1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Staphylococcal Plasmids, Transposable and Integrative Elements

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Neville Firth1, Slade O. Jensen2, Stephen M. Kwong3, Ronald A. Skurray4, Joshua P. Ramsay5
  • Editors: Vincent A. Fischetti6, Richard P. Novick7, Joseph J. Ferretti8, Daniel A. Portnoy9, Miriam Braunstein10, Julian I. Rood11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia; 2: Infectious Diseases and Microbiology, School of Medicine and Antibiotic Resistance and Mobile Elements Group, Ingham Institute, Western Sydney University, Penrith, NSW 2751, Australia; 3: School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia; 4: School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia; 5: School of Pharmacy and Biomedical Sciences and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; 6: The Rockefeller University, New York, NY; 7: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 8: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 9: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 10: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 11: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
  • Received 30 April 2018 Accepted 12 July 2018 Published 13 December 2018
  • Neville Firth, [email protected]
image of Staphylococcal Plasmids, Transposable and Integrative Elements
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Staphylococcal Plasmids, Transposable and Integrative Elements, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0030-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0030-2018-2.gif
  • Abstract:

    Strains of , and to a lesser extent other staphylococcal species, are a significant cause of morbidity and mortality. An important factor in the notoriety of these organisms stems from their frequent resistance to many antimicrobial agents used for chemotherapy. This review catalogues the variety of mobile genetic elements that have been identified in staphylococci, with a primary focus on those associated with the recruitment and spread of antimicrobial resistance genes. These include plasmids, transposable elements such as insertion sequences and transposons, and integrative elements including ICE and SCC elements. In concert, these diverse entities facilitate the intra- and inter-cellular gene mobility that enables horizontal genetic exchange, and have also been found to play additional roles in modulating gene expression and genome rearrangement.

  • Citation: Firth N, Jensen S, Kwong S, Skurray R, Ramsay J. 2018. Staphylococcal Plasmids, Transposable and Integrative Elements. Microbiol Spectrum 6(6):GPP3-0030-2018. doi:10.1128/microbiolspec.GPP3-0030-2018.

