No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Pneumococcal Vaccines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: D. E. Briles1, J. C. Paton2, R. Mukerji3, E. Swiatlo4, M. J. Crain5
  • Editors: Vincent A. Fischetti6, Richard P. Novick7, Joseph J. Ferretti8, Daniel A. Portnoy9, Miriam Braunstein10, Julian I. Rood11
    Affiliations: 1: Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama; 2: Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia; 3: Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama; 4: Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA; 5: Department of Pediatrics and Microbiology, University of Alabama at Birmingham; 6: The Rockefeller University, New York, NY; 7: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 8: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 9: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 10: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 11: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec December 2019 vol. 7 no. 6 doi:10.1128/microbiolspec.GPP3-0028-2018
  • Received 03 April 2018 Accepted 11 February 2019 Published 19 December 2019
  • David E. Briles, [email protected]
image of Pneumococcal Vaccines
    Preview this microbiology spectrum article:
    Zoom in

    Pneumococcal Vaccines, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/6/GPP3-0028-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/6/GPP3-0028-2018-2.gif
  • Abstract:

    is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of , it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by .

  • Citation: Briles D, Paton J, Mukerji R, Swiatlo E, Crain M. 2019. Pneumococcal Vaccines. Microbiol Spectrum 7(6):GPP3-0028-2018. doi:10.1128/microbiolspec.GPP3-0028-2018.


1. White B. 1938. The Biology of Pneumococcus. The Commonwealth Fund, New York, NY. [PubMed]
2. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A, Emerging Infections Programs Network. 2011. Bacterial meningitis in the United States, 1998-2007. N Engl J Med 364:2016–2025 http://dx.doi.org/10.1056/NEJMoa1005384. [PubMed]
3. McCormick AW, Whitney CG, Farley MM, Lynfield R, Harrison LH, Bennett NM, Schaffner W, Reingold A, Hadler J, Cieslak P, Samore MH, Lipsitch M. 2003. Geographic diversity and temporal trends of antimicrobial resistance in Streptococcus pneumoniae in the United States. Nat Med 9:424–430 http://dx.doi.org/10.1038/nm839.
4. Kaplan SL, Mason EO Jr. 2002. Mechanisms of pneumococcal antibiotic resistance and treatment of pneumococcal infections in 2002. Pediatr Ann 31:250–260 http://dx.doi.org/10.3928/0090-4481-20020401-09.
5. Briles DE, Paton JC, Hollingshead SK. 2004. Pneumococcal common proteins and other vaccine strategies, p 459–469. In Levine MM, Kaper JB, Rappuoli R, Liu M, Good MF (ed), New Generation Vaccines, 3rd ed. Marcel Dekker, Inc., New York, NY.
6. Siber GR. 1994. Pneumococcal disease: prospects for a new generation of vaccines. Science 265:1385–1387 http://dx.doi.org/10.1126/science.8073278. [PubMed]
7. Fedson DS, Musher DM. 2004. Pneumococcal polysaccharide vaccine, p 529–588. In Plotkin SA, Orenstein WA (ed), Vaccines. W. B. Saunders, Philadelphia, PA.
8. Eskola J, Black S, Shinefield H. 2004. Pneumococcal conjugate vaccines, p 589–624. In Plotkin SA, Orenstein WA (ed), Vaccines. W. B. Saunders, Philadelphia, PA.
9. Berical AC, Harris D, Dela Cruz CS, Possick JD. 2016. Pneumococcal vaccination strategies. An update and perspective. Ann Am Thorac Soc 13:933–944 http://dx.doi.org/10.1513/AnnalsATS.201511-778FR. [PubMed]
10. Feldman C, Anderson R. 2014. Review: current and new generation pneumococcal vaccines. J Infect 69:309–325 http://dx.doi.org/10.1016/j.jinf.2014.06.006. [PubMed]
11. Daniels CC, Rogers PD, Shelton CM. 2016. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J Pediatr Pharmacol Ther 21:27–35 http://dx.doi.org/10.5863/1551-6776-21.1.27. [PubMed]
12. Heffron R. 1939. Pneumonia. The Commonwealth Fund, New York, NY.
13. Avery OT, Goebel WF. 1933. Chemoimmunological studies on the soluble specific substance of pneumococcus. I. The isolation and properties of the acetyl polysaccharide of pneumococcus type I. J Exp Med 58:731–755 http://dx.doi.org/10.1084/jem.58.6.731. [PubMed]
14. Robbins JB, Austrian R, Lee C-J, Rastogi SC, Schiffman G, Henrichsen J, Mäkelä PH, Broome CV, Facklam RR, Tiesjema RH, Parke JC, Jr. 1983. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis 148:1136–1159 http://dx.doi.org/10.1093/infdis/148.6.1136. [PubMed]
15. Black SB, Shinefield HR, Ling S, Hansen J, Fireman B, Spring D, Noyes J, Lewis E, Ray P, Lee J, Hackell J. 2002. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr Infect Dis J 21:810–815 http://dx.doi.org/10.1097/00006454-200209000-00005. [PubMed]
16. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MH. 2015. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 28:871–899 http://dx.doi.org/10.1128/CMR.00024-15. [PubMed]
17. Gray BM, Converse GM III, Dillon HC, Jr. 1979. Serotypes of Streptococcus pneumoniae causing disease. J Infect Dis 140:979–983 http://dx.doi.org/10.1093/infdis/140.6.979. [PubMed]
18. Grabenstein JD, Musey LK. 2014. Differences in serious clinical outcomes of infection caused by specific pneumococcal serotypes among adults. Vaccine 32:2399–2405 http://dx.doi.org/10.1016/j.vaccine.2014.02.096. [PubMed]
19. Scott JA, Hall AJ, Dagan R, Dixon JM, Eykyn SJ, Fenoll A, Hortal M, Jetté LP, Jorgensen JH, Lamothe F, Latorre C, Macfarlane JT, Shlaes DM, Smart LE, Taunay A. 1996. Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex, and geography in 7,000 episodes of invasive disease. Clin Infect Dis 22:973–981 http://dx.doi.org/10.1093/clinids/22.6.973. [PubMed]
20. Huang SS, Johnson KM, Ray GT, Wroe P, Lieu TA, Moore MR, Zell ER, Linder JA, Grijalva CG, Metlay JP, Finkelstein JA. 2011. Healthcare utilization and cost of pneumococcal disease in the United States. Vaccine 29:3398–3412 http://dx.doi.org/10.1016/j.vaccine.2011.02.088. [PubMed]
21. Austrian R, Gold J. 1964. Pneumococcal bacteremia with special reference to bacteremic pneumococcal pneumonia. Ann Intern Med 60:759–776 http://dx.doi.org/10.7326/0003-4819-60-5-759. [PubMed]
22. Falkenhorst G, Remschmidt C, Harder T, Hummers-Pradier E, Wichmann O, Bogdan C. 2017. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine (PPV23) against pneumococcal disease in the elderly: systematic review and meta-analysis. PLoS One 12:e0169368 http://dx.doi.org/10.1371/journal.pone.0169368. [PubMed]
23. Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A, Adair RK, Clemens JD. 1991. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325:1453–1460 http://dx.doi.org/10.1056/NEJM199111213252101. [PubMed]
24. Esposito S, Droghetti R, Faelli N, Lastrico A, Tagliabue C, Cesati L, Bianchi C, Principi N. 2003. Serum concentrations of pneumococcal anticapsular antibodies in children with pneumonia associated with Streptococcus pneumonia infection. Clin Infect Dis 37:1261–1264 http://dx.doi.org/10.1086/378740. [PubMed]
25. Westerink MA, Schroeder HW Jr, Nahm MH. 2012. Immune responses to pneumococcal vaccines in children and adults: rationale for age-specific vaccination. Aging Dis 3:51–67.
