contribute to the dynamic variation of pneumococcal genomes by horizontal gene transfer. Other topics include molecular mechanisms of Genetic Transformation, Restriction/Modification Systems, Mismatch DNA Repair, and techniques for construction of genetically engineered pneumococcal strains.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Transformation. The model is based on information discussed in the text. In some cases, the putative regulation of gene expression may be either direct or indirect. Phosphorylation of response regulator molecules by their cognate histidine kinase sensors is indicated by P. Uptake and integration of linear DNA is shown in the lower-right portion, with monomer and dimer plasmid uptake shown in the central and lower-left portions, respectively. Plasmid uptake occurs by the same mechanism as linear DNA uptake. For monomers, complementary overlapping strands pair, and DNA synthesis completes the double-stranded circular molecule. For the dimer, a small fragment of the complementary strand can serve as a primer for DNA synthesis, and circularization can occur as described in the text. Dots on the dimer molecule indicate homologous sites.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Insertion-duplication mutagenesis and restoration. The effect of using an internal gene fragment to direct insertion of a nonreplicating plasmid into the chromosome. Duplication of the target fragment occurs, and the gene is disrupted by the plasmid insertion, resulting in an insertion-duplication mutation. The target fragment overlaps the ends of two genes. Insertion results in duplication of the target fragment, but both genes are completely reconstructed, and the result is an insertion-duplication restoration. Both genes should be functional, unless they form part of an operon, in which case the plasmid insertion would be polar on the downstream gene. The figure shows a selectable erythromycin-resistance gene () and a promoterless chloramphenicol-resistance reporter gene ().

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Properties of classic laboratory strains

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
Generic image for table
TABLE 2

Complete genomes of

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
Generic image for table
TABLE 3

Insertion sequences found in

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018
Generic image for table
TABLE 4

Properties of some bacteriophages

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0025-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error