References

1. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240 http://dx.doi.org/10.1016/S0140-6736(00)04403-2. [PubMed]
2. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci U S A 98:8821–8826 http://dx.doi.org/10.1073/pnas.161098098.
3. Baba T, Takeuchi F, Kuroda M, Yuzawa H, Aoki K, Oguchi A, Nagai Y, Iwama N, Asano K, Naimi T, Kuroda H, Cui L, Yamamoto K, Hiramatsu K. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:1819–1827 http://dx.doi.org/10.1016/S0140-6736(02)08713-5.
4. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786–9791 http://dx.doi.org/10.1073/pnas.0402521101. [PubMed]
5. Lindsay JA, Holden MT. 2004. Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385 http://dx.doi.org/10.1016/j.tim.2004.06.004. [PubMed]
6. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134. [PubMed]
7. Novick RP. 1990. The Staphylococcus as a molecular genetic system, p 1–37. In Novick RP (ed), Molecular Biology of the Staphylococci. VCH, New York, NY. [PubMed]
8. Morikawa K, Takemura AJ, Inose Y, Tsai M, Nguyen Thi T, Ohta T, Msadek T. 2012. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog 8:e1003003 http://dx.doi.org/10.1371/journal.ppat.1003003. [PubMed]
9. Lindsay JA. 2014. Staphylococcus aureus genomics and the impact of horizontal gene transfer. Int J Med Microbiol 304:103–109 http://dx.doi.org/10.1016/j.ijmm.2013.11.010. [PubMed] [PubMed]
10. Stanczak-Mrozek KI, Laing KG, Lindsay JA. 2017. Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage. J Antimicrob Chemother 72:1624–1631 http://dx.doi.org/10.1093/jac/dkx056. [PubMed]
11. Projan SJ, Archer GL. 1989. Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGO1 involves three pC221 loci. J Bacteriol 171:1841–1845 http://dx.doi.org/10.1128/jb.171.4.1841-1845.1989. [PubMed]
12. Archer GL, Thomas WD Jr. 1990. Conjugative transfer of antimicrobial resistance genes between staphylococci, p 115–122. In Novick RP (ed), Molecular Biology of the Staphylococci. VCH, New York, NY.
13. Macrina FL, Archer GL. 1993. Conjugation and broad host range plasmids in streptococci and staphylococci, p 313–329. In Clewell DB (ed), Bacterial Conjugation. Plenum Press, New York, NY. http://dx.doi.org/10.1007/978-1-4757-9357-4_12
14. Robinson DA, Enright MC. 2004. Evolution of Staphylococcus aureus by large chromosomal replacements. J Bacteriol 186:1060–1064 http://dx.doi.org/10.1128/JB.186.4.1060-1064.2004. [PubMed]
15. de Vries LE, Christensen H, Skov RL, Aarestrup FM, Agersø Y. 2009. Diversity of the tetracycline resistance gene tet(M) and identification of Tn 916- and Tn 5801-like (Tn 6014) transposons in Staphylococcus aureus from humans and animals. J Antimicrob Chemother 64:490–500 http://dx.doi.org/10.1093/jac/dkp214. [PubMed]
16. Sansevere EA, Robinson DA. 2017. Staphylococci on ICE: overlooked agents of horizontal gene transfer. Mob Genet Elements 7:1–10 http://dx.doi.org/10.1080/2159256X.2017.1368433. [PubMed]
17. Birmingham VA, Pattee PA. 1981. Genetic transformation in Staphylococcus aureus: isolation and characterization of a competence-conferring factor from bacteriophage 80 alpha lysates. J Bacteriol 148:301–307. [PubMed]
18. Lacey RW. 1980. Evidence for two mechanisms of plasmid transfer in mixed cultures of Staphylococcus aureus. J Gen Microbiol 119:423–435.
19. Haaber J, Leisner JJ, Cohn MT, Catalan-Moreno A, Nielsen JB, Westh H, Penadés JR, Ingmer H. 2016. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun 7:13333 http://dx.doi.org/10.1038/ncomms13333. [PubMed]
20. Evans J, Dyke KG. 1988. Characterization of the conjugation system associated with the Staphylococcus aureus plasmid pJE1. J Gen Microbiol 134:1–8.
21. al-Masaudi SB, Day MJ, Russell AD. 1991. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J Appl Bacteriol 71:239–243 http://dx.doi.org/10.1111/j.1365-2672.1991.tb04454.x. [PubMed]
22. Barr V, Barr K, Millar MR, Lacey RW. 1986. Beta-lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J Antimicrob Chemother 17:409–413 http://dx.doi.org/10.1093/jac/17.4.409. [PubMed]
23. McCarthy AJ, Loeffler A, Witney AA, Gould KA, Lloyd DH, Lindsay JA. 2014. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol Evol 6:2697–2708 http://dx.doi.org/10.1093/gbe/evu214. [PubMed]
24. Novick RP. 1989. Staphylococcal plasmids and their replication. Annu Rev Microbiol 43:537–565 http://dx.doi.org/10.1146/annurev.mi.43.100189.002541. [PubMed]
25. Paulsen IT, Firth N, Skurray RA. 1997. Resistance to antimicrobial agents other than β-lactams, p 175–212. In Crossley KB, Archer GL (ed), The Staphylococci in Human Disease. Churchill Livingstone, London, UK.
26. Firth N, Skurray RA. 1998. Mobile elements in the evolution and spread of multiple-drug resistance in staphylococci. Drug Resist Updat 1:49–58 http://dx.doi.org/10.1016/S1368-7646(98)80214-8.
27. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571 http://dx.doi.org/10.1126/science.1090956. [PubMed]
28. Schwarz S, Shen J, Wendlandt S, Fessler AT, Wang Y, Kadlec K, Wu CM. 2014. Plasmid-mediated antimicrobial resistance in staphylococci and other firmicutes. Microbiol Spectr 2:PLAS-0020-2014. doi:10.1128/microbiolspec.PLAS-0020-2014.
29. Shearer JE, Wireman J, Hostetler J, Forberger H, Borman J, Gill J, Sanchez S, Mankin A, Lamarre J, Lindsay JA, Bayles K, Nicholson A, O’Brien F, Jensen SO, Firth N, Skurray RA, Summers AO. 2011. Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3 (Bethesda) 1:581–591 http://dx.doi.org/10.1534/g3.111.000760. [PubMed]
30. Malachowa N, DeLeo FR. 2010. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071 http://dx.doi.org/10.1007/s00018-010-0389-4. [PubMed]
31. Zhang S, Iandolo JJ, Stewart GC. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant ( sej). FEMS Microbiol Lett 168:227–233 http://dx.doi.org/10.1111/j.1574-6968.1998.tb13278.x. [PubMed]
32. Yamaguchi T, Hayashi T, Takami H, Ohnishi M, Murata T, Nakayama K, Asakawa K, Ohara M, Komatsuzawa H, Sugai M. 2001. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect Immun 69:7760–7771 http://dx.doi.org/10.1128/IAI.69.12.7760-7771.2001.
33. Bayles KW, Iandolo JJ. 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J Bacteriol 171:4799–4806 http://dx.doi.org/10.1128/jb.171.9.4799-4806.1989. [PubMed]
34. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun 71:6088–6094 http://dx.doi.org/10.1128/IAI.71.10.6088-6094.2003. [PubMed]
35. Kwong SM, Ramsay JP, Jensen SO, Firth N. 2017. Replication of staphylococcal resistance plasmids. Front Microbiol 8:2279 http://dx.doi.org/10.3389/fmicb.2017.02279. [PubMed]
36. Udo EE, Grubb WB. 1991. A new incompatibility group plasmid in Staphylococcus aureus. FEMS Microbiol Lett 62:33–36 http://dx.doi.org/10.1111/j.1574-6968.1991.tb04412.x. [PubMed]
37. Jensen LB, Garcia-Migura L, Valenzuela AJ, Løhr M, Hasman H, Aarestrup FM. 2010. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods 80:25–43 http://dx.doi.org/10.1016/j.mimet.2009.10.012. [PubMed]
38. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903 http://dx.doi.org/10.1128/AAC.02412-14. [PubMed]
39. Lozano C, García-Migura L, Aspiroz C, Zarazaga M, Torres C, Aarestrup FM. 2012. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins. Appl Environ Microbiol 78:5948–5955 http://dx.doi.org/10.1128/AEM.00870-12. [PubMed]
40. McCarthy AJ, Lindsay JA. 2012. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol 12:104 http://dx.doi.org/10.1186/1471-2180-12-104. [PubMed]
41. Khan SA. 1997. Rolling-circle replication of bacterial plasmids. Microbiol Mol Biol Rev 61:442–455. [PubMed]
42. Helinski DR, Toukdarian AE, Novick RP. 1996. Replication control and other stable maintenance mechanisms of plasmids, p 2295–2324. In Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB Jr, Magasanik B, Reznikoff W, Riley M, Schaechter M, Umbarger HE (ed), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC.
43. Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359. [PubMed]
44. Ruiz-Maso JA, Macho NC, Bordanaba-Ruiseco L, Espinosa M, Coll M, Del Solar G. 2015. Plasmid rolling-circle replication. Microbiol Spectr 3:PLAS-0035-2014. doi:10.1128/microbiolspec.PLAS-0035-2014.
45. Soultanas P, Dillingham MS, Papadopoulos F, Phillips SE, Thomas CD, Wigley DB. 1999. Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase. Nucleic Acids Res 27:1421–1428 http://dx.doi.org/10.1093/nar/27.6.1421. [PubMed]
46. Chang TL, Naqvi A, Anand SP, Kramer MG, Munshi R, Khan SA. 2002. Biochemical characterization of the Staphylococcus aureus PcrA helicase and its role in plasmid rolling circle replication. J Biol Chem 277:45880–45886 http://dx.doi.org/10.1074/jbc.M207383200. [PubMed]
47. Kramer MG, Khan SA, Espinosa M. 1997. Plasmid rolling circle replication: identification of the RNA polymerase-directed primer RNA and requirement for DNA polymerase I for lagging strand synthesis. EMBO J 16:5784–5795 http://dx.doi.org/10.1093/emboj/16.18.5784. [PubMed]
48. Kramer MG, Espinosa M, Misra TK, Khan SA. 1999. Characterization of a single-strand origin, ssoU, required for broad host range replication of rolling-circle plasmids. Mol Microbiol 33:466–475 http://dx.doi.org/10.1046/j.1365-2958.1999.01471.x. [PubMed]
49. Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I. 1989. pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59:395–404 http://dx.doi.org/10.1016/0092-8674(89)90300-0.
50. Alonso JC, Tailor RH. 1987. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol Gen Genet 210:476–484 http://dx.doi.org/10.1007/BF00327200. [PubMed]
51. Maciag IE, Viret JF, Alonso JC. 1988. Replication and incompatibility properties of plasmid pUB110 in Bacillus subtilis. Mol Gen Genet 212:232–240 http://dx.doi.org/10.1007/BF00334690. [PubMed]
52. del Solar G, Espinosa M. 2000. Plasmid copy number control: an ever-growing story. Mol Microbiol 37:492–500 http://dx.doi.org/10.1046/j.1365-2958.2000.02005.x. [PubMed]
53. López-Aguilar C, Romero-López C, Espinosa M, Berzal-Herranz A, Del Solar G. 2015. The 5′-tail of antisense RNAII of pMV158 plays a critical role in binding to the target mRNA and in translation inhibition of repB. Front Genet 6:225 http://dx.doi.org/10.3389/fgene.2015.00225. [PubMed]
54. Caryl JA, Smith MC, Thomas CD. 2004. Reconstitution of a staphylococcal plasmid-protein relaxation complex in vitro. J Bacteriol 186:3374–3383 http://dx.doi.org/10.1128/JB.186.11.3374-3383.2004. [PubMed]
55. Caryl JA, Thomas CD. 2006. Investigating the basis of substrate recognition in the pC221 relaxosome. Mol Microbiol 60:1302–1318 http://dx.doi.org/10.1111/j.1365-2958.2006.05188.x. [PubMed]
56. Grohmann E, Zechner EL, Espinosa M. 1997. Determination of specific DNA strand discontinuities with nucleotide resolution in exponentionally growing bacteria harboring rolling circle-replicating plasmids. FEMS Microbiol Lett 152:363–369 http://dx.doi.org/10.1111/j.1574-6968.1997.tb10453.x. [PubMed]
