1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Colonization of the Human Nose and Interaction with Other Microbiome Members

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Claudia Laux1, Andreas Peschel2, Bernhard Krismer3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Infection Biology Unit, 72076 Tübingen, Germany; 2: University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Infection Biology Unit, 72076 Tübingen, Germany; 3: University of Tübingen, Interfaculty Institute for Microbiology and Infection Medicine Tübingen, Infection Biology Unit, 72076 Tübingen, Germany; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0029-2018
  • Received 05 April 2018 Accepted 10 April 2018 Published 19 April 2019
  • Andreas Peschel, [email protected]
image of <span class="jp-italic">Staphylococcus aureus</span> Colonization of the Human Nose and Interaction with Other Microbiome Members
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Colonization of the Human Nose and Interaction with Other Microbiome Members, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0029-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0029-2018-2.gif
  • Abstract:

    is usually regarded as a bacterial pathogen due to its ability to cause multiple types of invasive infections. Nevertheless, colonizes about 30% of the human population asymptomatically in the nares, either transiently or persistently, and can therefore be regarded a human commensal as well, although carriage increases the risk of infection. Whereas many facets of the infection processes have been studied intensively, little is known about the commensal lifestyle of . Recent studies highlight the major role of the composition of the highly variable nasal microbiota in promoting or inhibiting colonization. Competition for limited nutrients, trace elements, and epithelial attachment sites, different susceptibilities to host defense molecules and the production of antimicrobial molecules by bacterial competitors may determine whether nasal bacteria outcompete each other. This chapter summarizes our knowledge about mechanisms that are used by for efficient nasal colonization and strategies used by other nasal bacteria to interfere with its colonization. An improved understanding of naturally evolved mechanisms might enable us to develop new strategies for pathogen eradication.

  • Citation: Laux C, Peschel A, Krismer B. 2019. Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol Spectrum 7(2):GPP3-0029-2018. doi:10.1128/microbiolspec.GPP3-0029-2018.

References

1. Byrd AL, Belkaid Y, Segre JA. 2018. The human skin microbiome. Nat Rev Microbiol 16:143–155 http://dx.doi.org/10.1038/nrmicro.2017.157. [PubMed][CrossRef]
2. Krismer B, Weidenmaier C, Zipperer A, Peschel A. 2017. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15:675–687 http://dx.doi.org/10.1038/nrmicro.2017.104. [PubMed][CrossRef]
3. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661 http://dx.doi.org/10.1128/CMR.00134-14. [PubMed][CrossRef]
4. Kluytmans J, van Belkum A, Verbrugh H. 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520. [PubMed][CrossRef]
5. Cole AM, Tahk S, Oren A, Yoshioka D, Kim YH, Park A, Ganz T. 2001. Determinants of Staphylococcus aureus nasal carriage. Clin Diagn Lab Immunol 8:1064–1069. [PubMed]
6. Zanger P, Nurjadi D, Gaile M, Gabrysch S, Kremsner PG. 2012. Hormonal contraceptive use and persistent Staphylococcus aureus nasal carriage. Clin Infect Dis 55:1625–1632 http://dx.doi.org/10.1093/cid/cis778. [PubMed][CrossRef]
7. Lipsky BA, Pecoraro RE, Chen MS, Koepsell TD. 1987. Factors affecting staphylococcal colonization among NIDDM outpatients. Diabetes Care 10:483–486 http://dx.doi.org/10.2337/diacare.10.4.483. [PubMed][CrossRef]
