1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Virulence Plasmids of the Pathogenic Clostridia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Sarah A. Revitt-Mills1, Callum J. Vidor2, Thomas D. Watts3, Dena Lyras4, Julian I. Rood5, Vicki Adams6
  • Editors: Vincent A. Fischetti7, Richard P. Novick8, Joseph J. Ferretti9, Daniel A. Portnoy10, Miriam Braunstein11, Julian I. Rood12
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 2: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 3: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 4: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 5: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 6: Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; 7: The Rockefeller University, New York, NY; 8: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 9: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 10: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 11: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 12: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
  • Received 29 May 2018 Accepted 16 August 2018 Published 17 May 2019
  • Vickie Adams, [email protected]
image of Virulence Plasmids of the Pathogenic Clostridia
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Virulence Plasmids of the Pathogenic Clostridia, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0034-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0034-2018-2.gif
  • Abstract:

    The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.

  • Citation: Revitt-Mills S, Vidor C, Watts T, Lyras D, Rood J, Adams V. 2019. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectrum 7(3):GPP3-0034-2018. doi:10.1128/microbiolspec.GPP3-0034-2018.

References

1. Vidor C, Awad M, Lyras D. 2015. Antibiotic resistance, virulence factors and genetics of Clostridium sordellii. Res Microbiol 166:368–374 http://dx.doi.org/10.1016/j.resmic.2014.09.003. [PubMed]
2. Aldape MJ, Bryant AE, Stevens DL. 2006. Clostridium sordellii infection: epidemiology, clinical findings, and current perspectives on diagnosis and treatment. Clin Infect Dis 43:1436–1446 http://dx.doi.org/10.1086/508866. [PubMed]
3. Jank T, Aktories K. 2008. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229 http://dx.doi.org/10.1016/j.tim.2008.01.011. [PubMed]
4. Voth DE, Martinez OV, Ballard JD. 2006. Variations in lethal toxin and cholesterol-dependent cytolysin production correspond to differences in cytotoxicity among strains of Clostridium sordellii. FEMS Microbiol Lett 259:295–302 http://dx.doi.org/10.1111/j.1574-6968.2006.00287.x. [PubMed]
5. Thiele TL, Stuber TP, Hauer PJ. 2013. Detection of Clostridium sordellii strains expressing hemorrhagic toxin (TcsH) and implications for diagnostics and regulation of veterinary vaccines. Vaccine 31:5082–5087 http://dx.doi.org/10.1016/j.vaccine.2013.08.065. [PubMed]
6. Couchman EC, Browne HP, Dunn M, Lawley TD, Songer JG, Hall V, Petrovska L, Vidor C, Awad M, Lyras D, Fairweather NF. 2015. Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci. BMC Genomics 16:392 http://dx.doi.org/10.1186/s12864-015-1613-2. [PubMed]
7. Carter GP, Awad MM, Hao Y, Thelen T, Bergin IL, Howarth PM, Seemann T, Rood JI, Aronoff DM, Lyras D. 2011. TcsL is an essential virulence factor in Clostridium sordellii ATCC 9714. Infect Immun 79:1025–1032 http://dx.doi.org/10.1128/IAI.00968-10. [PubMed]
8. Sirigi Reddy AR, Girinathan BP, Zapotocny R, Govind R. 2013. Identification and characterization of Clostridium sordellii toxin gene regulator. J Bacteriol 195:4246–4254 http://dx.doi.org/10.1128/JB.00711-13. [PubMed]
9. Awad MM, Singleton J, Lyras D. 2016. The sialidase NanS enhances non-TcsL mediated cytotoxicity of Clostridium sordellii. Toxins (Basel) 8:E189 http://dx.doi.org/10.3390/toxins8060189. [PubMed]