26. Sankilampi U, Honkanen PO, Bloigu A, Leinonen M. 1997. Persistence of antibodies to pneumococcal capsular polysaccharide vaccine in the elderly. J Infect Dis 176:1100–1104 http://dx.doi.org/10.1086/516521. [PubMed]
27. Rubins JB, Puri AKG, Loch J, Charboneau D, MacDonald R, Opstad N, Janoff EN. 1998. Magnitude, duration, quality, and function of pneumococcal vaccine responses in elderly adults. J Infect Dis 178:431–440 http://dx.doi.org/10.1086/515644. [PubMed]
28. Jackson LA, Gurtman A, van Cleeff M, Jansen KU, Jayawardene D, Devlin C, Scott DA, Emini EA, Gruber WC, Schmoele-Thoma B. 2013. Immunogenicity and safety of a 13-valent pneumococcal conjugate vaccine compared to a 23-valent pneumococcal polysaccharide vaccine in pneumococcal vaccine-naive adults. Vaccine 31:3577–3584 http://dx.doi.org/10.1016/j.vaccine.2013.04.085. [PubMed]
29. Gold R, Lepow ML, Goldschneider I, Draper TF, Gotschlich EC. 1978. Antibody responses of human infants to three doses of group A Neisseria meningitidis polysaccharide vaccine administered at two, four, and six months of age. J Infect Dis 138:731–735 http://dx.doi.org/10.1093/infdis/138.6.731. [PubMed]
30. Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G, Malinoski F, Madore D, Chang I, Kohberger R, Watson W, Austrian R, Edwards K, Northern California Kaiser Permanente Vaccine Study Center Group. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr Infect Dis J 19:187–195 http://dx.doi.org/10.1097/00006454-200003000-00003. [PubMed]
31. Wyle FA, Artenstein MS, Brandt BL, Tramont EC, Kasper DL, Altieri PL, Berman SL, Lowenthal JP. 1972. Immunologic response of man to group B meningococcal polysaccharide vaccines. J Infect Dis 126:514–521 http://dx.doi.org/10.1093/infdis/126.5.514. [PubMed]
32. Overturf GD. 2002. Pneumococcal vaccination of children. Semin Pediatr Infect Dis 13:155–164 http://dx.doi.org/10.1053/spid.2002.125858. [PubMed]
33. Eskola J, Takala AK, Käyhty H. 1993. Haemophilus influenzae type b polysaccharide-protein conjugate vaccines in children. Curr Opin Pediatr 5:55–59 http://dx.doi.org/10.1097/00008480-199302000-00009. [PubMed]
34. Barbour ML, Mayon-White RT, Coles C, Crook DW, Moxon ER. 1995. The impact of conjugate vaccine on carriage of Haemophilus influenzae type b. J Infect Dis 171:93–98 http://dx.doi.org/10.1093/infdis/171.1.93. [PubMed]
35. Ahman H, Käyhty H, Lehtonen H, Leroy O, Froeschle J, Eskola J. 1998. Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid conjugate vaccine is immunogenic in early infancy and able to induce immunologic memory. Pediatr Infect Dis J 17:211–216 http://dx.doi.org/10.1097/00006454-199803000-00008. [PubMed]
36. Black S, Shinefield H, Cohen R, Floret D, Gaudelus J, Olivier C, Reinert P. 2004. Clinical effectiveness of seven-valent pneumococcal conjugate vaccine (Prevenar) against invasive pneumococcal diseases: prospects for children in France. Arch Pediatr 11:843–853 http://dx.doi.org/10.1016/j.arcped.2004.03.126. [PubMed]
37. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, Cieslak PR, Pilishvili T, Jackson D, Facklam RR, Jorgensen JH, Schuchat A, Active Bacterial Core Surveillance of the Emerging Infections Program Network. 2003. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 348:1737–1746 http://dx.doi.org/10.1056/NEJMoa022823.
38. Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, Takala A, Käyhty H, Karma P, Kohberger R, Siber G, Mäkelä PH, Finnish Otitis Media Study Group. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 344:403–409 http://dx.doi.org/10.1056/NEJM200102083440602. [PubMed]
39. Bogaert D, De Groot R, Hermans PW. 2004. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144–154 http://dx.doi.org/10.1016/S1473-3099(04)00938-7.
40. Dagan R, Melamed R, Muallem M, Piglansky L, Greenberg D, Abramson O, Mendelman PM, Bohidar N, Yagupsky P. 1996. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J Infect Dis 174:1271–1278 http://dx.doi.org/10.1093/infdis/174.6.1271. [PubMed]
41. Ghaffar F, Barton T, Lozano J, Muniz LS, Hicks P, Gan V, Ahmad N, McCracken GH Jr. 2004. Effect of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae in the first 2 years of life. Clin Infect Dis 39:930–938 http://dx.doi.org/10.1086/423379. [PubMed]
42. Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, Klugman KP. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis 180:1171–1176 http://dx.doi.org/10.1086/315009. [PubMed]
43. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, Reingold A, Farley MM, Whitney CG. 2007. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998-2004. J Infect Dis 196:1346–1354 http://dx.doi.org/10.1086/521626. [PubMed]
44. Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph K, Parkinson A. 2007. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 297:1784–1792 http://dx.doi.org/10.1001/jama.297.16.1784. [PubMed]
45. Weinberger DM, Malley R, Lipsitch M. 2011. Serotype replacement in disease after pneumococcal vaccination. Lancet 378:1962–1973 http://dx.doi.org/10.1016/S0140-6736(10)62225-8.
46. Balsells E, Guillot L, Nair H, Kyaw MH. 2017. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: a systematic review and meta-analysis. PLoS One 12:e0177113 http://dx.doi.org/10.1371/journal.pone.0177113. [PubMed]
47. Gladstone RA, Jefferies JM, Tocheva AS, Beard KR, Garley D, Chong WW, Bentley SD, Faust SN, Clarke SC. 2015. Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine 33:2015–2021 http://dx.doi.org/10.1016/j.vaccine.2015.03.012. [PubMed]
48. Kawaguchiya M, Urushibara N, Aung MS, Morimoto S, Ito M, Kudo K, Sumi A, Kobayashi N. 2015. Emerging non-PCV13 serotypes of noninvasive Streptococcus pneumoniae with macrolide resistance genes in northern Japan. New Microbes New Infect 9:66–72 http://dx.doi.org/10.1016/j.nmni.2015.11.001. [PubMed]
49. Levy C, Varon E, Picard C, Béchet S, Martinot A, Bonacorsi S, Cohen R. 2014. Trends of pneumococcal meningitis in children after introduction of the 13-valent pneumococcal conjugate vaccine in France. Pediatr Infect Dis J 33:1216–1221 http://dx.doi.org/10.1097/INF.0000000000000451. [PubMed]
50. Croney CM, Coats MT, Nahm MH, Briles DE, Crain MJ. 2012. PspA family distribution, unlike capsular serotype, remains unaltered following introduction of the heptavalent pneumococcal conjugate vaccine. Clin Vaccine Immunol 19:891–896 http://dx.doi.org/10.1128/CVI.05671-11. [PubMed]
51. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rümke HC, Verbrugh HA, Hermans PW. 2004. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 363:1871–1872 http://dx.doi.org/10.1016/S0140-6736(04)16357-5.