57. Guzmán LM, Espinosa M. 1997. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. J Mol Biol 266:688–702 http://dx.doi.org/10.1006/jmbi.1996.0824. [PubMed]
58. Lee CA, Thomas J, Grossman AD. 2012. The Bacillus subtilis conjugative transposon ICE Bs1 mobilizes plasmids lacking dedicated mobilization functions. J Bacteriol 194:3165–3172 http://dx.doi.org/10.1128/JB.00301-12. [PubMed]
59. Projan SJ, Novick R. 1988. Comparative analysis of five related staphylococcal plasmids. Plasmid 19:203–221 http://dx.doi.org/10.1016/0147-619X(88)90039-X.
60. Gruss A, Ehrlich SD. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev 53:231–241. [PubMed]
61. Wassenaar TM, Ussery DW, Ingmer H. 2016. The qacC gene has recently spread between rolling circle plasmids of Staphylococcus, indicative of a novel gene transfer mechanism. Front Microbiol 7:1528 http://dx.doi.org/10.3389/fmicb.2016.01528. [PubMed]
62. Sheehy RJ, Novick RP. 1975. Studies on plasmid replication. V Replicative intermediates. J Mol Biol 93:237–253 http://dx.doi.org/10.1016/0022-2836(75)90130-8.
63. Gering M, Götz F, Brückner R. 1996. Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267. Gene 182:117–122 http://dx.doi.org/10.1016/S0378-1119(96)00526-4.
64. Firth N, Apisiridej S, Berg T, O’Rourke BA, Curnock S, Dyke KGH, Skurray RA. 2000. Replication of staphylococcal multiresistance plasmids. J Bacteriol 182:2170–2178 http://dx.doi.org/10.1128/JB.182.8.2170-2178.2000. [PubMed]
65. Apisiridej S, Leelaporn A, Scaramuzzi CD, Skurray RA, Firth N. 1997. Molecular analysis of a mobilizable theta-mode trimethoprim resistance plasmid from coagulase-negative staphylococci. Plasmid 38:13–24 http://dx.doi.org/10.1006/plas.1997.1292. [PubMed]
66. Weaver KE, Kwong SM, Firth N, Francia MV. 2009. The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 61:94–109 http://dx.doi.org/10.1016/j.plasmid.2008.11.004. [PubMed]
67. Kwong SM, Skurray RA, Firth N. 2004. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol Microbiol 51:497–509 http://dx.doi.org/10.1046/j.1365-2958.2003.03843.x. [PubMed]
68. Kwong SM, Lim R, Lebard RJ, Skurray RA, Firth N. 2008. Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology 154:3084–3094 http://dx.doi.org/10.1099/mic.0.2008/017418-0. [PubMed]
69. Liu MA, Kwong SM, Pon CK, Skurray RA, Firth N. 2012. Genetic requirements for replication initiation of the staphylococcal multiresistance plasmid pSK41. Microbiology 158:1456–1467 http://dx.doi.org/10.1099/mic.0.057620-0. [PubMed]
70. Schumacher MA, Tonthat NK, Kwong SM, Chinnam NB, Liu MA, Skurray RA, Firth N. 2014. Mechanism of staphylococcal multiresistance plasmid replication origin assembly by the RepA protein. Proc Natl Acad Sci U S A 111:9121–9126 http://dx.doi.org/10.1073/pnas.1406065111. [PubMed]
71. Nakaminami H, Noguchi N, Nishijima S, Kurokawa I, Sasatsu M. 2008. Characterization of the pTZ2162 encoding multidrug efflux gene qacB from Staphylococcus aureus. Plasmid 60:108–117 http://dx.doi.org/10.1016/j.plasmid.2008.04.003. [PubMed]
72. Kwong SM, Skurray RA, Firth N. 2006. Replication control of staphylococcal multiresistance plasmid pSK41: an antisense RNA mediates dual-level regulation of Rep expression. J Bacteriol 188:4404–4412 http://dx.doi.org/10.1128/JB.00030-06. [PubMed]
73. Kwong SM, Firth N. 2015. Structural and sequence requirements for the antisense RNA regulating replication of staphylococcal multiresistance plasmid pSK41. Plasmid 78:17–25 http://dx.doi.org/10.1016/j.plasmid.2015.01.002. [PubMed]
74. Firth N, Skurray RA. 2006. Genetics: accessory elements and genetic exchange, p 413–426. In Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (ed), Gram-Positive Pathogens. ASM Press, Washington, DC. http://dx.doi.org/10.1128/9781555816513.ch33
75. Rowland SJ, Dyke KGH. 1990. Tn 552, a novel transposable element from Staphylococcus aureus. Mol Microbiol 4:961–975 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00669.x. [PubMed]
76. Dyke K, Gregory P. 1997. Resistance mediated by β-lactamase, p 139–157. In Crossley KB, Archer GL (ed), The Staphylococci in Human Disease. Churchill Livingstone, London, UK.
77. Shalita Z, Murphy E, Novick RP. 1980. Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid 3:291–311 http://dx.doi.org/10.1016/0147-619X(80)90042-6.
78. Gillespie MT, Skurray RA. 1986. Plasmids in multiresistant Staphylococcus aureus. Microbiol Sci 3:53–58. [PubMed]
79. Novick RP, Edelman I, Schwesinger MD, Gruss AD, Swanson EC, Pattee PA. 1979. Genetic translocation in Staphylococcus aureus. Proc Natl Acad Sci U S A 76:400–404 http://dx.doi.org/10.1073/pnas.76.1.400. [PubMed]
80. Tennent JM, Lyon BR, Midgley M, Jones IG, Purewal AS, Skurray RA. 1989. Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. J Gen Microbiol 135:1–10.
81. Rouch DA, Cram DS, DiBerardino D, Littlejohn TG, Skurray RA. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol Microbiol 4:2051–2062 http://dx.doi.org/10.1111/j.1365-2958.1990.tb00565.x. [PubMed]
82. Rouch DA, Byrne ME, Kong YC, Skurray RA. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn 4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052.
83. Gillespie MT, Lyon BR, Skurray RA. 1988. Structural and evolutionary relationships of β-lactamase transposons from Staphylococcus aureus. J Gen Microbiol 134:2857–2866.
84. Rouch DA, Messerotti LJ, Loo LS, Jackson CA, Skurray RA. 1989. Trimethoprim resistance transposon Tn 4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS 257. Mol Microbiol 3:161–175 http://dx.doi.org/10.1111/j.1365-2958.1989.tb01805.x. [PubMed]
85. Leelaporn A, Firth N, Paulsen IT, Skurray RA. 1996. IS 257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. J Bacteriol 178:6070–6073 http://dx.doi.org/10.1128/jb.178.20.6070-6073.1996. [PubMed]
86. Paulsen IT, Gillespie MT, Littlejohn TG, Hanvivatvong O, Rowland SJ, Dyke KG, Skurray RA. 1994. Characterisation of sin, a potential recombinase-encoding gene from Staphylococcus aureus. Gene 141:109–114 http://dx.doi.org/10.1016/0378-1119(94)90136-8.
87. Rowland S-J, Stark WM, Boocock MR. 2002. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol 44:607–619 http://dx.doi.org/10.1046/j.1365-2958.2002.02897.x. [PubMed]
88. Simpson AE, Skurray RA, Firth N. 2003. A single gene on the staphylococcal multiresistance plasmid pSK1 encodes a novel partitioning system. J Bacteriol 185:2143–2152 http://dx.doi.org/10.1128/JB.185.7.2143-2152.2003. [PubMed]
89. Jensen SO, Apisiridej S, Kwong SM, Yang YH, Skurray RA, Firth N. 2010. Analysis of the prototypical Staphylococcus aureus multiresistance plasmid pSK1. Plasmid 64:135–142 http://dx.doi.org/10.1016/j.plasmid.2010.06.001. [PubMed]
90. Kwong SM, Jensen SO, Firth N. 2010. Prevalence of Fst-like toxin-antitoxin systems. Microbiology 156:975–977, discussion 977 http://dx.doi.org/10.1099/mic.0.038323-0. [PubMed]
91. Weaver KE, Reddy SG, Brinkman CL, Patel S, Bayles KW, Endres JL. 2009. Identification and characterization of a family of toxin-antitoxin systems related to the Enterococcus faecalis plasmid pAD1 par addiction module. Microbiology 155:2930–2940 http://dx.doi.org/10.1099/mic.0.030932-0. [PubMed]
92. Konieczny I, Bury K, Wawrzycka A, Wegrzyn K. 2014. Iteron plasmids. Microbiol Spectr 2:PLAS-0026-2014. doi:10.1128/microbiolspec.PLAS-0026-2014.
93. Firth N, Ridgway KP, Byrne ME, Fink PD, Johnson L, Paulsen IT, Skurray RA. 1993. Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene 136:13–25 http://dx.doi.org/10.1016/0378-1119(93)90442-6.
94. Liu MA, Kwong SM, Jensen SO, Brzoska AJ, Firth N. 2013. Biology of the staphylococcal conjugative multiresistance plasmid pSK41. Plasmid 70:42–51 http://dx.doi.org/10.1016/j.plasmid.2013.02.001. [PubMed]
95. Morton TM, Eaton DM, Johnston JL, Archer GL. 1993. DNA sequence and units of transcription of the conjugative transfer gene complex ( trs) of Staphylococcus aureus plasmid pGO1. J Bacteriol 175:4436–4447 http://dx.doi.org/10.1128/jb.175.14.4436-4447.1993. [PubMed]
96. Caryl JA, O’Neill AJ. 2009. Complete nucleotide sequence of pGO1, the prototype conjugative plasmid from the staphylococci. Plasmid 62:35–38 http://dx.doi.org/10.1016/j.plasmid.2009.03.001. [PubMed]
97. Jaffe HW, Sweeney HM, Weinstein RA, Kabins SA, Nathan C, Cohen S. 1982. Structural and phenotypic varieties of gentamicin resistance plasmids in hospital strains of Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob Agents Chemother 21:773–779 http://dx.doi.org/10.1128/AAC.21.5.773. [PubMed]
98. Archer GL, Scott J. 1991. Conjugative transfer genes in staphylococcal isolates from the United States. Antimicrob Agents Chemother 35:2500–2504 http://dx.doi.org/10.1128/AAC.35.12.2500. [PubMed]
99. Jaffe HW, Sweeney HM, Nathan C, Weinstein RA, Kabins SA, Cohen S. 1980. Identity and interspecific transfer of gentamicin-resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis. J Infect Dis 141:738–747 http://dx.doi.org/10.1093/infdis/141.6.738. [PubMed]
100. Archer GL, Dietrick DR, Johnston JL. 1985. Molecular epidemiology of transmissible gentamicin resistance among coagulase-negative staphylococci in a cardiac surgery unit. J Infect Dis 151:243–251 http://dx.doi.org/10.1093/infdis/151.2.243. [PubMed]
101. Ni L, Jensen SO, Ky Tonthat N, Berg T, Kwong SM, Guan FH, Brown MH, Skurray RA, Firth N, Schumacher MA. 2009. The Staphylococcus aureus pSK41 plasmid-encoded ArtA protein is a master regulator of plasmid transmission genes and contains a RHH motif used in alternate DNA-binding modes. Nucleic Acids Res 37:6970–6983 http://dx.doi.org/10.1093/nar/gkp756. [PubMed]
102. Pérez-Roth E, Kwong SM, Alcoba-Florez J, Firth N, Méndez-Alvarez S. 2010. Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob Agents Chemother 54:2252–2257 http://dx.doi.org/10.1128/AAC.01074-09. [PubMed]
103. Skurray RA, Firth N. 1997. Molecular evolution of multiply-antibiotic-resistant staphylococci. Ciba Found Symp 207:167–183, discussion 183–191. [PubMed]
104. Byrne ME, Gillespie MT, Skurray RA. 1990. Molecular analysis of a gentamicin resistance transposonlike element on plasmids isolated from North American Staphylococcus aureus strains. Antimicrob Agents Chemother 34:2106–2113 http://dx.doi.org/10.1128/AAC.34.11.2106. [PubMed]
105. Sasatsu M, Shima K, Shibata Y, Kono M. 1989. Nucleotide sequence of a gene that encodes resistance to ethidium bromide from a transferable plasmid in Staphylococcus aureus. Nucleic Acids Res 17:10103 http://dx.doi.org/10.1093/nar/17.23.10103. [PubMed]
106. Morton TM, Johnston JL, Patterson J, Archer GL. 1995. Characterization of a conjugative staphylococcal mupirocin resistance plasmid. Antimicrob Agents Chemother 39:1272–1280 http://dx.doi.org/10.1128/AAC.39.6.1272. [PubMed]
107. Bender J, Strommenger B, Steglich M, Zimmermann O, Fenner I, Lensing C, Dagwadordsch U, Kekulé AS, Werner G, Layer F. 2015. Linezolid resistance in clinical isolates of Staphylococcus epidermidis from German hospitals and characterization of two cfr-carrying plasmids. J Antimicrob Chemother 70:1630–1638.