10. Rabi R, Turnbull L, Whitchurch CB, Awad M, Lyras D. 2017. Structural characterization of Clostridium sordellii spores of diverse human, animal, and environmental origin and comparison to Clostridium difficile spores. MSphere 2:e00343–e17 http://dx.doi.org/10.1128/mSphere.00343-17. [PubMed]
11. Rabi R, Larcombe S, Mathias R, McGowan S, Awad M, Lyras D. 2018. Clostridium sordellii outer spore proteins maintain spore structural integrity and promote bacterial clearance from the gastrointestinal tract. PLoS Pathog 14:e1007004 http://dx.doi.org/10.1371/journal.ppat.1007004. [PubMed]
12. Vidor CJ, Watts TD, Adams V, Bulach D, Couchman E, Rood JI, Fairweather NF, Awad M, Lyras D. 2018. Clostridium sordellii pathogenicity locus plasmid pCS1-1 encodes a novel clostridial conjugation locus. MBio 9:e01761–e17 http://dx.doi.org/10.1128/mBio.01761-17. [PubMed]
13. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D1) :D222–D226 http://dx.doi.org/10.1093/nar/gku1221. [PubMed]
14. Spirig T, Weiner EM, Clubb RT. 2011. Sortase enzymes in Gram-positive bacteria. Mol Microbiol 82:1044–1059 http://dx.doi.org/10.1111/j.1365-2958.2011.07887.x. [PubMed]
15. Million-Weaver S, Camps M. 2014. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 75:27–36 http://dx.doi.org/10.1016/j.plasmid.2014.07.002. [PubMed]
16. McClane B, Robertson S, Li J. 2013. Clostridium perfringens, p 465–489, Food microbiology: fundamentals and frontiers 4th ed. ASM Press, Washington, DC.
17. Welch WH, Nuttall GHF. 1892. A gas-producing bacillus ( Bacillus aerogenes capsulatus nov. spec.) capable of rapid development in the blood-vessels after death. Bull Johns Hopkins Hosp 3:81–91.
18. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. 2014. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377 http://dx.doi.org/10.2217/fmb.13.168. [PubMed]
19. Scharff RL. 2012. Economic burden from health losses due to foodborne illness in the United States. J Food Prot 75:123–131 http://dx.doi.org/10.4315/0362-028X.JFP-11-058. [PubMed]
20. Wade B, Keyburn A. 2015. The true cost of necrotic enteritis. World Poult 31:16–17.
21. Revitt-Mills SA, Rood JI, Adams V. 2015. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol Aust 36:114–117.
22. Katayama S, Dupuy B, Daube G, China B, Cole ST. 1996. Genome mapping of Clostridium perfringens strains with I- CeuI shows many virulence genes to be plasmid-borne. Mol Gen Genet 251:720–726.
23. McDonel JL. 1980. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol Ther 10:617–655 http://dx.doi.org/10.1016/0163-7258(80)90031-5.
24. Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe S1075-9964(18)30068-4 doi:10.1016/j.anaerobe.2018.04.011. [PubMed]
25. McClane BA, Uzal FA, Fernandez Miyakawa ME, Lyerly D, Wilkins T. 2006. The enterotoxic clostridia, p 698–752. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (ed), The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria doi:10.1007/0-387-30744-3_22. Springer US, New York, NY.
26. Awad MM, Bryant AE, Stevens DL, Rood JI. 1995. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15:191–202 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02234.x. [PubMed]
27. Ba-Thein W, Lyristis M, Ohtani K, Nisbet IT, Hayashi H, Rood JI, Shimizu T. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J Bacteriol 178:2514–2520 http://dx.doi.org/10.1128/jb.178.9.2514-2520.1996. [PubMed]
28. Bullifent HL, Moir A, Awad MM, Scott PT, Rood JI, Titball RW. 1996. The level of expression of α-toxin by different strains of Clostridium perfringens is dependent on differences in promoter structure and genetic background. Anaerobe 2:365–371 http://dx.doi.org/10.1006/anae.1996.0046.