52. Block SL, Hedrick J, Harrison CJ, Tyler R, Smith A, Findlay R, Keegan E. 2004. Community-wide vaccination with the heptavalent pneumococcal conjugate significantly alters the microbiology of acute otitis media. Pediatr Infect Dis J 23:829–833 http://dx.doi.org/10.1097/01.inf.0000136868.91756.80. [PubMed]
53. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B, Derazne E, Rahav G, Rubinstein E. 2004. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292:716–720 http://dx.doi.org/10.1001/jama.292.6.716. [PubMed]
54. Tomczyk S, Bennett NM, Stoecker C, Gierke R, Moore MR, Whitney CG, Hadler S, Pilishvili T, Centers for Disease Control and Prevention (CDC). 2014. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 63:822–825.
55. Bonten MJ, Huijts SM, Bolkenbaas M, Webber C, Patterson S, Gault S, van Werkhoven CH, van Deursen AM, Sanders EA, Verheij TJ, Patton M, McDonough A, Moradoghli-Haftvani A, Smith H, Mellelieu T, Pride MW, Crowther G, Schmoele-Thoma B, Scott DA, Jansen KU, Lobatto R, Oosterman B, Visser N, Caspers E, Smorenburg A, Emini EA, Gruber WC, Grobbee DE. 2015. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med 372:1114–1125 http://dx.doi.org/10.1056/NEJMoa1408544. [PubMed]
56. Greenberg RN, Gurtman A, Frenck RW, Strout C, Jansen KU, Trammel J, Scott DA, Emini EA, Gruber WC, Schmoele-Thoma B. 2014. Sequential administration of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine in pneumococcal vaccine-naïve adults 60-64 years of age. Vaccine 32:2364–2374 http://dx.doi.org/10.1016/j.vaccine.2014.02.002. [PubMed]
57. Lazarus R, Clutterbuck E, Yu LM, Bowman J, Bateman EA, Diggle L, Angus B, Peto TE, Beverley PC, Mant D, Pollard AJ. 2011. A randomized study comparing combined pneumococcal conjugate and polysaccharide vaccination schedules in adults. Clin Infect Dis 52:736–742 http://dx.doi.org/10.1093/cid/cir003. [PubMed]
58. Centers for Disease Control and Prevention (CDC). 2012. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine for adults with immunocompromising conditions: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 61:816–819.
59. McFetridge R, Meulen AS, Folkerth SD, Hoekstra JA, Dallas M, Hoover PA, Marchese RD, Zacholski DM, Watson WJ, Stek JE, Hartzel JS, Musey LK. 2015. Safety, tolerability, and immunogenicity of 15-valent pneumococcal conjugate vaccine in healthy adults. Vaccine 33:2793–2799 http://dx.doi.org/10.1016/j.vaccine.2015.04.025. [PubMed]
60. Sobanjo-ter Meulen A, Vesikari T, Malacaman EA, Shapiro SA, Dallas MJ, Hoover PA, McFetridge R, Stek JE, Marchese RD, Hartzel J, Watson WJ, Musey LK. 2015. Safety, tolerability and immunogenicity of 15-valent pneumococcal conjugate vaccine in toddlers previously vaccinated with 7-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J 34:186–194 http://dx.doi.org/10.1097/INF.0000000000000516. [PubMed]
61. Wu HY, Nahm MH, Guo Y, Russell MW, Briles DE. 1997. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J Infect Dis 175:839–846 http://dx.doi.org/10.1086/513980. [PubMed]
62. Dullforce P, Sutton DC, Heath AW. 1998. Enhancement of T cell-independent immune responses in vivo by CD40 antibodies. Nat Med 4:88–91 http://dx.doi.org/10.1038/nm0198-088. [PubMed]
63. Buchanan RM, Briles DE, Arulanandam BP, Westerink MA, Raeder RH, Metzger DW. 2001. IL-12-mediated increases in protection elicited by pneumococcal and meningococcal conjugate vaccines. Vaccine 19:2020–2028 http://dx.doi.org/10.1016/S0264-410X(00)00421-7.
64. Zhang F, Lu YJ, Malley R. 2013. Multiple antigen-presenting system (MAPS) to induce comprehensive B- and T-cell immunity. Proc Natl Acad Sci USA 110:13564–13569 http://dx.doi.org/10.1073/pnas.1307228110.
65. Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA, Cherian T, Levine OS, Whitney CG, O’Brien KL, Moore MR, Serotype Replacement Study Group. 2013. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med 10:e1001517 http://dx.doi.org/10.1371/journal.pmed.1001517. [PubMed]
66. Izurieta P, Bahety P, Adegbola R, Clarke C, Hoet B. 2017. Public health impact of pneumococcal conjugate vaccine infant immunization programs: assessment of invasive pneumococcal disease burden and serotype distribution. Expert Rev Vaccines 17:479–493. [PubMed]
67. De Wals P, Lefebvre B, Deceuninck G, Longtin J. 2018. Incidence of invasive pneumococcal disease before and during an era of use of three different pneumococcal conjugate vaccines in Quebec. Vaccine 36:421–426 http://dx.doi.org/10.1016/j.vaccine.2017.11.054. [PubMed]
68. Briles DE, Paton JC, Nahm MH, Swiatlo E. 2000. Immunity to Streptococcus pneumoniae, p 263–280. In Cunningham M, Fujinami RS (ed), Effect of Microbes on the Immune System. Lippincott-Raven, Philadelphia, PA.
69. Miyaji EN, Oliveira ML, Carvalho E, Ho PL. 2013. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 70:3303–3326 http://dx.doi.org/10.1007/s00018-012-1234-8. [PubMed]
70. Crain MJ, Waltman WD II, Turner JS, Yother J, Talkington DF, McDaniel LS, Gray BM, Briles DE. 1990. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect Immun 58:3293–3299.
71. McDaniel LS, Yother J, Vijayakumar M, McGarry L, Guild WR, Briles DE. 1987. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J Exp Med 165:381–394 http://dx.doi.org/10.1084/jem.165.2.381. [PubMed]
72. Ren B, Szalai AJ, Thomas O, Hollingshead SK, Briles DE. 2003. Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of Streptococcus pneumoniae. Infect Immun 71:75–85 http://dx.doi.org/10.1128/IAI.71.1.75-85.2003. [PubMed]
73. Ren B, Szalai AJ, Hollingshead SK, Briles DE. 2004. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect Immun 72:114–122 http://dx.doi.org/10.1128/IAI.72.1.114-122.2004. [PubMed]
74. Mukerji R, Mirza S, Roche AM, Widener RW, Croney CM, Rhee DK, Weiser JN, Szalai AJ, Briles DE. 2012. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. J Immunol 189:5327–5335 http://dx.doi.org/10.4049/jimmunol.1201967. [PubMed]
75. Genschmer KR, Accavitti-Loper MA, Briles DE. 2013. A modified surface killing assay (MSKA) as a functional in vitro assay for identifying protective antibodies against pneumococcal surface protein A (PspA). Vaccine 32:39–47 http://dx.doi.org/10.1016/j.vaccine.2013.10.080. [PubMed]
76. Mirza S, Hollingshead SK, Benjamin WH Jr, Briles DE. 2004. PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72:5031–5040 http://dx.doi.org/10.1128/IAI.72.9.5031-5040.2004. [PubMed]
77. Vela Coral MC, Fonseca N, Castañeda E, Di Fabio JL, Hollingshead SK, Briles DE. 2001. Pneumococcal surface protein A of invasive Streptococcus pneumoniae isolates from Colombian children. Emerg Infect Dis 7:832–836 http://dx.doi.org/10.3201/eid0705.017510. [PubMed]
78. McDaniel LS, Benjamin WH Jr, Forman C, Briles DE. 1984. Blood clearance by anti-phosphocholine antibodies as a mechanism of protection in experimental pneumococcal bacteremia. J Immunol 133:3308–3312.