108. Périchon B, Courvalin P. 2004. Heterologous expression of the enterococcal vanA operon in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 48:4281–4285 http://dx.doi.org/10.1128/AAC.48.11.4281-4285.2004. [PubMed]
109. Flannagan SE, Chow JW, Donabedian SM, Brown WJ, Perri MB, Zervos MJ, Ozawa Y, Clewell DB. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob Agents Chemother 47:3954–3959 http://dx.doi.org/10.1128/AAC.47.12.3954-3959.2003. [PubMed]
110. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O’Hara CM, Jevitt L, Patel JB, Bozdogan B. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275–280 http://dx.doi.org/10.1128/AAC.48.1.275-280.2004.
111. Zhu W, Clark N, Patel JB. 2013. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureusin vitro. Antimicrob Agents Chemother 57:212–219 http://dx.doi.org/10.1128/AAC.01587-12. [PubMed]
112. Dougherty BA, Hill C, Weidman JF, Richardson DR, Venter JC, Ross RP. 1998. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol Microbiol 29:1029–1038 http://dx.doi.org/10.1046/j.1365-2958.1998.00988.x. [PubMed]
113. Firth N, Berg T, Skurray RA. 1999. Evolution of conjugative plasmids from Gram-positive bacteria. Mol Microbiol 31:1598–1600. [PubMed]
114. Grohmann E, Muth G, Espinosa M. 2003. Conjugative plasmid transfer in Gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301 http://dx.doi.org/10.1128/MMBR.67.2.277-301.2003. [PubMed]
115. Guglielmini J, Néron B, Abby SS, Garcillán-Barcia MP, de la Cruz F, Rocha EP. 2014. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 42:5715–5727 http://dx.doi.org/10.1093/nar/gku194. [PubMed]
116. Alvarez-Martinez CE, Christie PJ. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808 http://dx.doi.org/10.1128/MMBR.00023-09. [PubMed]
117. Climo MW, Sharma VK, Archer GL. 1996. Identification and characterization of the origin of conjugative transfer ( oriT) and a gene ( nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J Bacteriol 178:4975–4983 http://dx.doi.org/10.1128/jb.178.16.4975-4983.1996. [PubMed]
118. Edwards JS, Betts L, Frazier ML, Pollet RM, Kwong SM, Walton WG, Ballentine WK III, Huang JJ, Habibi S, Del Campo M, Meier JL, Dervan PB, Firth N, Redinbo MR. 2013. Molecular basis of antibiotic multiresistance transfer in Staphylococcus aureus. Proc Natl Acad Sci U S A 110:2804–2809 http://dx.doi.org/10.1073/pnas.1219701110. [PubMed]
119. LeBard RJ, Jensen SO, Arnaiz IA, Skurray RA, Firth N. 2008. A multimer resolution system contributes to segregational stability of the prototypical staphylococcal conjugative multiresistance plasmid pSK41. FEMS Microbiol Lett 284:58–67 http://dx.doi.org/10.1111/j.1574-6968.2008.01190.x. [PubMed]
120. Schumacher MA, Glover TC, Brzoska AJ, Jensen SO, Dunham TD, Skurray RA, Firth N. 2007. Segrosome structure revealed by a complex of ParR with centromere DNA. Nature 450:1268–1271 http://dx.doi.org/10.1038/nature06392. [PubMed]
121. Popp D, Xu W, Narita A, Brzoska AJ, Skurray RA, Firth N, Ghoshdastider U, Maéda Y, Robinson RC, Schumacher MA. 2010. Structure and filament dynamics of the pSK41 actin-like ParM protein: implications for plasmid DNA segregation. J Biol Chem 285:10130–10140 http://dx.doi.org/10.1074/jbc.M109.071613. [PubMed]
122. Brzoska AJ, Jensen SO, Barton DA, Davies DS, Overall RL, Skurray RA, Firth N. 2016. Dynamic filament formation by a divergent bacterial actin-like ParM protein. PLoS One 11:e0156944 http://dx.doi.org/10.1371/journal.pone.0156944. [PubMed]
123. Sharma VK, Johnston JL, Morton TM, Archer GL. 1994. Transcriptional regulation by TrsN of conjugative transfer genes on staphylococcal plasmid pGO1. J Bacteriol 176:3445–3454 http://dx.doi.org/10.1128/jb.176.12.3445-3454.1994. [PubMed]
124. Townsend DE, Ashdown N, Annear DI, Grubb WB. 1985. A conjugative plasmid encoding production of a diffusible pigment and resistance to aminoglycosides and macrolides in Staphylococcus aureus. Aust J Exp Biol Med Sci 63:573–586 http://dx.doi.org/10.1038/icb.1985.61. [PubMed]
125. Townsend DE, Bolton S, Ashdown N, Annear DI, Grubb WB. 1986. Conjugative, staphylococcal plasmids carrying hitch-hiking transposons similar to Tn 554: intra- and interspecies dissemination of erythromycin resistance. Aust J Exp Biol Med Sci 64:367–379 http://dx.doi.org/10.1038/icb.1986.39. [PubMed]
126. Townsend DE, Grubb WB, Annear DI. 1985. A plasmid for diffusible pigment production in Staphylococcus aureus. Aust J Exp Biol Med Sci 63:463–472 http://dx.doi.org/10.1038/icb.1985.51. [PubMed]
127. Udo EE, Wei MQ, Grubb WB. 1992. Conjugative trimethoprim resistance in Staphylococcus aureus. FEMS Microbiol Lett 76:243–248 http://dx.doi.org/10.1111/j.1574-6968.1992.tb05470.x. [PubMed]
128. Ramsay JP, Kwong SM, Murphy RJ, Yui Eto K, Price KJ, Nguyen QT, O’Brien FG, Grubb WB, Coombs GW, Firth N. 2016. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mob Genet Elements 6:e1208317 http://dx.doi.org/10.1080/2159256X.2016.1208317. [PubMed]
129. Shore AC, Lazaris A, Kinnevey PM, Brennan OM, Brennan GI, O’Connell B, Feßler AT, Schwarz S, Coleman DC. 2016. First report of cfr-carrying plasmids in the pandemic sequence type 22 methicillin-resistant Staphylococcus aureus staphylococcal cassette chromosome mec type IV clone. Antimicrob Agents Chemother 60:3007–3015 http://dx.doi.org/10.1128/AAC.02949-15. [PubMed]
130. O’Brien FG, Coombs GW, Pearman JW, Gracey M, Moss F, Christiansen KJ, Grubb WB. 2009. Population dynamics of methicillin-susceptible and -resistant Staphylococcus aureus in remote communities. J Antimicrob Chemother 64:684–693 http://dx.doi.org/10.1093/jac/dkp285. [PubMed]
131. O’Brien FG, Ramsay JP, Monecke S, Coombs GW, Robinson OJ, Htet Z, Alshaikh FA, Grubb WB. 2015. Staphylococcus aureus plasmids without mobilization genes are mobilized by a novel conjugative plasmid from community isolates. J Antimicrob Chemother 70:649–652 http://dx.doi.org/10.1093/jac/dku454. [PubMed]
132. Udo E, Townsend DE, Grubb WB. 1987. A conjugative staphylococcal plasmid with no resistance phenotype. FEMS Microbiol Lett 40:279–283 http://dx.doi.org/10.1111/j.1574-6968.1987.tb02039.x.
133. Udo EE, Grubb WB. 1996. Molecular and phage typing of Staphylococcus aureus harbouring cryptic conjugative plasmids. Eur J Epidemiol 12:637–641 http://dx.doi.org/10.1007/BF00499464. [PubMed]
134. Udo EE, Grubb WB. 1990. Excision of a conjugative plasmid from the staphylococcal chromosome. J Med Microbiol 33:227–234 http://dx.doi.org/10.1099/00222615-33-4-227. [PubMed]
135. Udo EE, Grubb WB. 1990. A new class of conjugative plasmid in Staphylococcus aureus. J Med Microbiol 31:207–212 http://dx.doi.org/10.1099/00222615-31-3-207. [PubMed]
136. O’Brien FG, Yui Eto K, Murphy RJ, Fairhurst HM, Coombs GW, Grubb WB, Ramsay JP. 2015. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus. Nucleic Acids Res 43:7971–7983 http://dx.doi.org/10.1093/nar/gkv755. [PubMed]
137. Rossi F, Diaz L, Wollam A, Panesso D, Zhou Y, Rincon S, Narechania A, Xing G, Di Gioia TS, Doi A, Tran TT, Reyes J, Munita JM, Carvajal LP, Hernandez-Roldan A, Brandão D, van der Heijden IM, Murray BE, Planet PJ, Weinstock GM, Arias CA. 2014. Transferable vancomycin resistance in a community-associated MRSA lineage. N Engl J Med 370:1524–1531 http://dx.doi.org/10.1056/NEJMoa1303359. [PubMed]
138. Ramsay JP, Firth N. 2017. Diverse mobilization strategies facilitate transfer of non-conjugative mobile genetic elements. Curr Opin Microbiol 38:1–9 http://dx.doi.org/10.1016/j.mib.2017.03.003. [PubMed]
139. Pollet RM, Ingle JD, Hymes JP, Eakes TC, Eto KY, Kwong SM, Ramsay JP, Firth N, Redinbo MR. 2016. Processing of nonconjugative resistance plasmids by conjugation nicking enzyme of staphylococci. J Bacteriol 198:888–897 http://dx.doi.org/10.1128/JB.00832-15. [PubMed]
140. Wright CL, Byrne ME, Firth N, Skurray RA. 1998. A retrospective molecular analysis of gentamicin resistance in Staphylococcus aureus strains from UK hospitals. J Med Microbiol 47:173–178 http://dx.doi.org/10.1099/00222615-47-2-173. [PubMed]
141. Hodel-Christian SL, Murray BE. 1992. Comparison of the gentamicin resistance transposon Tn 5281 with regions encoding gentamicin resistance in Enterococcus faecalis isolates from diverse geographic locations. Antimicrob Agents Chemother 36:2259–2264 http://dx.doi.org/10.1128/AAC.36.10.2259. [PubMed]
142. Horaud T, de Céspèdes G, Trieu-Cuot P. 1996. Chromosomal gentamicin resistance transposon Tn 3706 in Streptococcus agalactiae B128. Antimicrob Agents Chemother 40:1085–1090. [PubMed]
143. Quintiliani R Jr, Courvalin P. 1996. Characterization of Tn 1547, a composite transposon flanked by the IS 16 and IS 256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:1–8 http://dx.doi.org/10.1016/0378-1119(96)00110-2.
144. Rice LB, Carias LL, Marshall SH. 1995. Tn 5384, a composite enterococcal mobile element conferring resistance to erythromycin and gentamicin whose ends are directly repeated copies of IS 256. Antimicrob Agents Chemother 39:1147–1153 http://dx.doi.org/10.1128/AAC.39.5.1147. [PubMed]
145. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706 http://dx.doi.org/10.1093/jac/dkt092. [PubMed]
146. Li D, Wu C, Wang Y, Fan R, Schwarz S, Zhang S. 2015. Identification of multiresistance gene cfr in methicillin-resistant Staphylococcus aureus from pigs: plasmid location and integration into a staphylococcal cassette chromosome mec complex. Antimicrob Agents Chemother 59:3641–3644 http://dx.doi.org/10.1128/AAC.00500-15. [PubMed]
147. Matsuo H, Kobayashi M, Kumagai T, Kuwabara M, Sugiyama M. 2003. Molecular mechanism for the enhancement of arbekacin resistance in a methicillin-resistant Staphylococcus aureus. FEBS Lett 546:401–406 http://dx.doi.org/10.1016/S0014-5793(03)00644-6.
148. Maki H, Murakami K. 1997. Formation of potent hybrid promoters of the mutant llm gene by IS 256 transposition in methicillin-resistant Staphylococcus aureus. J Bacteriol 179:6944–6948 http://dx.doi.org/10.1128/jb.179.22.6944-6948.1997. [PubMed]
149. Couto I, Wu SW, Tomasz A, de Lencastre H. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J Bacteriol 185:645–653 http://dx.doi.org/10.1128/JB.185.2.645-653.2003. [PubMed]
150. Ziebuhr W, Krimmer V, Rachid S, Lössner I, Götz F, Hacker J. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS 256. Mol Microbiol 32:345–356 http://dx.doi.org/10.1046/j.1365-2958.1999.01353.x. [PubMed]
151. Conlon KM, Humphreys H, O’Gara JP. 2004. Inactivations of rsbU and sarA by IS 256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol 186:6208–6219 http://dx.doi.org/10.1128/JB.186.18.6208-6219.2004. [PubMed]
152. Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M. 2004. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidisin vivo. J Infect Dis 190:1498–1505 http://dx.doi.org/10.1086/424487. [PubMed]