29. Möllby R, Holme T, Nord C-E, Smyth CJ, Wadström T. 1976. Production of phospholipase C (alpha-toxin), haemolysins and lethal toxins by Clostridium perfringens types A to D. J Gen Microbiol 96:137–144 http://dx.doi.org/10.1099/00221287-96-1-137. [PubMed]
30. Matsushita C, Matsushita O, Katayama S, Minami J, Takai K, Okabe A. 1996. An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter. Microbiology 142:2561–2566 http://dx.doi.org/10.1099/00221287-142-9-2561. [PubMed]
31. Ohtani K, Shimizu T. 2016. Regulation of toxin production in Clostridium perfringens. Toxins (Basel) 8:207 http://dx.doi.org/10.3390/toxins8070207. [PubMed]
32. Sakurai J, Nagahama M, Oda M. 2004. Clostridium perfringens alpha-toxin: characterization and mode of action. J Biochem 136:569–574 http://dx.doi.org/10.1093/jb/mvh161. [PubMed]
33. Titball RW, Naylor CE, Basak AK. 1999. The Clostridium perfringens alpha-toxin. Anaerobe 5:51–64 http://dx.doi.org/10.1006/anae.1999.0191. [PubMed]
34. Flores-Díaz M, Alape-Girón A. 2003. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 42:979–986 http://dx.doi.org/10.1016/j.toxicon.2003.11.013. [PubMed]
35. Titball RW, Leslie DL, Harvey S, Kelly D. 1991. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun 59:1872–1874.
36. Petit L, Gibert M, Popoff MR. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7:104–110 http://dx.doi.org/10.1016/S0966-842X(98)01430-9.
37. Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA. 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67:15–30 http://dx.doi.org/10.1111/j.1365-2958.2007.06007.x. [PubMed]
38. Garcia JP, Beingesser J, Fisher DJ, Sayeed S, McClane BA, Posthaus H, Uzal FA. 2012. The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Vet Microbiol 157:412–419 http://dx.doi.org/10.1016/j.vetmic.2012.01.005. [PubMed]
39. Ma M, Gurjar A, Theoret JR, Garcia JP, Beingesser J, Freedman JC, Fisher DJ, McClane BA, Uzal FA. 2014. Synergistic effects of Clostridium perfringens enterotoxin and beta toxin in rabbit small intestinal loops. Infect Immun 82:2958–2970 http://dx.doi.org/10.1128/IAI.01848-14. [PubMed]
40. Smedley JG III, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. 2004. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 152:183–204 http://dx.doi.org/10.1007/s10254-004-0036-2. [PubMed]
41. Gurtner C, Popescu F, Wyder M, Sutter E, Zeeh F, Frey J, von Schubert C, Posthaus H. 2010. Rapid cytopathic effects of Clostridium perfringens beta-toxin on porcine endothelial cells. Infect Immun 78:2966–2973 http://dx.doi.org/10.1128/IAI.01284-09. [PubMed]
42. Popoff MR. 2014. Clostridial pore-forming toxins: powerful virulence factors. Anaerobe 30:220–238 http://dx.doi.org/10.1016/j.anaerobe.2014.05.014. [PubMed]
43. Nagahama M, Ochi S, Oda M, Miyamoto K, Takehara M, Kobayashi K. 2015. Recent insights into Clostridium perfringens beta-toxin. Toxins (Basel) 7:396–406 http://dx.doi.org/10.3390/toxins7020396. [PubMed]
44. Sayeed S, Li J, McClane BA. 2010. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 78:495–504 http://dx.doi.org/10.1128/IAI.00838-09. [PubMed]
45. Gurjar A, Li J, McClane BA. 2010. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 78:4860–4869 http://dx.doi.org/10.1128/IAI.00715-10. [PubMed]
46. Sayeed S, Fernandez-Miyakawa ME, Fisher DJ, Adams V, Poon R, Rood JI, Uzal FA, McClane BA. 2005. Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect Immun 73:7413–7421 http://dx.doi.org/10.1128/IAI.73.11.7413-7421.2005. [PubMed]
47. Alves GG, Machado de Ávila RA, Chávez-Olórtegui CD, Lobato FCF. 2014. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known. Anaerobe 30:102–107 http://dx.doi.org/10.1016/j.anaerobe.2014.08.016. [PubMed]
48. Hunter SE, Clarke IN, Kelly DC, Titball RW. 1992. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun 60:102–110.
49. Worthington RW, Mülders MS. 1977. Physical changes in the epsilon prototoxin molecule of Clostridium perfringens during enzymatic activation. Infect Immun 18:549–551.