79. Briles DE, Hollingshead SK, Nabors GS, Paton JC, Brooks-Walter A. 2000. The potential for using protein vaccines to protect against otitis media caused by Streptococcus pneumoniae. Vaccine 19(Suppl 1) :S87–S95 http://dx.doi.org/10.1016/S0264-410X(00)00285-1.
80. Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, Ferguson LM, Nahm MH, Nabors GS. 2000. Immunization of humans with rPspA elicits antibodies, which passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis 182:1694–1701 http://dx.doi.org/10.1086/317602. [PubMed]
81. Roche H, Ren B, McDaniel LS, Håkansson A, Briles DE. 2003. Relative roles of genetic background and variation in PspA in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of Streptococcus pneumoniae. Infect Immun 71:4498–4505 http://dx.doi.org/10.1128/IAI.71.8.4498-4505.2003. [PubMed]
82. Briles DE, Ades E, Paton JC, Sampson JS, Carlone GM, Huebner RC, Virolainen A, Swiatlo E, Hollingshead SK. 2000. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 68:796–800 http://dx.doi.org/10.1128/IAI.68.2.796-800.2000. [PubMed]
83. Nagano H, Kawabata M, Sugita G, Tsuruhara A, Ohori J, Jimura T, Miyashita K, Kurono Y, Tomonaga K, Briles DE, Fujihashi K. 2018. Transcutaneous immunization with pneumococcal surface protein A in mice. Laryngoscope 128:E91–E96 http://dx.doi.org/10.1002/lary.26971. [PubMed]
84. Kong IG, Sato A, Yuki Y, Nochi T, Takahashi H, Sawada S, Mejima M, Kurokawa S, Okada K, Sato S, Briles DE, Kunisawa J, Inoue Y, Yamamoto M, Akiyoshi K, Kiyono H. 2013. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 81:1625–1634 http://dx.doi.org/10.1128/IAI.00240-13. [PubMed]
85. Fukuyama Y, Yuki Y, Katakai Y, Harada N, Takahashi H, Takeda S, Mejima M, Joo S, Kurokawa S, Sawada S, Shibata H, Park EJ, Fujihashi K, Briles DE, Yasutomi Y, Tsukada H, Akiyoshi K, Kiyono H. 2015. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques. Mucosal Immunol 8:1144–1153 http://dx.doi.org/10.1038/mi.2015.5. [PubMed]
86. Klugman KP. 2011. Contribution of vaccines to our understanding of pneumococcal disease. Philos Trans R Soc Lond B Biol Sci 366:2790–2798 http://dx.doi.org/10.1098/rstb.2011.0032. [PubMed]
87. Briese T, Hakenbeck R. 1985. Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem 146:417–427 http://dx.doi.org/10.1111/j.1432-1033.1985.tb08668.x. [PubMed]
88. López R, García E. 2004. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553–580 http://dx.doi.org/10.1016/j.femsre.2004.05.002. [PubMed]
89. Yother J, Briles DE. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J Bacteriol 174:601–609 http://dx.doi.org/10.1128/jb.174.2.601-609.1992. [PubMed]
90. Yother J, White JM. 1994. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol 176:2976–2985 http://dx.doi.org/10.1128/jb.176.10.2976-2985.1994. [PubMed]
91. McDaniel LS, McDaniel DO, Hollingshead SK, Briles DE. 1998. Comparison of the PspA sequence from Streptococcus pneumoniae EF5668 to the previously identified PspA sequence from strain Rx1 and ability of PspA from EF5668 to elicit protection against pneumococci of different capsular types. Infect Immun 66:4748–4754.
92. McDaniel LS, Ralph BA, McDaniel DO, Briles DE. 1994. Localization of protection-eliciting epitopes on PspA of Streptococcus pneumoniae between amino acid residues 192 and 260. Microb Pathog 17:323–337 http://dx.doi.org/10.1006/mpat.1994.1078. [PubMed]
93. Roche H, Håkansson A, Hollingshead SK, Briles DE. 2003. Regions of PspA/EF3296 best able to elicit protection against Streptococcus pneumoniae in a murine infection model. Infect Immun 71:1033–1041 http://dx.doi.org/10.1128/IAI.71.3.1033-1041.2003. [PubMed]
94. Hollingshead SK, Becker R, Briles DE. 2000. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 68:5889–5900 http://dx.doi.org/10.1128/IAI.68.10.5889-5900.2000. [PubMed]
95. Brandileone MC, Andrade AL, Teles EM, Zanella RC, Yara TI, Di Fabio JL, Hollingshead SK. 2004. Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine 22:3890–3896 http://dx.doi.org/10.1016/j.vaccine.2004.04.009. [PubMed]
96. Nabors GS, Braun PA, Herrmann DJ, Heise ML, Pyle DJ, Gravenstein S, Schilling M, Ferguson LM, Hollingshead SK, Briles DE, Becker RS. 2000. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 18:1743–1754 http://dx.doi.org/10.1016/S0264-410X(99)00530-7.
97. Daniels CC, Coan P, King J, Hale J, Benton KA, Briles DE, Hollingshead SK. 2010. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect Immun 78:2163–2172 http://dx.doi.org/10.1128/IAI.01199-09. [PubMed]
98. Virolainen A, Russell W, Crain MJ, Rapola S, Käyhty H, Briles DE. 2000. Human antibodies to pneumococcal surface protein A in health and disease. Pediatr Infect Dis J 19:134–138 http://dx.doi.org/10.1097/00006454-200002000-00011. [PubMed]
99. Rapola S, Jäntti V, Haikala R, Syrjänen R, Carlone GM, Sampson JS, Briles DE, Paton JC, Takala AK, Kilpi TM, Käyhty H. 2000. Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J Infect Dis 182:1146–1152 http://dx.doi.org/10.1086/315822. [PubMed]
100. Briles DE, Hollingshead SK, Swiatlo E, Brooks-Walter A, Szalai A, Virolainen A, McDaniel LS, Benton KA, White P, Prellner K, Hermansson A, Aerts PC, Van Dijk H, Crain MJ. 1997. PspA and PspC: their potential for use as pneumococcal vaccines. Microb Drug Resist 3:401–408 http://dx.doi.org/10.1089/mdr.1997.3.401. [PubMed]
101. McDaniel LS, Sheffield JS, Swiatlo E, Yother J, Crain MJ, Briles DE. 1992. Molecular localization of variable and conserved regions of pspA and identification of additional pspA homologous sequences in Streptococcus pneumoniae. Microb Pathog 13:261–269 http://dx.doi.org/10.1016/0882-4010(92)90036-N.
102. Iannelli F, Oggioni MR, Pozzi G. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284:63–71 http://dx.doi.org/10.1016/S0378-1119(01)00896-4.