8. Armstrong-Esther CA, Smith JE. 1976. Carriage patterns of Staphylococcus aureus in a healthy non-hospital population of adults and children. Ann Hum Biol 3:221–227 http://dx.doi.org/10.1080/03014467600001381. [PubMed][CrossRef]
9. Olsen K, Falch BM, Danielsen K, Johannessen M, Ericson Sollid JU, Thune I, Grimnes G, Jorde R, Simonsen GS, Furberg AS. 2012. Staphylococcus aureus nasal carriage is associated with serum 25-hydroxyvitamin D levels, gender and smoking status. The Tromsø Staph and Skin Study. Eur J Clin Microbiol Infect Dis 31:465–473 http://dx.doi.org/10.1007/s10096-011-1331-x. [PubMed][CrossRef]
10. Camarinha-Silva A, Jáuregui R, Pieper DH, Wos-Oxley ML. 2012. The temporal dynamics of bacterial communities across human anterior nares. Environ Microbiol Rep 4:126–132 http://dx.doi.org/10.1111/j.1758-2229.2011.00313.x. [PubMed][CrossRef]
11. Liu CM, Price LB, Hungate BA, Abraham AG, Larsen LA, Christensen K, Stegger M, Skov R, Andersen PS. 2015. Staphylococcus aureus and the ecology of the nasal microbiome. Sci Adv 1:e1400216 http://dx.doi.org/10.1126/sciadv.1400216. [PubMed][CrossRef]
12. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:520–532 http://dx.doi.org/10.1056/NEJM199808203390806. [PubMed][CrossRef]
13. von Eiff C, Becker K, Machka K, Stammer H, Peters G, Study Group. 2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344:11–16 http://dx.doi.org/10.1056/NEJM200101043440102. [PubMed][CrossRef]
14. Bode LG, Kluytmans JA, Wertheim HF, Bogaers D, Vandenbroucke-Grauls CM, Roosendaal R, Troelstra A, Box AT, Voss A, van der Tweel I, van Belkum A, Verbrugh HA, Vos MC. 2010. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 362:9–17 http://dx.doi.org/10.1056/NEJMoa0808939. [PubMed][CrossRef]
15. Reagan DR, Doebbeling BN, Pfaller MA, Sheetz CT, Houston AK, Hollis RJ, Wenzel RP. 1991. Elimination of coincident Staphylococcus aureus nasal and hand carriage with intranasal application of mupirocin calcium ointment. Ann Intern Med 114:101–106 http://dx.doi.org/10.7326/0003-4819-114-2-101. [PubMed][CrossRef]
16. Parras F, Guerrero MC, Bouza E, Blázquez MJ, Moreno S, Menarguez MC, Cercenado E. 1995. Comparative study of mupirocin and oral co-trimoxazole plus topical fusidic acid in eradication of nasal carriage of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 39:175–179 http://dx.doi.org/10.1128/AAC.39.1.175. [PubMed][CrossRef]
17. Septimus EJ, Schweizer ML. 2016. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev 29:201–222 http://dx.doi.org/10.1128/CMR.00049-15. [PubMed][CrossRef]
18. Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. 2015. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother 59:3350–3356 http://dx.doi.org/10.1128/AAC.00079-15. [PubMed][CrossRef]
19. Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, Wos-Oxley M, Becker K. 2016. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol 18:2130–2142 http://dx.doi.org/10.1111/1462-2920.12891. [PubMed][CrossRef]
20. Yan M, Pamp SJ, Fukuyama J, Hwang PH, Cho DY, Holmes S, Relman DA. 2013. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 14:631–640 http://dx.doi.org/10.1016/j.chom.2013.11.005. [PubMed][CrossRef]
21. Wertheim HFL, Verveer J, Boelens HAM, van Belkum A, Verbrugh HA, Vos MC. 2005. Effect of mupirocin treatment on nasal, pharyngeal, and perineal carriage of Staphylococcus aureus in healthy adults. Antimicrob Agents Chemother 49:1465–1467 http://dx.doi.org/10.1128/AAC.49.4.1465-1467.2005. [PubMed][CrossRef]
22. Otto M. 2012. MRSA virulence and spread. Cell Microbiol 14:1513–1521 http://dx.doi.org/10.1111/j.1462-5822.2012.01832.x. [PubMed][CrossRef]
23. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568 http://dx.doi.org/10.1016/S0140-6736(09)61999-1. [CrossRef]
24. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214 http://dx.doi.org/10.1038/nature11234. [PubMed][CrossRef]
25. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C. 2012. Microbial co-occurrence relationships in the human microbiome. PLOS Comput Biol 8:e1002606 http://dx.doi.org/10.1371/journal.pcbi.1002606. [PubMed][CrossRef]
26. Casewell MW, Hill RL. 1986. The carrier state: methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 18(Suppl A) :1–12. [PubMed][CrossRef]
27. Peacock SJ, de Silva I, Lowy FD. 2001. What determines nasal carriage of Staphylococcus aureus? Trends Microbiol 9:605–610 http://dx.doi.org/10.1016/S0966-842X(01)02254-5. [CrossRef]
28. Geoghegan JA, Irvine AD, Foster TJ. 2017. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol 26:484–497. [PubMed][CrossRef]
29. Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926 http://dx.doi.org/10.1128/CMR.00109-13. [PubMed][CrossRef]
30. Krismer B, Liebeke M, Janek D, Nega M, Rautenberg M, Hornig G, Unger C, Weidenmaier C, Lalk M, Peschel A. 2014. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation inthe human nose. PLoS Pathog 10:e1003862 http://dx.doi.org/10.1371/journal.ppat.1003862. [PubMed][CrossRef]
31. Wos-Oxley ML, Plumeier I, von Eiff C, Taudien S, Platzer M, Vilchez-Vargas R, Becker K, Pieper DH. 2010. A poke into the diversity and associations within human anterior nare microbial communities. ISME J 4:839–851 http://dx.doi.org/10.1038/ismej.2010.15. [PubMed][CrossRef]
32. Quercia S, Candela M, Giuliani C, Turroni S, Luiselli D, Rampelli S, Brigidi P, Franceschi C, Bacalini MG, Garagnani P, Pirazzini C. 2014. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol 5:587 http://dx.doi.org/10.3389/fmicb.2014.00587. [PubMed][CrossRef]
33. Kloos WE, Schleifer KH. 1975. Isolation and characterization of staphylococci from human skin. II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int J Syst Bacteriol 25:62–79 http://dx.doi.org/10.1099/00207713-25-1-62. [CrossRef]
34. Bieber L, Kahlmeter G. 2010. Staphylococcus lugdunensis in several niches of the normal skin flora. Clin Microbiol Infect 16:385–388 http://dx.doi.org/10.1111/j.1469-0691.2009.02813.x. [PubMed][CrossRef]
35. Zipperer A, Konnerth MC, Laux C, Berscheid A, Janek D, Weidenmaier C, Burian M, Schilling NA, Slavetinsky C, Marschal M, Willmann M, Kalbacher H, Schittek B, Brötz-Oesterhelt H, Grond S, Peschel A, Krismer B. 2016. Human commensals producing a novel antibiotic impair pathogen colonization. Nature 535:511–516 http://dx.doi.org/10.1038/nature18634. [PubMed][CrossRef]
36. Hu L, Umeda A, Kondo S, Amako K. 1995. Typing of Staphylococcus aureus colonising human nasal carriers by pulsed-field gel electrophoresis. J Med Microbiol 42:127–132 http://dx.doi.org/10.1099/00222615-42-2-127. [PubMed][CrossRef]
37. Hu L, Umeda A, Amako K. 1995. Typing of Staphylococcus epidermidis colonizing in human nares by pulsed-field gel electrophoresis. Microbiol Immunol 39:315–319 http://dx.doi.org/10.1111/j.1348-0421.1995.tb02207.x. [PubMed][CrossRef]
38. Warnke P, Devide A, Weise M, Frickmann H, Schwarz NG, Schäffler H, Ottl P, Podbielski A. 2016. Utilizing moist or dry swabs for the sampling of nasal MRSA carriers? An in vivo and in vitro study. PLoS One 11:e0163073 http://dx.doi.org/10.1371/journal.pone.0163073. [PubMed][CrossRef]
39. Verhoeven PO, Grattard F, Carricajo A, Lucht F, Cazorla C, Garraud O, Pozzetto B, Berthelot P. 2012. An algorithm based on one or two nasal samples is accurate to identify persistent nasal carriers of Staphylococcus aureus. Clin Microbiol Infect 18:551–557 http://dx.doi.org/10.1111/j.1469-0691.2011.03611.x. [PubMed][CrossRef]