50. Minami J, Katayama S, Matsushita O, Matsushita C, Okabe A. 1997. Lambda-toxin of Clostridium perfringens activates the precursor of epsilon-toxin by releasing its N- and C-terminal peptides. Microbiol Immunol 41:527–535 http://dx.doi.org/10.1111/j.1348-0421.1997.tb01888.x. [PubMed]
51. Freedman JC, Li J, Uzal FA, McClane BA. 2014. Proteolytic processing and activation of Clostridium perfringens epsilon toxin by caprine small intestinal contents. MBio 5:e01994–e14 http://dx.doi.org/10.1128/mBio.01994-14. [PubMed]
52. Harkness JM, Li J, McClane BA. 2012. Identification of a lambda toxin-negative Clostridium perfringens strain that processes and activates epsilon prototoxin intracellularly. Anaerobe 18:546–552 http://dx.doi.org/10.1016/j.anaerobe.2012.09.001. [PubMed]
53. Ivie SE, Fennessey CM, Sheng J, Rubin DH, McClain MS. 2011. Gene-trap mutagenesis identifies mammalian genes contributing to intoxication by Clostridium perfringens ε-toxin. PLoS One 6:e17787 http://dx.doi.org/10.1371/journal.pone.0017787. [PubMed]
54. Robertson SL, Li J, Uzal FA, McClane BA. 2011. Evidence for a prepore stage in the action of Clostridium perfringens epsilon toxin. PLoS One 6:e22053 http://dx.doi.org/10.1371/journal.pone.0022053. [PubMed]
55. Miyata S, Minami J, Tamai E, Matsushita O, Shimamoto S, Okabe A. 2002. Clostridium perfringens ε-toxin forms a heptameric pore within the detergent-insoluble microdomains of Madin-Darby canine kidney cells and rat synaptosomes. J Biol Chem 277:39463–39468 http://dx.doi.org/10.1074/jbc.M206731200. [PubMed]
56. Nagahama M, Sakurai J. 1992. High-affinity binding of Clostridium perfringens epsilon-toxin to rat brain. Infect Immun 60:1237–1240.
57. Popoff MR. 2011. Epsilon toxin: a fascinating pore-forming toxin. FEBS J 278:4602–4615 http://dx.doi.org/10.1111/j.1742-4658.2011.08145.x. [PubMed]
58. Freedman JC, McClane BA, Uzal FA. 2016. New insights into Clostridium perfringens epsilon toxin activation and action on the brain during enterotoxemia. Anaerobe 41:27–31 http://dx.doi.org/10.1016/j.anaerobe.2016.06.006. [PubMed]
59. Hughes ML, Poon R, Adams V, Sayeed S, Saputo J, Uzal FA, McClane BA, Rood JI. 2007. Epsilon-toxin plasmids of Clostridium perfringens type D are conjugative. J Bacteriol 189:7531–7538 http://dx.doi.org/10.1128/JB.00767-07. [PubMed]
60. Sayeed S, Li J, McClane BA. 2007. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 75:2391–2398 http://dx.doi.org/10.1128/IAI.02014-06. [PubMed]
61. Songer JG. 1996. Clostridial enteric diseases of domestic animals. Clin Microbiol Rev 9:216–234. [PubMed]
62. Perelle S, Gibert M, Boquet P, Popoff MR. 1993. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infect Immun 61:5147–5156.