103. Brooks-Walter A, Briles DE, Hollingshead SK. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67:6533–6542.
104. Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25:1113–1124 http://dx.doi.org/10.1046/j.1365-2958.1997.5391899.x. [PubMed]
105. Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25:819–829 http://dx.doi.org/10.1111/j.1365-2958.1997.mmi494.x. [PubMed]
106. Janulczyk R, Iannelli F, Sjoholm AG, Pozzi G, Bjorck L. 2000. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275:37257–37263 http://dx.doi.org/10.1074/jbc.M004572200. [PubMed]
107. Iannelli F, Chiavolini D, Ricci S, Oggioni MR, Pozzi G. 2004. Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect Immun 72:3077–3080 http://dx.doi.org/10.1128/IAI.72.5.3077-3080.2004. [PubMed]
108. Balachandran P, Brooks-Walter A, Virolainen-Julkunen A, Hollingshead SK, Briles DE. 2002. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect Immun 70:2526–2534 http://dx.doi.org/10.1128/IAI.70.5.2526-2534.2002. [PubMed]
109. Mann B, Thornton J, Heath R, Wade KR, Tweten RK, Gao G, El Kasmi K, Jordan JB, Mitrea DM, Kriwacki R, Maisonneuve J, Alderson M, Tuomanen EI. 2014. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein. J Infect Dis 209:1116–1125 http://dx.doi.org/10.1093/infdis/jit502. [PubMed]
110. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI. 2009. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119:1638–1646 http://dx.doi.org/10.1172/JCI36759. [PubMed]
111. Paton JC, Andrew PW, Boulnois GJ, Mitchell TJ. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 47:89–115 http://dx.doi.org/10.1146/annurev.mi.47.100193.000513. [PubMed]
112. Paton JC, Rowan-Kelly B, Ferrante A. 1984. Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 43:1085–1087.
113. Boulnois GJ, Paton JC, Mitchell TJ, Andrew PW. 1991. Structure and function of pneumolysin, the multifunctional, thiol-activated toxin of Streptococcus pneumoniae. Mol Microbiol 5:2611–2616 http://dx.doi.org/10.1111/j.1365-2958.1991.tb01969.x. [PubMed]
114. Mitchell TJ, Andrew PW, Saunders FK, Smith AN, Boulnois GJ. 1991. Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol Microbiol 5:1883–1888 http://dx.doi.org/10.1111/j.1365-2958.1991.tb00812.x. [PubMed]
115. Paton JC. 1996. The contribution of pneumolysin to the pathogenicity of Streptococcus pneumoniae. Trends Microbiol 4:103–106 http://dx.doi.org/10.1016/0966-842X(96)81526-5.
116. Berry AM, Paton JC, Hansman D. 1992. Effect of insertional inactivation of the genes encoding pneumolysin and autolysin on the virulence of Streptococcus pneumoniae type 3. Microb Pathog 12:87–93 http://dx.doi.org/10.1016/0882-4010(92)90111-Z.
117. Berry AM, Yother J, Briles DE, Hansman D, Paton JC. 1989. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infect Immun 57:2037–2042.
118. Canvin JR, Marvin AP, Sivakumaran M, Paton JC, Boulnois GJ, Andrew PW, Mitchell TJ. 1995. The role of pneumolysin and autolysin in the pathology of pneumonia and septicemia in mice infected with a type 2 pneumococcus. J Infect Dis 172:119–123 http://dx.doi.org/10.1093/infdis/172.1.119. [PubMed]
119. Rubins JB, Charboneau D, Paton JC, Mitchell TJ, Andrew PW, Janoff EN. 1995. Dual function of pneumolysin in the early pathogenesis of murine pneumococcal pneumonia. J Clin Invest 95:142–150 http://dx.doi.org/10.1172/JCI117631. [PubMed]
120. Benton K, Briles DE. 1994. Pneumolysin facilitates pneumococcal sepsis by interfering with an antipnemococcal inflammatory response. ASM Abstr 1994:104.
121. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100:1966–1971 http://dx.doi.org/10.1073/pnas.0435928100. [PubMed]
122. Kadioglu A, Coward W, Colston MJ, Hewitt CR, Andrew PW. 2004. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72:2689–2697 http://dx.doi.org/10.1128/IAI.72.5.2689-2697.2004. [PubMed]
123. Alexander JE, Berry AM, Paton JC, Rubins JB, Andrew PW, Mitchell TJ. 1998. Amino acid changes affecting the activity of pneumolysin alter the behaviour of pneumococci in pneumonia. Microb Pathog 24:167–174 http://dx.doi.org/10.1006/mpat.1997.0185. [PubMed]
124. Rubins JB, Charboneau D, Fasching C, Berry AM, Paton JC, Alexander JE, Andrew PW, Mitchell TJ, Janoff EN. 1996. Distinct roles for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am J Respir Crit Care Med 153:1339–1346 http://dx.doi.org/10.1164/ajrccm.153.4.8616564. [PubMed]
125. Benton KA, Paton JC, Briles DE. 1997. The hemolytic and complement-activating properties of pneumolysin do not contribute individually to virulence in a pneumococcal bacteremia model. Microb Pathog 23:201–209 http://dx.doi.org/10.1006/mpat.1997.0150. [PubMed]
126. Paton JC, Lock RA, Hansman DJ. 1983. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun 40:548–552.
127. Paton JC, Lock RA, Lee C-J, Li JP, Berry AM, Mitchell TJ, Andrew PW, Hansman D, Boulnois GJ. 1991. Purification and immunogenicity of genetically obtained pneumolysin toxoids and their conjugation to Streptococcus pneumoniae type 19F polysaccharide. Infect Immun 59:2297–2304.
128. Lock RA, Zhang QY, Berry AM, Paton JC. 1996. Sequence variation in the Streptococcus pneumoniae pneumolysin gene affecting haemolytic activity and electrophoretic mobility of the toxin. Microb Pathog 21:71–83 http://dx.doi.org/10.1006/mpat.1996.0044. [PubMed]
129. Mitchell TJ, Mendez F, Paton JC, Andrew PW, Boulnois GJ. 1990. Comparison of pneumolysin genes and proteins from Streptococcus pneumoniae types 1 and 2. Nucleic Acids Res 18:4010 http://dx.doi.org/10.1093/nar/18.13.4010. [PubMed]
130. Alexander JE, Lock RA, Peeters CCAM, Poolman JT, Andrew PW, Mitchell TJ, Hansman D, Paton JC. 1994. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 62:5683–5688.
131. García-Suárez MM, Cima-Cabal MD, Flórez N, García P, Cernuda-Cernuda R, Astudillo A, Vázquez F, De los Toyos JR, Méndez FJ. 2004. Protection against pneumococcal pneumonia in mice by monoclonal antibodies to pneumolysin. Infect Immun 72:4534–4540 http://dx.doi.org/10.1128/IAI.72.8.4534-4540.2004. [PubMed]
132. Musher DM, Phan HM, Baughn RE. 2001. Protection against bacteremic pneumococcal infection by antibody to pneumolysin. J Infect Dis 183:827–830 http://dx.doi.org/10.1086/318833. [PubMed]
133. Huo Z, Spencer O, Miles J, Johnson J, Holliman R, Sheldon J, Riches P. 2004. Antibody response to pneumolysin and to pneumococcal capsular polysaccharide in healthy individuals and Streptococcus pneumoniae infected patients. Vaccine 22:1157–1161 http://dx.doi.org/10.1016/j.vaccine.2003.09.025. [PubMed]
134. Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC. 2000. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 68:3028–3033 http://dx.doi.org/10.1128/IAI.68.5.3028-3033.2000. [PubMed]
135. Briles DE, Hollingshead SK, Paton JC, Ades EW, Novak L, van Ginkel FW, Benjamin WH, Jr. 2003. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J Infect Dis 188:339–348 http://dx.doi.org/10.1086/376571. [PubMed]
136. Lee C-J, Lock RA, Andrew PW, Mitchell TJ, Hansman D, Paton JC. 1994. Protection of infant mice from challenge with Streptococcus pneumoniae type 19F by immunization with a type 19F polysaccharide-pneumolysoid conjugate. Vaccine 12:875–878 http://dx.doi.org/10.1016/0264-410X(94)90028-0.