153. Maki H, McCallum N, Bischoff M, Wada A, Berger-Bächi B. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 48:1953–1959 http://dx.doi.org/10.1128/AAC.48.6.1953-1959.2004. [PubMed]
154. Jansen A, Türck M, Szekat C, Nagel M, Clever I, Bierbaum G. 2007. Role of insertion elements and yycFG in the development of decreased susceptibility to vancomycin in Staphylococcus aureus. Int J Med Microbiol 297:205–215 http://dx.doi.org/10.1016/j.ijmm.2007.02.002. [PubMed]
155. McEvoy CR, Tsuji B, Gao W, Seemann T, Porter JL, Doig K, Ngo D, Howden BP, Stinear TP. 2013. Decreased vancomycin susceptibility in Staphylococcus aureus caused by IS 256 tempering of WalKR expression. Antimicrob Agents Chemother 57:3240–3249 http://dx.doi.org/10.1128/AAC.00279-13. [PubMed]
156. Benson MA, Ohneck EA, Ryan C, Alonzo F III, Smith H, Narechania A, Kolokotronis SO, Satola SW, Uhlemann AC, Sebra R, Deikus G, Shopsin B, Planet PJ, Torres VJ. 2014. Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element. Mol Microbiol 93:664–681 http://dx.doi.org/10.1111/mmi.12682. [PubMed]
157. Prudhomme M, Turlan C, Claverys JP, Chandler M. 2002. Diversity of Tn 4001 transposition products: the flanking IS 256 elements can form tandem dimers and IS circles. J Bacteriol 184:433–443 http://dx.doi.org/10.1128/JB.184.2.433-443.2002. [PubMed]
158. Loessner I, Dietrich K, Dittrich D, Hacker J, Ziebuhr W. 2002. Transposase-dependent formation of circular IS 256 derivatives in Staphylococcus epidermidis and Staphylococcus aureus. J Bacteriol 184:4709–4714 http://dx.doi.org/10.1128/JB.184.17.4709-4714.2002. [PubMed]
159. Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. 2015. Everyman’s guide to bacterial insertion sequences. Microbiol Spectr 3:MDNA3-0030-2014. doi:10.1128/microbiolspec.MDNA3-0030-2014.
160. Hennig S, Ziebuhr W. 2010. Characterization of the transposase encoded by IS 256, the prototype of a major family of bacterial insertion sequence elements. J Bacteriol 192:4153–4163 http://dx.doi.org/10.1128/JB.00226-10. [PubMed]
161. Hennig S, Ziebuhr W. 2008. A transposase-independent mechanism gives rise to precise excision of IS 256 from insertion sites in Staphylococcus epidermidis. J Bacteriol 190:1488–1490 http://dx.doi.org/10.1128/JB.01290-07. [PubMed]
162. Needham C, Noble WC, Dyke KGH. 1995. The staphylococcal insertion sequence IS 257 is active. Plasmid 34:198–205 http://dx.doi.org/10.1006/plas.1995.0005. [PubMed]
163. Kadlec K, Schwarz S. 2010. Identification of a plasmid-borne resistance gene cluster comprising the resistance genes erm(T), dfrK, and tet(L) in a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:915–918 http://dx.doi.org/10.1128/AAC.01091-09. [PubMed]
164. Gómez-Sanz E, Kadlec K, Feßler AT, Zarazaga M, Torres C, Schwarz S. 2013. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob Agents Chemother 57:3275–3282 http://dx.doi.org/10.1128/AAC.00171-13. [PubMed]
165. Harmer CJ, Moran RA, Hall RM. 2014. Movement of IS 26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS 26 and preferentially inserts adjacent to another IS 26. MBio 5:e01801-14 http://dx.doi.org/10.1128/mBio.01801-14. [PubMed]
166. Harmer CJ, Hall RM. 2016. IS 26-mediated formation of transposons carrying antibiotic resistance genes. MSphere 1:e00038-16 http://dx.doi.org/10.1128/mSphere.00038-16. [PubMed]
167. Bjorland J, Steinum T, Sunde M, Waage S, Sviland S, Oppegaard H, Heir E. 2006. Deletion of pT181-like sequence in an smr-encoding mosaic plasmid harboured by a persistent bovine Staphylococcus warneri strain. J Antimicrob Chemother 57:46–51. [PubMed]
168. Leelaporn A, Firth N, Byrne ME, Roper E, Skurray RA. 1994. Possible role of insertion sequence IS 257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrob Agents Chemother 38:2238–2244 http://dx.doi.org/10.1128/AAC.38.10.2238. [PubMed]
169. Simpson AE, Skurray RA, Firth N. 2000. An IS 257-derived hybrid promoter directs transcription of a tetA(K) tetracycline resistance gene in the Staphylococcus aureus chromosomal mec region. J Bacteriol 182:3345–3352 http://dx.doi.org/10.1128/JB.182.12.3345-3352.2000. [PubMed]
170. Katayama Y, Ito T, Hiramatsu K. 2001. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS 431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob Agents Chemother 45:1955–1963 http://dx.doi.org/10.1128/AAC.45.7.1955-1963.2001. [PubMed]
171. Archer GL, Niemeyer DM, Thanassi JA, Pucci MJ. 1994. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob Agents Chemother 38:447–454 http://dx.doi.org/10.1128/AAC.38.3.447. [PubMed]
172. Archer GL, Thanassi JA, Niemeyer DM, Pucci MJ. 1996. Characterization of IS 1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob Agents Chemother 40:924–929. [PubMed]
173. Hiramatsu K, Cui L, Kuroda M, Ito T. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 9:486–493 http://dx.doi.org/10.1016/S0966-842X(01)02175-8.
174. Bouchami O, de Lencastre H, Miragaia M. 2016. Impact of insertion sequences and recombination on the population structure of Staphylococcus haemolyticus. PLoS One 11:e0156653 http://dx.doi.org/10.1371/journal.pone.0156653. [PubMed]
175. Furi L, Haigh R, Al Jabri ZJ, Morrissey I, Ou HY, León-Sampedro R, Martinez JL, Coque TM, Oggioni MR. 2016. Dissemination of novel antimicrobial resistance mechanisms through the insertion sequence mediated spread of metabolic genes. Front Microbiol 7:1008 http://dx.doi.org/10.3389/fmicb.2016.01008. [PubMed]
176. Kehrenberg C, Aarestrup FM, Schwarz S. 2007. IS 21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob Agents Chemother 51:483–487 http://dx.doi.org/10.1128/AAC.01340-06. [PubMed]
177. Kehrenberg C, Schwarz S. 2005. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn 558. Antimicrob Agents Chemother 49:813–815 http://dx.doi.org/10.1128/AAC.49.2.813-815.2005. [PubMed]
178. Iandolo JJ, Bannantine JP, Stewart GC. 1997. Genetic and physical map of the chromosome of Staphylococcus aureus, p 39–53. In Crossley KB, Archer GL (ed), The Staphylococci in Human Disease. Churchill Livingstone, London, UK.
179. Ito T, Okuma K, Ma XX, Yuzawa H, Hiramatsu K. 2003. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist Updat 6:41–52 http://dx.doi.org/10.1016/S1368-7646(03)00003-7.
180. Rowland SJ, Dyke KG. 1989. Characterization of the staphylococcal beta-lactamase transposon Tn 552. EMBO J 8:2761–2773.
181. Sansevere EA, Luo X, Park JY, Yoon S, Seo KS, Robinson DA. 2017. Transposase-mediated excision, conjugative transfer, and diversity of ICE 6013 elements in Staphylococcus aureus. J Bacteriol 199:199 http://dx.doi.org/10.1128/JB.00629-16. [PubMed]
182. Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V. 1999. Tn 5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33:1059–1068 http://dx.doi.org/10.1046/j.1365-2958.1999.01548.x.
183. Derbise A, Dyke KGH, el Solh N. 1995. Rearrangements in the staphylococcal β-lactamase-encoding plasmid, pIP1066, including a DNA inversion that generates two alternative transposons. Mol Microbiol 17:769–779 http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_17040769.x.
184. Derbise A, Aubert S, El Solh N. 1997. Mapping the regions carrying the three contiguous antibiotic resistance genes aadE, sat4, and aphA-3 in the genomes of staphylococci. Antimicrob Agents Chemother 41:1024–1032. [PubMed]
185. Derbise A, Dyke KG, el Solh N. 1996. Characterization of a Staphylococcus aureus transposon, Tn 5405, located within Tn 5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 35:174–188 http://dx.doi.org/10.1006/plas.1996.0020. [PubMed]
186. Chesneau O, Lailler R, Derbise A, El Solh N. 1999. Transposition of IS 1181 in the genomes of Staphylococcus and Listeria. FEMS Microbiol Lett 177:93–100 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13718.x. [PubMed]
187. Thumm G, Götz F. 1997. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23:1251–1265 http://dx.doi.org/10.1046/j.1365-2958.1997.2911657.x. [PubMed]
188. Takeuchi F, Watanabe S, Baba T, Yuzawa H, Ito T, Morimoto Y, Kuroda M, Cui L, Takahashi M, Ankai A, Baba S, Fukui S, Lee JC, Hiramatsu K. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308 http://dx.doi.org/10.1128/JB.187.21.7292-7308.2005. [PubMed]
189. Murphy E. 1990. Properties of the site-specific transposable element Tn 554, p 123–135. In Novick RP (ed), Molecular Biology of the Staphylococci. VCH, New York, NY.
190. Kadlec K, Schwarz S. 2010. Identification of the novel dfrK-carrying transposon Tn 559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:3475–3477 http://dx.doi.org/10.1128/AAC.00464-10. [PubMed]
191. Bastos MC, Murphy E. 1988. Transposon Tn 554 encodes three products required for transposition. EMBO J 7:2935–2941.
192. Van Houdt R, Leplae R, Lima-Mendez G, Mergeay M, Toussaint A. 2012. Towards a more accurate annotation of tyrosine-based site-specific recombinases in bacterial genomes. Mob DNA 3:6 http://dx.doi.org/10.1186/1759-8753-3-6. [PubMed]
193. Haroche J, Allignet J, El Solh N. 2002. Tn 5406, a new staphylococcal transposon conferring resistance to streptogramin a and related compounds including dalfopristin. Antimicrob Agents Chemother 46:2337–2343 http://dx.doi.org/10.1128/AAC.46.8.2337-2343.2002. [PubMed]
194. Schwendener S, Perreten V. 2011. New transposon Tn 6133 in methicillin-resistant Staphylococcus aureus ST398 contains vga(E), a novel streptogramin A, pleuromutilin, and lincosamide resistance gene. Antimicrob Agents Chemother 55:4900–4904 http://dx.doi.org/10.1128/AAC.00528-11. [PubMed]
195. Hochhut B, Waldor MK. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32:99–110 http://dx.doi.org/10.1046/j.1365-2958.1999.01330.x. [PubMed]
196. Roberts AP, Chandler M, Courvalin P, Guédon G, Mullany P, Pembroke T, Rood JI, Smith CJ, Summers AO, Tsuda M, Berg DE. 2008. Revised nomenclature for transposable genetic elements. Plasmid 60:167–173 http://dx.doi.org/10.1016/j.plasmid.2008.08.001. [PubMed]
197. Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB. 2016. Biology of ICE Bs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 86:14–25 http://dx.doi.org/10.1016/j.plasmid.2016.07.001. [PubMed]
198. Jones JM, Yost SC, Pattee PA. 1987. Transfer of the conjugal tetracycline resistance transposon Tn 916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome. J Bacteriol 169:2121–2131 http://dx.doi.org/10.1128/jb.169.5.2121-2131.1987. [PubMed]
199. Scott JR, Bringel F, Marra D, Van Alstine G, Rudy CK. 1994. Conjugative transposition of Tn 916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol Microbiol 11:1099–1108 http://dx.doi.org/10.1111/j.1365-2958.1994.tb00386.x. [PubMed]
200. Mullany P, Roberts AP, Wang H. 2002. Mechanism of integration and excision in conjugative transposons. Cell Mol Life Sci 59:2017–2022 http://dx.doi.org/10.1007/s000180200001. [PubMed]
201. Watson DA, Musher DM, Hamill RJ. 1993. Promotion of transposon Tn 916 excision via exposure to streptomycin. J Infect Dis 168:1334–1335 http://dx.doi.org/10.1093/infdis/168.5.1334. [PubMed]