40. Hanssen AM, Kindlund B, Stenklev NC, Furberg AS, Fismen S, Olsen RS, Johannessen M, Sollid JUE. 2017. Localization of Staphylococcus aureus in tissue from the nasal vestibule in healthy carriers. BMC Microbiol 17:89 http://dx.doi.org/10.1186/s12866-017-0997-3. [PubMed][CrossRef]
41. Weidenmaier C, Goerke C, Wolz C. 2012. Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20:243–250 http://dx.doi.org/10.1016/j.tim.2012.03.004. [PubMed][CrossRef]
42. Casado B, Pannell LK, Iadarola P, Baraniuk JN. 2005. Identification of human nasal mucous proteins using proteomics. Proteomics 5:2949–2959 http://dx.doi.org/10.1002/pmic.200401172. [PubMed][CrossRef]
43. Tomazic PV, Birner-Gruenberger R, Leitner A, Obrist B, Spoerk S, Lang-Loidolt D. 2014. Nasal mucus proteomic changes reflect altered immune responses and epithelial permeability in patients with allergic rhinitis. J Allergy Clin Immunol 133:741–750 http://dx.doi.org/10.1016/j.jaci.2013.09.040. [PubMed][CrossRef]
44. Koziel J, Potempa J. 2013. Protease-armed bacteria in the skin. Cell Tissue Res 351:325–337 http://dx.doi.org/10.1007/s00441-012-1355-2. [PubMed][CrossRef]
45. Corrigan RM, Miajlovic H, Foster TJ. 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22 http://dx.doi.org/10.1186/1471-2180-9-22. [PubMed][CrossRef]
46. Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C. 2014. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10:e1004089 http://dx.doi.org/10.1371/journal.ppat.1004089. [PubMed][CrossRef]
47. Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A. 2004. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245 http://dx.doi.org/10.1038/nm991. [PubMed][CrossRef]
48. Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, McLoughlin RM. 2012. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 8:e1003092 http://dx.doi.org/10.1371/journal.ppat.1003092. [PubMed][CrossRef]
49. Weidenmaier C, Peschel A. 2008. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287 http://dx.doi.org/10.1038/nrmicro1861. [PubMed][CrossRef]
50. Winstel V, Kühner P, Salomon F, Larsen J, Skov R, Hoffmann W, Peschel A, Weidenmaier C. 2015. Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. MBio 6:e00632-15 http://dx.doi.org/10.1128/mBio.00632-15. [PubMed][CrossRef]
51. Schade J, Weidenmaier C. 2016. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett 590:3758–3771 http://dx.doi.org/10.1002/1873-3468.12288. [PubMed][CrossRef]
52. O’Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ. 2002. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4:759–770 http://dx.doi.org/10.1046/j.1462-5822.2002.00231.x. [PubMed][CrossRef]
53. Wertheim HF, Walsh E, Choudhurry R, Melles DC, Boelens HA, Miajlovic H, Verbrugh HA, Foster T, van Belkum A. 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5:e17 http://dx.doi.org/10.1371/journal.pmed.0050017. [PubMed][CrossRef]
54. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62 http://dx.doi.org/10.1038/nrmicro3161. [PubMed][CrossRef]
55. Clarke SR, Andre G, Walsh EJ, Dufrêne YF, Foster TJ, Foster SJ. 2009. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77:2408–2416 http://dx.doi.org/10.1128/IAI.01304-08. [PubMed][CrossRef]
56. Askarian F, Ajayi C, Hanssen AM, van Sorge NM, Pettersen I, Diep DB, Sollid JU, Johannessen M. 2016. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Sci Rep 6:22134 http://dx.doi.org/10.1038/srep22134. [PubMed][CrossRef]
57. Hammers CM, Stanley JR. 2013. Desmoglein-1, differentiation, and disease. J Clin Invest 123:1419–1422 http://dx.doi.org/10.1172/JCI69071. [PubMed][CrossRef]
58. Roche FM, Meehan M, Foster TJ. 2003. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767 http://dx.doi.org/10.1099/mic.0.26412-0. [PubMed][CrossRef]