137. Kuo J, Douglas M, Ree HK, Lindberg AA. 1995. Characterization of a recombinant pneumolysin and its use as a protein carrier for pneumococcal type 18C conjugate vaccines. Infect Immun 63:2706–2713.
138. Michon F, Fusco PC, Minetti CASA, Laude-Sharp M, Uitz C, Huang CH, D’Ambra AJ, Moore S, Remeta DP, Heron I, Blake MS. 1998. Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine 16:1732–1741 http://dx.doi.org/10.1016/S0264-410X(98)00225-4.
139. Paton JC, Giammarinaro P. 2001. Genome-based analysis of pneumococcal virulence factors: the quest for novel vaccine antigens and drug targets. Trends Microbiol 9:515–518 http://dx.doi.org/10.1016/S0966-842X(01)02207-7.
140. Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68:5690–5695 http://dx.doi.org/10.1128/IAI.68.10.5690-5695.2000. [PubMed]
141. López R, González MP, García E, García JL, García P. 2000. Biological roles of two new murein hydrolases of Streptococcus pneumoniae representing examples of module shuffling. Res Microbiol 151:437–443 http://dx.doi.org/10.1016/S0923-2508(00)00172-8.
142. Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E, Gayle A, Brewah YA, Walsh W, Barren P, Lathigra R, Hanson M, Langermann S, Johnson S, Koenig S. 2001. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 69:1593–1598 http://dx.doi.org/10.1128/IAI.69.3.1593-1598.2001. [PubMed]
143. Berry AM, Lock RA, Hansman D, Paton JC. 1989. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect Immun 57:2324–2330.
144. Lock RA, Paton JC, Hansman D. 1988. Comparative efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb Pathog 5:461–467 http://dx.doi.org/10.1016/0882-4010(88)90007-1.
145. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506 http://dx.doi.org/10.1126/science.1061217.
146. Dintilhac A, Alloing G, Granadel C, Claverys JP. 1997. Competence and virulence of Streptococcus pneumoniae: adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 http://dx.doi.org/10.1046/j.1365-2958.1997.5111879.x. [PubMed]
147. McAllister LJ, Tseng HJ, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC. 2004. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol Microbiol 53:889–901 http://dx.doi.org/10.1111/j.1365-2958.2004.04164.x. [PubMed]
148. Berry AM, Paton JC. 1996. Sequence heterogeneity of PsaA, a 37-kilodalton putative adhesin essential for virulence of Streptococcus pneumoniae. Infect Immun 64:5255–5262.
149. Tseng HJ, McEwan AG, Paton JC, Jennings MP. 2002. Virulence of Streptococcus pneumoniae: PsaA mutants are hypersensitive to oxidative stress. Infect Immun 70:1635–1639 http://dx.doi.org/10.1128/IAI.70.3.1635-1639.2002. [PubMed]
150. Talkington DF, Brown BG, Tharpe JA, Koenig A, Russell H. 1996. Protection of mice against fatal pneumococcal challenge by immunization with pneumococcal surface adhesin A (PsaA). Microb Pathog 21:17–22 http://dx.doi.org/10.1006/mpat.1996.0038. [PubMed]
151. Gor DO, Ding X, Briles DE, Jacobs MR, Greenspan NS. 2005. Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infect Immun 73:1304–1312 http://dx.doi.org/10.1128/IAI.73.3.1304-1312.2005. [PubMed]
152. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC. 1998. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Structure 6:1553–1561 http://dx.doi.org/10.1016/S0969-2126(98)00153-1.
153. Sampson JS, Furlow Z, Whitney AM, Williams D, Facklam R, Carlone GM. 1997. Limited diversity of Streptococcus pneumoniae psaA among pneumococcal vaccine serotypes. Infect Immun 65:1967–1971.
154. Ogunniyi AD, Giammarinaro P, Paton JC. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148:2045–2053 http://dx.doi.org/10.1099/00221287-148-7-2045. [PubMed]
155. De BK, Sampson JS, Ades EW, Huebner RC, Jue DL, Johnson SE, Espina M, Stinson AR, Briles DE, Carlone GM. 2000. Purification and characterization of Streptococcus pneumoniae palmitoylated pneumococcal surface adhesin A expressed in Escherichia coli. Vaccine 18:1811–1821 http://dx.doi.org/10.1016/S0264-410X(99)00481-8.
156. Johnson SE, Dykes JK, Jue DL, Sampson JS, Carlone GM, Ades EW. 2002. Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin a. J Infect Dis 185:489–496 http://dx.doi.org/10.1086/338928. [PubMed]
157. Pimenta FC, Miyaji EN, Arêas AP, Oliveira ML, de Andrade AL, Ho PL, Hollingshead SK, Leite LC. 2006. Intranasal immunization with the cholera toxin B subunit-pneumococcal surface antigen A fusion protein induces protection against colonization with Streptococcus pneumoniae and has negligible impact on the nasopharyngeal and oral microbiota of mice. Infect Immun 74:4939–4944 http://dx.doi.org/10.1128/IAI.00134-06. [PubMed]
158. Brown JS, Gilliland SM, Holden DW. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol Microbiol 40:572–585 http://dx.doi.org/10.1046/j.1365-2958.2001.02414.x. [PubMed]
159. Tai SS, Yu C, Lee JK. 2003. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol Lett 220:303–308 http://dx.doi.org/10.1016/S0378-1097(03)00135-6.
160. Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS. 2005. Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 73:6852–6859 http://dx.doi.org/10.1128/IAI.73.10.6852-6859.2005. [PubMed]
161. Brown JS, Ogunniyi AD, Woodrow MC, Holden DW, Paton JC. 2001. Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun 69:6702–6706 http://dx.doi.org/10.1128/IAI.69.11.6702-6706.2001. [PubMed]
162. Jomaa M, Terry S, Hale C, Jones C, Dougan G, Brown J. 2006. Immunization with the iron uptake ABC transporter proteins PiaA and PiuA prevents respiratory infection with Streptococcus pneumoniae. Vaccine 24:5133–5139 http://dx.doi.org/10.1016/j.vaccine.2006.04.012. [PubMed]
163. Adamou JE, Heinrichs JH, Erwin AL, Walsh W, Gayle T, Dormitzer M, Dagan R, Brewah YA, Barren P, Lathigra R, Langermann S, Koenig S, Johnson S. 2001. Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun 69:949–958 http://dx.doi.org/10.1128/IAI.69.2.949-958.2001. [PubMed]
164. Hamel J, Charland N, Pineau I, Ouellet C, Rioux S, Martin D, Brodeur BR. 2004. Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun 72:2659–2670 http://dx.doi.org/10.1128/IAI.72.5.2659-2670.2004. [PubMed]
165. Plumptre CD, Ogunniyi AD, Paton JC. 2013. Surface association of Pht proteins of Streptococcus pneumoniae. Infect Immun 81:3644–3651 http://dx.doi.org/10.1128/IAI.00562-13. [PubMed]
166. Riboldi-Tunnicliffe A, Isaacs NW, Mitchell TJ. 2005. 1.2 Angstroms crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold. FEBS Lett 579:5353–5360 http://dx.doi.org/10.1016/j.febslet.2005.08.066. [PubMed]
167. Ogunniyi AD, Grabowicz M, Mahdi LK, Cook J, Gordon DL, Sadlon TA, Paton JC. 2009. Pneumococcal histidine triad proteins are regulated by the Zn2+-dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB J 23:731–738 http://dx.doi.org/10.1096/fj.08-119537. [PubMed]
168. Plumptre CD, Hughes CE, Harvey RM, Eijkelkamp BA, McDevitt CA, Paton JC. 2014. Overlapping functionality of the Pht proteins in zinc homeostasis of Streptococcus pneumoniae. Infect Immun 82:4315–4324 http://dx.doi.org/10.1128/IAI.02155-14. [PubMed]
169. Eijkelkamp BA, Pederick VG, Plumptre CD, Harvey RM, Hughes CE, Paton JC, McDevitt CA. 2015. The first histidine triad motif of PhtD Is critical for zinc homeostasis in Streptococcus pneumoniae. Infect Immun 84:407–415 http://dx.doi.org/10.1128/IAI.01082-15. [PubMed]
170. Zhang Y, Masi AW, Barniak V, Mountzouros K, Hostetter MK, Green BA. 2001. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect Immun 69:3827–3836 http://dx.doi.org/10.1128/IAI.69.6.3827-3836.2001. [PubMed]
171. Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC. 2007. Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 75:350–357 http://dx.doi.org/10.1128/IAI.01103-06. [PubMed]
172. Schneewind O, Mihaylova-Petkov D, Model P. 1993. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J 12:4803–4811 http://dx.doi.org/10.1002/j.1460-2075.1993.tb06169.x. [PubMed]
173. Kharat AS, Tomasz A. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect Immun 71:2758–2765 http://dx.doi.org/10.1128/IAI.71.5.2758-2765.2003. [PubMed]
174. Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI. 2004. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190:1661–1669 http://dx.doi.org/10.1086/424596. [PubMed]
175. Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A. 2006. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infect Immun 74:4014–4020 http://dx.doi.org/10.1128/IAI.01237-05. [PubMed]
176. Tong HH, Blue LE, James MA, DeMaria TF. 2000. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun 68:921–924 http://dx.doi.org/10.1128/IAI.68.2.921-924.2000. [PubMed]
177. Tong HH, Li D, Chen S, Long JP, DeMaria TF. 2005. Immunization with recombinant Streptococcus pneumoniae neuraminidase NanA protects chinchillas against nasopharyngeal colonization. Infect Immun 73:7775–7778 http://dx.doi.org/10.1128/IAI.73.11.7775-7778.2005. [PubMed]
178. Long JP, Tong HH, DeMaria TF. 2004. Immunization with native or recombinant Streptococcus pneumoniae neuraminidase affords protection in the chinchilla otitis media model. Infect Immun 72:4309–4313 http://dx.doi.org/10.1128/IAI.72.7.4309-4313.2004. [PubMed]
179. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, Kanth A, Dahlberg S, Fernebro J, Moschioni M, Masignani V, Hultenby K, Taddei AR, Beiter K, Wartha F, von Euler A, Covacci A, Holden DW, Normark S, Rappuoli R, Henriques-Normark B. 2006. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 103:2857–2862 http://dx.doi.org/10.1073/pnas.0511017103. [PubMed]
180. LeMieux J, Hava DL, Basset A, Camilli A. 2006. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumoniae rlrA pathogenicity islet. Infect Immun 74:2453–2456 http://dx.doi.org/10.1128/IAI.74.4.2453-2456.2006. [PubMed]
181. Fälker S, Nelson AL, Morfeldt E, Jonas K, Hultenby K, Ries J, Melefors O, Normark S, Henriques-Normark B. 2008. Sortase-mediated assembly and surface topology of adhesive pneumococcal pili. Mol Microbiol 70:595–607 http://dx.doi.org/10.1111/j.1365-2958.2008.06396.x. [PubMed]
182. Gianfaldoni C, Censini S, Hilleringmann M, Moschioni M, Facciotti C, Pansegrau W, Masignani V, Covacci A, Rappuoli R, Barocchi MA, Ruggiero P. 2007. Streptococcus pneumoniae pilus subunits protect mice against lethal challenge. Infect Immun 75:1059–1062 http://dx.doi.org/10.1128/IAI.01400-06. [PubMed]
183. Moschioni M, Donati C, Muzzi A, Masignani V, Censini S, Hanage WP, Bishop CJ, Reis JN, Normark S, Henriques-Normark B, Covacci A, Rappuoli R, Barocchi MA. 2008. Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. J Infect Dis 197:888–896 http://dx.doi.org/10.1086/528375. [PubMed]
184. Basset A, Trzcinski K, Hermos C, O’Brien KL, Reid R, Santosham M, McAdam AJ, Lipsitch M, Malley R. 2007. Association of the pneumococcal pilus with certain capsular serotypes but not with increased virulence. J Clin Microbiol 45:1684–1689 http://dx.doi.org/10.1128/JCM.00265-07. [PubMed]
185. Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, Hilleringmann M, Pansegrau W, Censini S, Rappuoli R, Covacci A, Masignani V, Barocchi MA. 2008. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 190:5480–5492 http://dx.doi.org/10.1128/JB.00384-08. [PubMed]
186. Bender MH, Weiser JN. 2006. The atypical amino-terminal LPNTG-containing domain of the pneumococcal human IgA1-specific protease is required for proper enzyme localization and function. Mol Microbiol 61:526–543 http://dx.doi.org/10.1111/j.1365-2958.2006.05256.x. [PubMed]
187. Paton JC, Berry AM, Lock RA. 1997. Molecular analysis of putative pneumococcal virulence proteins. Microb Drug Resist 3:1–10 http://dx.doi.org/10.1089/mdr.1997.3.1. [PubMed]
188. Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S. 2001. alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287 http://dx.doi.org/10.1046/j.1365-2958.2001.02448.x. [PubMed]
189. Daniely D, Portnoi M, Shagan M, Porgador A, Givon-Lavi N, Ling E, Dagan R, Mizrachi Nebenzahl Y. 2006. Pneumococcal 6-phosphogluconate-dehydrogenase, a putative adhesin, induces protective immune response in mice. Clin Exp Immunol 144:254–263 http://dx.doi.org/10.1111/j.1365-2249.2006.03047.x. [PubMed]
190. Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y. 2004. Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298 http://dx.doi.org/10.1111/j.1365-2249.2004.02628.x. [PubMed]