202. Scornec H, Bellanger X, Guilloteau H, Groshenry G, Merlin C. 2017. Inducibility of Tn 916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotics. J Antimicrob Chemother 72:2722–2728 http://dx.doi.org/10.1093/jac/dkx202. [PubMed]
203. León-Sampedro R, Novais C, Peixe L, Baquero F, Coque TM. 2016. Diversity and evolution of the Tn 5801-tet(M)-like integrative and conjugative elements among Enterococcus, Streptococcus, and Staphylococcus. Antimicrob Agents Chemother 60:1736–1746 http://dx.doi.org/10.1128/AAC.01864-15.
204. de Vries LE, Hasman H, Jurado Rabadán S, Agersø Y. 2016. Sequence-based characterization of Tn 5801-like genomic islands in tetracycline-resistant Staphylococcus pseudintermedius and other Gram-positive bacteria from humans and animals. Front Microbiol 7:576 http://dx.doi.org/10.3389/fmicb.2016.00576. [PubMed]
205. Mingoia M, Morici E, Tili E, Giovanetti E, Montanari MP, Varaldo PE. 2013. Characterization of Tn 5801.Sag, a variant of Staphylococcus aureus Tn 916 family transposon Tn 5801 that is widespread in clinical isolates of Streptococcus agalactiae. Antimicrob Agents Chemother 57:4570–4574 http://dx.doi.org/10.1128/AAC.00521-13. [PubMed]
206. Smyth DS, Robinson DA. 2009. Integrative and sequence characteristics of a novel genetic element, ICE 6013, in Staphylococcus aureus. J Bacteriol 191:5964–5975 http://dx.doi.org/10.1128/JB.00352-09. [PubMed]
207. Serfiotis-Mitsa D, Roberts GA, Cooper LP, White JH, Nutley M, Cooper A, Blakely GW, Dryden DT. 2008. The Orf18 gene product from conjugative transposon Tn 916 is an ArdA antirestriction protein that inhibits type I DNA restriction-modification systems. J Mol Biol 383:970–981 http://dx.doi.org/10.1016/j.jmb.2008.06.005. [PubMed]
208. Chen K, Reuter M, Sanghvi B, Roberts GA, Cooper LP, Tilling M, Blakely GW, Dryden DT. 2014. ArdA proteins from different mobile genetic elements can bind to the EcoKI type I DNA methyltransferase of E. coli K12. Biochim Biophys Acta 1844:505–511 http://dx.doi.org/10.1016/j.bbapap.2013.12.008. [PubMed]
209. McMahon SA, Roberts GA, Johnson KA, Cooper LP, Liu H, White JH, Carter LG, Sanghvi B, Oke M, Walkinshaw MD, Blakely GW, Naismith JH, Dryden DT. 2009. Extensive DNA mimicry by the ArdA anti-restriction protein and its role in the spread of antibiotic resistance. Nucleic Acids Res 37:4887–4897 http://dx.doi.org/10.1093/nar/gkp478. [PubMed]
210. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. 2017. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 41:512–537 http://dx.doi.org/10.1093/femsre/fux008. [PubMed]
211. Naglich JG, Andrews RE Jr. 1988. Tn 916-dependent conjugal transfer of PC194 and PUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis. Plasmid 20:113–126 http://dx.doi.org/10.1016/0147-619X(88)90014-5.
212. García-Álvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. 2011. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis 11:595–603 http://dx.doi.org/10.1016/S1473-3099(11)70126-8.
213. Ito T, Hiramatsu K, Tomasz A, de Lencastre H, Perreten V, Holden MT, Coleman DC, Goering R, Giffard PM, Skov RL, Zhang K, Westh H, O’Brien F, Tenover FC, Oliveira DC, Boyle-Vavra S, Laurent F, Kearns AM, Kreiswirth B, Ko KS, Grundmann H, Sollid JE, John JF Jr, Daum R, Soderquist B, Buist G, International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2012. Guidelines for reporting novel mecA gene homologues. Antimicrob Agents Chemother 56:4997–4999 http://dx.doi.org/10.1128/AAC.01199-12. [PubMed]
214. Wu Z, Li F, Liu D, Xue H, Zhao X. 2015. Novel type XII staphylococcal cassette chromosome mec harboring a new cassette chromosome recombinase, CcrC2. Antimicrob Agents Chemother 59:7597–7601 http://dx.doi.org/10.1128/AAC.01692-15. [PubMed]
215. Mir-Sanchis I, Roman CA, Misiura A, Pigli YZ, Boyle-Vavra S, Rice PA. 2016. Staphylococcal SCC mec elements encode an active MCM-like helicase and thus may be replicative. Nat Struct Mol Biol 23:891–898 http://dx.doi.org/10.1038/nsmb.3286. [PubMed]
216. International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). 2009. Classification of staphylococcal cassette chromosome mec (SCC mec): guidelines for reporting novel SCC mec elements. Antimicrob Agents Chemother 53:4961–4967 http://dx.doi.org/10.1128/AAC.00579-09. [PubMed]
217. Kaya H, Hasman H, Larsen J, Stegger M, Johannesen TB, Allesøe RL, Lemvigh CK, Aarestrup FM, Lund O, Larsen AR. 2018. SCC mecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. MSphere 3:e00612-17 http://dx.doi.org/10.1128/mSphere.00612-17. [PubMed]
218. Wu S, Piscitelli C, de Lencastre H, Tomasz A. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441 http://dx.doi.org/10.1089/mdr.1996.2.435. [PubMed]
219. Rolo J, Worning P, Nielsen JB, Bowden R, Bouchami O, Damborg P, Guardabassi L, Perreten V, Tomasz A, Westh H, de Lencastre H, Miragaia M. 2017. Evolutionary origin of the staphylococcal cassette chromosome mec (SCC mec). Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.02302-16. [PubMed]
220. Luong TT, Ouyang S, Bush K, Lee CY. 2002. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J Bacteriol 184:3623–3629 http://dx.doi.org/10.1128/JB.184.13.3623-3629.2002. [PubMed]
221. Mongkolrattanothai K, Boyle S, Murphy TV, Daum RS. 2004. Novel non- mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob Agents Chemother 48:1823–1836 http://dx.doi.org/10.1128/AAC.48.5.1823-1836.2004. [PubMed]
222. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song JH, Hiramatsu K. 2006. Staphylococcal cassette chromosome mec (SCC mec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCC mec elements. Antimicrob Agents Chemother 50:1001–1012 http://dx.doi.org/10.1128/AAC.50.3.1001-1012.2006. [PubMed]
223. Barbier F, Lebeaux D, Hernandez D, Delannoy AS, Caro V, François P, Schrenzel J, Ruppé E, Gaillard K, Wolff M, Brisse S, Andremont A, Ruimy R. 2011. High prevalence of the arginine catabolic mobile element in carriage isolates of methicillin-resistant Staphylococcus epidermidis. J Antimicrob Chemother 66:29–36 http://dx.doi.org/10.1093/jac/dkq410. [PubMed]
224. Miragaia M, de Lencastre H, Perdreau-Remington F, Chambers HF, Higashi J, Sullam PM, Lin J, Wong KI, King KA, Otto M, Sensabaugh GF, Diep BA. 2009. Genetic diversity of arginine catabolic mobile element in Staphylococcus epidermidis. PLoS One 4:e7722 http://dx.doi.org/10.1371/journal.pone.0007722. [PubMed]
225. Pi B, Yu M, Chen Y, Yu Y, Li L. 2009. Distribution of the ACME- arcA gene among meticillin-resistant Staphylococcus haemolyticus and identification of a novel ccr allotype in ACME- arcA-positive isolates. J Med Microbiol 58:731–736 http://dx.doi.org/10.1099/jmm.0.007351-0. [PubMed]
226. Sabat AJ, Köck R, Akkerboom V, Hendrix R, Skov RL, Becker K, Friedrich AW. 2013. Novel organization of the arginine catabolic mobile element and staphylococcal cassette chromosome mec composite island and its horizontal transfer between distinct Staphylococcus aureus genotypes. Antimicrob Agents Chemother 57:5774–5777 http://dx.doi.org/10.1128/AAC.01321-13. [PubMed]
227. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739 http://dx.doi.org/10.1016/S0140-6736(06)68231-7.
228. Diep BA, Stone GG, Basuino L, Graber CJ, Miller A, des Etages SA, Jones A, Palazzolo-Ballance AM, Perdreau-Remington F, Sensabaugh GF, DeLeo FR, Chambers HF. 2008. The arginine catabolic mobile element and staphylococcal chromosomal cassette mec linkage: convergence of virulence and resistance in the USA300 clone of methicillin-resistant Staphylococcus aureus. J Infect Dis 197:1523–1530 http://dx.doi.org/10.1086/587907. [PubMed]
229. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR. 2013. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13:100–107 http://dx.doi.org/10.1016/j.chom.2012.11.012. [PubMed]
230. Joshi GS, Spontak JS, Klapper DG, Richardson AR. 2011. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 82:9–20 http://dx.doi.org/10.1111/j.1365-2958.2011.07809.x. [PubMed]
231. Somkuti GA, Solaiman DK, Steinberg DH. 1997. Molecular properties of the erythromycin resistance plasmid pPV141 from Staphylococcus chromogenes. Plasmid 37:119–127 http://dx.doi.org/10.1006/plas.1997.1278. [PubMed]
232. Highlander SK, Hultén KG, Qin X, Jiang H, Yerrapragada S, Mason EO Jr, Shang Y, Williams TM, Fortunov RM, Liu Y, Igboeli O, Petrosino J, Tirumalai M, Uzman A, Fox GE, Cardenas AM, Muzny DM, Hemphill L, Ding Y, Dugan S, Blyth PR, Buhay CJ, Dinh HH, Hawes AC, Holder M, Kovar CL, Lee SL, Liu W, Nazareth LV, Wang Q, Zhou J, Kaplan SL, Weinstock GM. 2007. Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus. BMC Microbiol 7:99 http://dx.doi.org/10.1186/1471-2180-7-99. [PubMed]
233. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010 http://dx.doi.org/10.1093/bioinformatics/btr039. [PubMed]
234. Wright LD, Grossman AD. 2016. Autonomous replication of the conjugative transposon Tn 916. J Bacteriol 198:3355–3366 http://dx.doi.org/10.1128/JB.00639-16. [PubMed]
235. Wright LD, Johnson CM, Grossman AD. 2015. Identification of a single strand origin of replication in the integrative and conjugative element ICE Bs1 of Bacillus subtilis. PLoS Genet 11:e1005556 http://dx.doi.org/10.1371/journal.pgen.1005556. [PubMed]
236. Lannergård J, Norström T, Hughes D. 2009. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 53:2059–2065 http://dx.doi.org/10.1128/AAC.00871-08. [PubMed]
237. Fu Z, Liu Y, Chen C, Guo Y, Ma Y, Yang Y, Hu F, Xu X, Wang M. 2016. Characterization of fosfomycin resistance gene, fosB, in methicillin-resistant Staphylococcus aureus isolates. PLoS One 11:e0154829 http://dx.doi.org/10.1371/journal.pone.0154829. [PubMed]
238. Allignet J, El Solh N. 1999. Comparative analysis of staphylococcal plasmids carrying three streptogramin-resistance genes: vat-vgb-vga. Plasmid 42:134–138 http://dx.doi.org/10.1006/plas.1999.1412. [PubMed]
239. Chen L, Mediavilla JR, Smyth DS, Chavda KD, Ionescu R, Roberts RB, Robinson DA, Kreiswirth BN. 2010. Identification of a novel transposon (Tn 6072) and a truncated staphylococcal cassette chromosome mec element in methicillin-resistant Staphylococcus aureus ST239. Antimicrob Agents Chemother 54:3347–3354 http://dx.doi.org/10.1128/AAC.00001-10. [PubMed]
240. Kadlec K, Schwarz S. 2009. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 53:776–778 http://dx.doi.org/10.1128/AAC.01128-08. [PubMed]
241. O’Neill AJ, Chopra I. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664–676 http://dx.doi.org/10.1111/j.1365-2958.2005.04971.x.
242. de Vries LE, Christensen H, Agersø Y. 2012. The diversity of inducible and constitutively expressed erm(C) genes and association to different replicon types in staphylococci plasmids. Mob Genet Elements 2:72–80 http://dx.doi.org/10.4161/mge.20109.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0030-2018
2018-12-13
2020-08-10