63. Knapp O, Benz R, Popoff MR. 2016. Pore-forming activity of clostridial binary toxins. Biochim Biophys Acta 1858:512–525 http://dx.doi.org/10.1016/j.bbamem.2015.08.006. [PubMed]
64. Gibert M, Petit L, Raffestin S, Okabe A, Popoff MR. 2000. Clostridium perfringens iota-toxin requires activation of both binding and enzymatic components for cytopathic activity. Infect Immun 68:3848–3853 http://dx.doi.org/10.1128/IAI.68.7.3848-3853.2000. [PubMed]
65. Sakurai J, Kobayashi K. 1995. Lethal and dermonecrotic activities of Clostridium perfringens lota toxin: biological activities induced by cooperation of two nonlinked components. Microbiol Immunol 39:249–253 http://dx.doi.org/10.1111/j.1348-0421.1995.tb02197.x. [PubMed]
66. Li J, Miyamoto K, McClane BA. 2007. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun 75:1811–1819 http://dx.doi.org/10.1128/IAI.01981-06. [PubMed]
67. Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, Akimoto S. 2011. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One 6:e20376 http://dx.doi.org/10.1371/journal.pone.0020376. [PubMed]
68. Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA. 1998. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66:4531–4536.
69. Jin F, Matsushita O, Katayama S, Jin S, Matsushita C, Minami J, Okabe A. 1996. Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64:230–237.
70. McClane BA. 1996. An overview of Clostridium perfringens enterotoxin. Toxicon 34:1335–1343 http://dx.doi.org/10.1016/S0041-0101(96)00101-8.
71. Freedman JC, Shrestha A, McClane BA. 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel) 8:E73 http://dx.doi.org/10.3390/toxins8030073. [PubMed]
72. Duncan CL. 1973. Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J Bacteriol 113:932–936.
73. Kokai-Kun JF, McClane BA. 1997. Deletion analysis of the Clostridium perfringens enterotoxin. Infect Immun 65:1014–1022.
74. Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI. 2001.Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun 69:3483–3487 http://dx.doi.org/10.1128/IAI.69.5.3483-3487.2001. [PubMed]
75. Collie RE, McClane BA. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 36:30–36.
76. Cornillot E, Saint-Joanis B, Daube G, Katayama S, Granum PE, Canard B, Cole ST. 1995. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol 15:639–647 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02373.x.
77. Miyamoto K, Fisher DJ, Li J, Sayeed S, Akimoto S, McClane BA. 2006. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol 188:1585–1598 http://dx.doi.org/10.1128/JB.188.4.1585-1598.2006. [PubMed]
78. Miyamoto K, Chakrabarti G, Morino Y, McClane BA. 2002. Organization of the plasmid cpe Locus in Clostridium perfringens type A isolates. Infect Immun 70:4261–4272 http://dx.doi.org/10.1128/IAI.70.8.4261-4272.2002. [PubMed]
79. Keyburn AL, Sheedy SA, Ford ME, Williamson MM, Awad MM, Rood JI, Moore RJ. 2006. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect Immun 74:6496–6500 http://dx.doi.org/10.1128/IAI.00806-06. [PubMed]
80. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, Di Rubbo A, Rood JI, Moore RJ. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog 4:e26 http://dx.doi.org/10.1371/journal.ppat.0040026. [PubMed]
81. Parreira VR, Costa M, Eikmeyer F, Blom J, Prescott JF. 2012. Sequence of two plasmids from Clostridium perfringens chicken necrotic enteritis isolates and comparison with C. perfringens conjugative plasmids. PLoS One 7:e49753 http://dx.doi.org/10.1371/journal.pone.0049753. [PubMed]
82. Bannam TL, Yan XX, Harrison PF, Seemann T, Keyburn AL, Stubenrauch C, Weeramantri LH, Cheung JK, McClane BA, Boyce JD, Moore RJ, Rood JI. 2011. Necrotic enteritis-derived Clostridium perfringens strain with three closely related independently conjugative toxin and antibiotic resistance plasmids. MBio 2:e00190–e11 http://dx.doi.org/10.1128/mBio.00190-11. [PubMed]
83. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. 2013. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 77:208–233 http://dx.doi.org/10.1128/MMBR.00062-12. [PubMed]
84. Gibert M, Jolivet-Reynaud C, Popoff MR. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203:65–73 http://dx.doi.org/10.1016/S0378-1119(97)00493-9.