191. Kwon HY, Ogunniyi AD, Choi MH, Pyo SN, Rhee DK, Paton JC. 2004. The ClpP protease of Streptococcus pneumoniae modulates virulence gene expression and protects against fatal pneumococcal challenge. Infect Immun 72:5646–5653 http://dx.doi.org/10.1128/IAI.72.10.5646-5653.2004. [PubMed]
192. Overweg K, Pericone CD, Verhoef GGC, Weiser JN, Meiring HD, De Jong APJM, De Groot R, Hermans PWM. 2000. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect Immun 68:4604–4610 http://dx.doi.org/10.1128/IAI.68.8.4604-4610.2000. [PubMed]
193. Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, Henriques-Normark B, Ortqvist A, Kalin M, von Gabain A, Nagy E. 2008. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med 205:117–131 http://dx.doi.org/10.1084/jem.20071168. [PubMed]
194. Anderson RJ, Guru S, Weeratna R, Makinen S, Falconer DJ, Sheppard NC, Lang S, Chang B, Goenaga AL, Green BA, Merson JR, Gracheck SJ, Eyles JE. 2016. In vivo screen of genetically conserved Streptococcus pneumoniae proteins for protective immunogenicity. Vaccine 34:6292–6300 http://dx.doi.org/10.1016/j.vaccine.2016.10.061. [PubMed]
195. Ogunniyi AD, LeMessurier KS, Graham RM, Watt JM, Briles DE, Stroeher UH, Paton JC. 2007. Contributions of pneumolysin, pneumococcal surface protein A (PspA), and PspC to pathogenicity of Streptococcus pneumoniae D39 in a mouse model. Infect Immun 75:1843–1851 http://dx.doi.org/10.1128/IAI.01384-06. [PubMed]
196. Berry AM, Paton JC. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 68:133–140 http://dx.doi.org/10.1128/IAI.68.1.133-140.2000. [PubMed]
197. Chen A, Mann B, Gao G, Heath R, King J, Maissoneuve J, Alderson M, Tate A, Hollingshead SK, Tweten RK, Briles DE, Tuomanen EI, Paton JC. 2015. Multivalent pneumococcal protein vaccines comprising pneumolysoid with epitopes/fragments of CbpA and/or PspA elicit strong and broad protection. Clin Vaccine Immunol 22:1079–1089 http://dx.doi.org/10.1128/CVI.00293-15. [PubMed]
198. Xu Q, Pryharski K, Pichichero ME. 2017. Trivalent pneumococcal protein vaccine protects against experimental acute otitis media caused by Streptococcus pneumoniae in an infant murine model. Vaccine 35:337–344 http://dx.doi.org/10.1016/j.vaccine.2016.11.046. [PubMed]
199. Brooks WA, Chang LJ, Sheng X, Hopfer R, PPR02 Study Team. 2015. Safety and immunogenicity of a trivalent recombinant PcpA, PhtD, and PlyD1 pneumococcal protein vaccine in adults, toddlers, and infants: a phase I randomized controlled study. Vaccine 33:4610–4617 http://dx.doi.org/10.1016/j.vaccine.2015.06.078. [PubMed]
200. Prymula R, Szenborn L, Silfverdal SA, Wysocki J, Albrecht P, Traskine M, Gardev A, Song Y, Borys D. 2017. Safety, reactogenicity and immunogenicity of two investigational pneumococcal protein-based vaccines: results from a randomized phase II study in infants. Vaccine 35:4603–4611 http://dx.doi.org/10.1016/j.vaccine.2017.07.008. [PubMed]
201. Odutola A, Ota MO, Ogundare EO, Antonio M, Owiafe P, Worwui A, Greenwood B, Alderson M, Traskine M, Verlant V, Dobbelaere K, Borys D. 2016. Reactogenicity, safety and immunogenicity of a protein-based pneumococcal vaccine in Gambian children aged 2-4 years: a phase II randomized study. Hum Vaccin Immunother 12:393–402 http://dx.doi.org/10.1080/21645515.2015.1111496. [PubMed]
202. Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y, Foster-Nyarko E, Owiafe PK, Ceesay F, Worwui A, Idoko OT, Owolabi O, Bojang A, Jarju S, Drammeh I, Kampmann B, Greenwood BM, Alderson M, Traskine M, Devos N, Schoonbroodt S, Swinnen K, Verlant V, Dobbelaere K, Borys D. 2017. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcus pneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine 35:2531–2542 http://dx.doi.org/10.1016/j.vaccine.2017.03.071. [PubMed]
203. Entwisle C, Hill S, Pang Y, Joachim M, McIlgorm A, Colaco C, Goldblatt D, De Gorguette D’Argoeuves P, Bailey C. 2017. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a Phase 1 randomised clinical trial. Vaccine 35:7181–7186 http://dx.doi.org/10.1016/j.vaccine.2017.10.076. [PubMed]
204. Chien YW, Klugman KP, Morens DM. 2010. Efficacy of whole-cell killed bacterial vaccines in preventing pneumonia and death during the 1918 influenza pandemic. J Infect Dis 202:1639–1648 http://dx.doi.org/10.1086/657144. [PubMed]
205. Malley R, Lipsitch M, Stack A, Saladino R, Fleisher G, Pelton S, Thompson C, Briles D, Anderson P. 2001. Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun 69:4870–4873 http://dx.doi.org/10.1128/IAI.69.8.4870-4873.2001. [PubMed]
206. Lu YJ, Leite L, Gonçalves VM, Dias WO, Liberman C, Fratelli F, Alderson M, Tate A, Maisonneuve JF, Robertson G, Graca R, Sayeed S, Thompson CM, Anderson P, Malley R. 2010. GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine 28:7468–7475 http://dx.doi.org/10.1016/j.vaccine.2010.09.031. [PubMed]
207. Moffitt K, Malley R. 2016. Rationale and prospects for novel pneumococcal vaccines. Hum Vaccin Immunother 12:383–392 http://dx.doi.org/10.1080/21645515.2015.1087625. [PubMed]
208. Babb R, Chen A, Hirst TR, Kara EE, McColl SR, Ogunniyi AD, Paton JC, Alsharifi M. 2016. Intranasal vaccination with γ-irradiated Streptococcus pneumoniae whole-cell vaccine provides serotype-independent protection mediated by B-cells and innate IL-17 responses. Clin Sci (Lond) 130:697–710 http://dx.doi.org/10.1042/CS20150699. [PubMed]
209. Babb R, Chen A, Ogunniyi AD, Hirst TR, Kara EE, McColl SR, Alsharifi M, Paton JC. 2017. Enhanced protective responses to a serotype-independent pneumococcal vaccine when combined with an inactivated influenza vaccine. Clin Sci (Lond) 131:169–180 http://dx.doi.org/10.1042/CS20160475. [PubMed]
210. Jambo KC, Sepako E, Heyderman RS, Gordon SB. 2010. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol 18:81–89 http://dx.doi.org/10.1016/j.tim.2009.12.001. [PubMed]
211. Gray BM, Converse GM III, Dillon HC, Jr. 1980. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis 142:923–933 http://dx.doi.org/10.1093/infdis/142.6.923. [PubMed]
212. Pichon B, Ladhani SN, Slack MP, Segonds-Pichon A, Andrews NJ, Waight PA, Miller E, George R. 2013. Changes in molecular epidemiology of Streptococcus pneumoniae causing meningitis following introduction of pneumococcal conjugate vaccination in England and Wales. J Clin Microbiol 51:820–827 http://dx.doi.org/10.1128/JCM.01917-12. [PubMed]
213. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM, Reingold A, Thomas A, Schaffner W, Craig AS, Smith PJ, Beall BW, Whitney CG, Moore MR, Active Bacterial Core Surveillance/Emerging Infections Program Network. 2010. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 201:32–41 http://dx.doi.org/10.1086/648593. [PubMed]
214. Kim SH, Jang YS. 2017. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin Exp Vaccine Res 6:15–21 http://dx.doi.org/10.7774/cevr.2017.6.1.15. [PubMed]
215. Takaki H, Ichimiya S, Matsumoto M, Seya T. 2018. Mucosal immune response in nasal-associated lymphoid tissue upon intranasal administration by adjuvants. J Innate Immun 10:515–521 http://dx.doi.org/10.1159/000489405. [PubMed]

Article metrics loading...



is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of , it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error