Abstract:

Strains of , and to a lesser extent other staphylococcal species, are a significant cause of morbidity and mortality. An important factor in the notoriety of these organisms stems from their frequent resistance to many antimicrobial agents used for chemotherapy. This review catalogues the variety of mobile genetic elements that have been identified in staphylococci, with a primary focus on those associated with the recruitment and spread of antimicrobial resistance genes. These include plasmids, transposable elements such as insertion sequences and transposons, and integrative elements including ICE and SCC elements. In concert, these diverse entities facilitate the intra- and inter-cellular gene mobility that enables horizontal genetic exchange, and have also been found to play additional roles in modulating gene expression and genome rearrangement.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Maps of representative RCR plasmids: pT181, pC221, pC194, pUB110, pE194, pSN2, and pPV141 ( 25 , 231 ); see text for additional references. Plasmid sizes are shown on the left. Resistance and plasmid maintenance genes/loci are shown: ////, initiation of replication; , double-stranded origin of DNA replication; , single-stranded origin of DNA replication; /// , mobilization; / , origin of DNA transfer; , chloramphenicol resistance. Refer to Tables 1 and 2 for the antimicrobial resistance(s) conferred by other resistance determinants.

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Maps of representative nonconjugative theta-replicating plasmids: pI258, pSK1, pIB485, pUSA300-HOU-MR, pMW2, pSK639, and pSK818 ( 3 , 25 , 29 , 65 , 85 , 89 , 232 ); see text for additional references. Resistance/enterotoxin genes, transposons, insertion sequences, and cointegrated plasmids are shown: , arsenic resistance; , cadmium resistance; , macrolide resistance; , macrolide/streptogramin B resistance; , antiseptic/disinfectant resistance; , , and , enterotoxins. Refer to Tables 1 and 2 for the antimicrobial resistance(s) conferred by other resistance determinants. Plasmid maintenance genes/loci are also shown: , novel partitioning system; , initiation of replication; , multimer resolution; TA, Fst-like toxin-antitoxin system; /// , mobilization.