85. Tweten RK, Parker MW, Johnson AE. 2001. The cholesterol-dependent cytolysins. Curr Top Microbiol Immunol 257:15–33 http://dx.doi.org/10.1007/978-3-642-56508-3_2. [PubMed]
86. Huyet J, Naylor CE, Savva CG, Gibert M, Popoff MR, Basak AK. 2013. Structural insights into Clostridium perfringens delta toxin pore formation. PLoS One 8:e66673 http://dx.doi.org/10.1371/journal.pone.0066673. [PubMed]
87. Seike S, Miyamoto K, Kobayashi K, Takehara M, Nagahama M. 2016. Clostridium perfringens delta-toxin induces rapid cell necrosis. PLoS One 11:e0147957 http://dx.doi.org/10.1371/journal.pone.0147957. [PubMed]
88. Manich M, Knapp O, Gibert M, Maier E, Jolivet-Reynaud C, Geny B, Benz R, Popoff MR. 2008. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences. PLoS One 3:e3764 http://dx.doi.org/10.1371/journal.pone.0003764. [PubMed]
89. Sterne M, Warrack GH. 1964. The types of Clostridium perfringens. J Pathol Bacteriol 88:279–283 http://dx.doi.org/10.1002/path.1700880135. [PubMed]
90. Alouf JE, Jolivet-Reynaud C. 1981. Purification and characterization of Clostridium perfringens delta-toxin. Infect Immun 31:536–546.
91. Mehdizadeh Gohari I, Parreira VR, Nowell VJ, Nicholson VM, Oliphant K, Prescott JF. 2015. A novel pore-forming toxin in type A Clostridium perfringens is associated with both fatal canine hemorrhagic gastroenteritis and fatal foal necrotizing enterocolitis. PLoS One 10:e0122684 http://dx.doi.org/10.1371/journal.pone.0122684. [PubMed]
92. Mehdizadeh Gohari I, Kropinski AM, Weese SJ, Parreira VR, Whitehead AE, Boerlin P, Prescott JF. 2016. Plasmid characterization and chromosome analysis of two netF+ Clostridium perfringens isolates associated with foal and canine necrotizing enteritis. PLoS One 11:e0148344 http://dx.doi.org/10.1371/journal.pone.0148344. [PubMed]
93. Mehdizadeh Gohari I, Kropinski AM, Weese SJ, Whitehead AE, Parreira VR, Boerlin P, Prescott JF. 2017. NetF-producing Clostridium perfringens: clonality and plasmid pathogenicity loci analysis. Infect Genet Evol 49:32–38 http://dx.doi.org/10.1016/j.meegid.2016.12.028. [PubMed]
94. Nagahama M, Kobayashi K, Oda M. 2012. Glycosylating toxin of Clostridium perfringens. INTECH Open Access Publisher. http://dx.doi.org/10.5772/48112.
95. Coursodon CF, Glock RD, Moore KL, Cooper KK, Songer JG. 2012. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 18:117–121 http://dx.doi.org/10.1016/j.anaerobe.2011.10.001. [PubMed]
96. Chen J, McClane BA. 2015. Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect Immun 83:2369–2381 http://dx.doi.org/10.1128/IAI.03136-14. [PubMed]
97. Han X, Du XD, Southey L, Bulach DM, Seemann T, Yan XX, Bannam TL, Rood JI. 2015. Functional analysis of a bacitracin resistance determinant located on ICE Cp1, a novel Tn 916-like element from a conjugative plasmid in Clostridium perfringens. Antimicrob Agents Chemother 59:6855–6865 http://dx.doi.org/10.1128/AAC.01643-15. [PubMed]
98. Dupuy B, Daube G, Popoff MR, Cole ST. 1997. Clostridium perfringens urease genes are plasmid borne. Infect Immun 65:2313–2320.
99. Ionesco H, Bouanchaud DH. 1973. [Bacteriocin production linked to the presence of a plasmid, in Clostridium perfringens, type A]. C R Acad Sci Hebd Seances Acad Sci D 276:2855–2857. Bacteriocin production linked to the presence of a plasmid, in Clostridium perfringens, type A.
100. Garnier T, Cole ST. 1988. Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid 19:134–150 http://dx.doi.org/10.1016/0147-619X(88)90052-2.