59. Schaffer AC, Solinga RM, Cocchiaro J, Portoles M, Kiser KB, Risley A, Randall SM, Valtulina V, Speziale P, Walsh E, Foster T, Lee JC. 2006. Immunization with Staphylococcus aureus clumping factor B, a major determinant in nasal carriage, reduces nasal colonization in a murine model. Infect Immun 74:2145–2153 http://dx.doi.org/10.1128/IAI.74.4.2145-2153.2006. [PubMed][CrossRef]
60. Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Bröker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G. 2013. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4:2345 http://dx.doi.org/10.1038/ncomms3345. [PubMed][CrossRef]
61. Brugger SD, Bomar L, Lemon KP. 2016. Commensal-pathogen interactions along the human nasal passages. PLoS Pathog 12:e1005633 http://dx.doi.org/10.1371/journal.ppat.1005633. [PubMed][CrossRef]
62. Janek D, Zipperer A, Kulik A, Krismer B, Peschel A. 2016. High frequency and diversity of antimicrobial activities produced by nasal Staphylococcus strains against bacterial competitors. PLoS Pathog 12:e1005812 http://dx.doi.org/10.1371/journal.ppat.1005812. [PubMed][CrossRef]
63. Lee H, Kim HY. 2011. Lantibiotics, class I bacteriocins from the genus Bacillus. J Microbiol Biotechnol 21:229–235. [PubMed]
64. Bierbaum G, Sahl HG. 2009. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol 10:2–18 http://dx.doi.org/10.2174/138920109787048616. [PubMed][CrossRef]
65. Allgaier H, Jung G, Werner RG, Schneider U, Zähner H. 1986. Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. Eur J Biochem 160:9–22 http://dx.doi.org/10.1111/j.1432-1033.1986.tb09933.x. [PubMed][CrossRef]
66. Kaletta C, Entian KD, Kellner R, Jung G, Reis M, Sahl HG. 1989. Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch Microbiol 152:16–19 http://dx.doi.org/10.1007/BF00447005. [PubMed][CrossRef]
67. van de Kamp M, van den Hooven HW, Konings RN, Bierbaum G, Sahl HG, Kuipers OP, Siezen RJ, de Vos WM, Hilbers CW, van de Ven FJ. 1995. Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. Eur J Biochem 230:587–600 http://dx.doi.org/10.1111/j.1432-1033.1995.tb20600.x. [PubMed][CrossRef]
68. Ekkelenkamp MB, Hanssen M, Danny Hsu ST, de Jong A, Milatovic D, Verhoef J, van Nuland NA. 2005. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett 579:1917–1922 http://dx.doi.org/10.1016/j.febslet.2005.01.083. [PubMed][CrossRef]
69. Heidrich C, Pag U, Josten M, Metzger J, Jack RW, Bierbaum G, Jung G, Sahl HG. 1998. Isolation, characterization, and heterologous expression of the novel lantibiotic epicidin 280 and analysis of its biosynthetic gene cluster. Appl Environ Microbiol 64:3140–3146. [PubMed]
70. Navaratna MA, Sahl HG, Tagg JR. 1998. Two-component anti- Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl Environ Microbiol 64:4803–4808. [PubMed]
71. Sashihara T, Kimura H, Higuchi T, Adachi A, Matsusaki H, Sonomoto K, Ishizaki A. 2000. A novel lantibiotic, nukacin ISK-1, of Staphylococcus warneri ISK-1: cloning of the structural gene and identification of the structure. Biosci Biotechnol Biochem 64:2420–2428 http://dx.doi.org/10.1271/bbb.64.2420. [PubMed][CrossRef]
72. Wilaipun P, Zendo T, Okuda K, Nakayama J, Sonomoto K. 2008. Identification of the nukacin KQU-131, a new type-A(II) lantibiotic produced by Staphylococcus hominis KQU-131 isolated from Thai fermented fish product (Pla-ra). Biosci Biotechnol Biochem 72:2232–2235 http://dx.doi.org/10.1271/bbb.80239. [PubMed][CrossRef]
73. Nakatsuji T, Chen TH, Narala S, Chun KA, Two AM, Yun T, Shafiq F, Kotol PF, Bouslimani A, Melnik AV, Latif H, Kim JN, Lockhart A, Artis K, David G, Taylor P, Streib J, Dorrestein PC, Grier A, Gill SR, Zengler K, Hata TR, Leung DY, Gallo RL. 2017. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9:9 http://dx.doi.org/10.1126/scitranslmed.aah4680. [PubMed][CrossRef]