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Maps of representative conjugative theta-replicating plasmids: pSK41, pLW1043, pWBG749, pBRZ01, and pWBG4 ( 27 , 43 , 128 , 136 , 137 ); see text for additional references. Resistance genes, transposons, insertion sequences, and cointegrated plasmids are shown: refer to Tables 1 and 2 for the antimicrobial resistance(s) conferred by the resistance determinants. Plasmid maintenance genes/loci (if known) are also shown: , type I partitioning system; , type II partitioning system; , initiation of replication; , multimer resolution; TA, Fst-like toxin-antitoxin system; // genes, conjugative transfer; / genes, relaxases; , origin of transfer. Note that pLW1043 and pBRZ01 are members of the pSK41 and pWBG749 families, respectively.

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Genetic organization of Tn, Tn, ICE, and ICE. A comparison of Tn, Tn, ICE, and ICE constructed using EasyFig ( 233 ). Amino acid similarity comparisons (20% lower cutoff) using tblastx and are shown as gray shading between regions on each ICE. Genes with likely common functions—regardless of sequence similarity—are similarly colored. Positions of the conjugative origin of transfer () and single-strand origin of replication () are indicated if known. Recombinase attachment/target sites are indicated by green rectangles. Annotations were collated from previously published figures for each ICE ( 15 , 181 , 197 , 204 , 206 , 234 , 235 ).

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Maps of representative SCC elements ( 4 , 216 ); see text for additional references. Resistance/virulence genes, transposons, insertion sequences, and cointegrated plasmids are shown: , arsenic resistance; , cadmium resistance; genes, capsular polysaccharide ( 220 ); (previously known as ), fusidic acid resistance ( 236 ); /, β-lactam resistance. Refer to Table 1 for the antimicrobial resistance(s) conferred by other resistance determinants. Cassette recombinase genes (, , and ), / regulatory genes ( and ), and an arginine catabolic mobile element (ACME I [ 227 ]) are also shown; classes and types are denoted by gray shading. Note that genes, , and SAUGI are not shown and that IS is also known as IS.

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Insertion sequences and composite transposons

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018
Generic image for table
TABLE 2

Unit transposons

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0030-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error