74. Kumar R, Jangir PK, Das J, Taneja B, Sharma R. 2017. Genome analysis of Staphylococcus capitis TE8 reveals repertoire of antimicrobial peptides and adaptation strategies for growth on human skin. Sci Rep 7:10447 http://dx.doi.org/10.1038/s41598-017-11020-7. [PubMed][CrossRef]
75. Christensen GJM, Scholz CFP, Enghild J, Rohde H, Kilian M, Thürmer A, Brzuszkiewicz E, Lomholt HB, Brüggemann H. 2016. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics 17:152 http://dx.doi.org/10.1186/s12864-016-2489-5. [PubMed][CrossRef]
76. Brzuszkiewicz E, Weiner J, Wollherr A, Thürmer A, Hüpeden J, Lomholt HB, Kilian M, Gottschalk G, Daniel R, Mollenkopf HJ, Meyer TF, Brüggemann H. 2011. Comparative genomics and transcriptomics of Propionibacterium acnes. PLoS One 6:e21581 http://dx.doi.org/10.1371/journal.pone.0021581. [PubMed][CrossRef]
77. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349 http://dx.doi.org/10.1038/nature09074. [PubMed][CrossRef]
78. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y. 2013. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195:1645–1655 http://dx.doi.org/10.1128/JB.01672-12. [PubMed][CrossRef]
79. Lemon KP, Klepac-Ceraj V, Schiffer HK, Brodie EL, Lynch SV, Kolter R. 2010. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. MBio 1:e00129-10. [PubMed][CrossRef]
80. Selva L, Viana D, Regev-Yochay G, Trzcinski K, Corpa JM, Lasa I, Novick RP, Penadés JR. 2009. Killing niche competitors by remote-control bacteriophage induction. Proc Natl Acad Sci USA 106:1234–1238 http://dx.doi.org/10.1073/pnas.0809600106. [PubMed][CrossRef]
81. Uehara Y, Kikuchi K, Nakamura T, Nakama H, Agematsu K, Kawakami Y, Maruchi N, Totsuka K. 2001. H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis 32:1408–1413 http://dx.doi.org/10.1086/320179. [PubMed][CrossRef]
82. Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rümke HC, Verbrugh HA, Hermans PW. 2004. Colonisation by Streptococcus pneumoniae and Staphylococcus aureus in healthy children. Lancet 363:1871–1872 http://dx.doi.org/10.1016/S0140-6736(04)16357-5. [CrossRef]
83. Regev-Yochay G, Dagan R, Raz M, Carmeli Y, Shainberg B, Derazne E, Rahav G, Rubinstein E. 2004. Association between carriage of Streptococcus pneumoniae and Staphylococcus aureus in children. JAMA 292:716–720 http://dx.doi.org/10.1001/jama.292.6.716. [PubMed][CrossRef]
84. Uehara Y, Nakama H, Agematsu K, Uchida M, Kawakami Y, Abdul Fattah AS, Maruchi N. 2000. Bacterial interference among nasal inhabitants: eradication of Staphylococcus aureus from nasal cavities by artificial implantation of Corynebacterium sp. J Hosp Infect 44:127–133 http://dx.doi.org/10.1053/jhin.1999.0680. [PubMed][CrossRef]
85. Wollenberg MS, Claesen J, Escapa IF, Aldridge KL, Fischbach MA, Lemon KP. 2014. Propionibacterium-produced coproporphyrin III induces Staphylococcus aureus aggregation and biofilm formation. MBio 5:e01286-14 http://dx.doi.org/10.1128/mBio.01286-14. [PubMed][CrossRef]
86. Hanzelmann D, Joo HS, Franz-Wachtel M, Hertlein T, Stevanovic S, Macek B, Wolz C, Götz F, Otto M, Kretschmer D, Peschel A. 2016. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun 7:12304 http://dx.doi.org/10.1038/ncomms12304. [PubMed][CrossRef]
87. Riechelmann H, Essig A, Deutschle T, Rau A, Rothermel B, Weschta M. 2005. Nasal carriage of Staphylococcus aureus in house dust mite allergic patients and healthy controls. Allergy 60:1418–1423 http://dx.doi.org/10.1111/j.1398-9995.2005.00902.x. [PubMed][CrossRef]
88. Wos-Oxley ML, Chaves-Moreno D, Jauregui R, Oxley AP, Kaspar U, Plumeier I, Kahl S, Rudack C, Becker K, Pieper DH. 2016. Exploring the bacterial assemblages along the human nasal passage. Environ Microbiol 18:2259–2271. [PubMed][CrossRef]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0029-2018
2019-04-19
2019-09-19

Abstract:

is usually regarded as a bacterial pathogen due to its ability to cause multiple types of invasive infections. Nevertheless, colonizes about 30% of the human population asymptomatically in the nares, either transiently or persistently, and can therefore be regarded a human commensal as well, although carriage increases the risk of infection. Whereas many facets of the infection processes have been studied intensively, little is known about the commensal lifestyle of . Recent studies highlight the major role of the composition of the highly variable nasal microbiota in promoting or inhibiting colonization. Competition for limited nutrients, trace elements, and epithelial attachment sites, different susceptibilities to host defense molecules and the production of antimicrobial molecules by bacterial competitors may determine whether nasal bacteria outcompete each other. This chapter summarizes our knowledge about mechanisms that are used by for efficient nasal colonization and strategies used by other nasal bacteria to interfere with its colonization. An improved understanding of naturally evolved mechanisms might enable us to develop new strategies for pathogen eradication.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Attachment mechanisms of in the human nasal cavity. The anterior and posterior parts of the human nose are lined by different types of epithelial cell, which require alternative bacterial adhesion mechanisms. For the keratinized stratified squamous epithelium in the anterior nasal cavity, predominantly uses cell wall-attached surface proteins (MSCRAMMs) ( 2 , 41 ). In contrast, the primary attachment in the posterior area, composed of a pseudostratified columnar ciliated epithelium, is mediated by specific interaction of the cell-wall linked wall teichoic acid (WTA) with the scavenger receptor class F member 1 (SREC1) ( 41 , 46 ). The corneocytes (desquamated epithelial cells) in the anterior nasal cavity contain high levels of the proteins loricrin, cytokeratin 10, and involucrin ( 55 ). can express a variety of cell wall proteins, which bind to these matrix proteins. The adhesin clumping factor B (ClfB) binds to cytokeratin 10 and loricrin ( 48 , 52 ), whereas the iron-regulated surface determinant A (IsdA) can also interact with involucrin ( 55 ). In addition, the serine-aspartate repeat-containing protein D (SdrD) mediates adhesion to human squamous epithelial cells by binding to desmoglein 1 ( 56 ). Some isolates secrete an extracellular serine protease (Esp), which inhibits colonization by degradation of the surface proteins IsdA and SdrD and host receptors ( 77 , 78 ). In addition, can prevent nasal colonization of by producing the cyclic thiazolidine-containing peptide antibiotic lugdunin ( 35 ).

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0029-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Established interactions between nasal bacteria. and spp. can promote the colonization by (green boxes) by modulation of its adhesive capacities ( 20 , 85 ) (blue arrows), while specific clones of , , and spp. can lead to growth inhibition (orange boxes). Some isolates secrete high levels of extracellular serine protease (Esp), which inhibits nasal colonization ( 77 ) (yellow arrow). In addition, and can impede colonization by producing antimicrobial molecules ( 35 , 64 ) (black arrows). can release hydrogen peroxide, which leads to prophage activation in along with phage-mediated lysis of cells ( 80 , 81 ) (red arrow).

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0029-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Community state types of the human nose

Source: microbiolspec April 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0029-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error