101. Lyras D, Rood JI. 2006. Clostridial genetics, p 682–687. In Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (ed), Gram-Positive Pathogens, 2nd ed. American Society for Microbiology, Washington, D.C. http://dx.doi.org/10.1128/9781555816513.ch55
102. Brefort G, Magot M, Ionesco H, Sebald M. 1977. Characterization and transferability of Clostridium perfringens plasmids. Plasmid 1:52–66 http://dx.doi.org/10.1016/0147-619X(77)90008-7.
103. Magot M. 1984. Physical characterization of the Clostridium perfringens tetracycline-chloramphenicol resistance plasmid pIP401. Ann Microbiol (Paris) 135B:269–282.
104. Mihelc VA, Duncan CL, Chambliss GH. 1978. Characterization of a bacteriocinogenic plasmid in Clostridium perfringens CW55. Antimicrob Agents Chemother 14:771–779 http://dx.doi.org/10.1128/AAC.14.5.771. [PubMed]
105. Rood JI, Maher EA, Somers EB, Campos E, Duncan CL. 1978. Isolation and characterization of multiply antibiotic-resistant Clostridum perfringens strains from porcine feces. Antimicrob Agents Chemother 13:871–880 http://dx.doi.org/10.1128/AAC.13.5.871. [PubMed]
106. Abraham LJ, Rood JI. 1987. Identification of Tn 4451 and Tn 4452, chloramphenicol resistance transposons from Clostridium perfringens. J Bacteriol 169:1579–1584 http://dx.doi.org/10.1128/jb.169.4.1579-1584.1987. [PubMed]
107. Adams V, Lyras D, Farrow KA, Rood JI. 2002. The clostridial mobilisable transposons. Cell Mol Life Sci 59:2033–2043 http://dx.doi.org/10.1007/s000180200003. [PubMed]
108. Rood JI, Scott VN, Duncan CL. 1978. Identification of a transferable tetracycline resistance plasmid (pCW3) from Clostridium perfringens. Plasmid 1:563–570 http://dx.doi.org/10.1016/0147-619X(78)90013-6.
109. Abraham LJ, Rood JI. 1985. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J Bacteriol 161:636–640.
110. Abraham LJ, Rood JI. 1985. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 13:155–162 http://dx.doi.org/10.1016/0147-619X(85)90038-1.
111. Abraham LJ, Wales AJ, Rood JI. 1985. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid 14:37–46 http://dx.doi.org/10.1016/0147-619X(85)90030-7.
112. Rood JI. 1983. Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol 29:1241–1246 http://dx.doi.org/10.1139/m83-193. [PubMed]
113. Duncan C, Rokos E, Christenson C, Rood J. 1978. Multiple plasmids in different toxigenic types of Clostridium perfringens: possible control of beta toxin production. Microbiology •••:246–248.
114. Rokos E, Rood JI, Duncan CL. 1978. Multiple plasmids in different toxigenic types of Clostridium perfringens. FEMS Microbiol Lett 4:323–326 http://dx.doi.org/10.1111/j.1574-6968.1978.tb02890.x.
115. Bannam TL, Teng WL, Bulach D, Lyras D, Rood JI. 2006. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J Bacteriol 188:4942–4951 http://dx.doi.org/10.1128/JB.00298-06. [PubMed]
116. Miyamoto K, Li J, Sayeed S, Akimoto S, McClane BA. 2008. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid. J Bacteriol 190:7178–7188 http://dx.doi.org/10.1128/JB.00939-08. [PubMed]
117. Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001 http://dx.doi.org/10.1073/pnas.022493799. [PubMed]
118. Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, Horiguchi Y, Yoshinari T, Sugita-Konishi Y, Kamata Y. 2015. Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS One 10:e0138183 http://dx.doi.org/10.1371/journal.pone.0138183. [PubMed]
119. Yonogi S, Matsuda S, Kawai T, Yoda T, Harada T, Kumeda Y, Gotoh K, Hiyoshi H, Nakamura S, Kodama T, Iida T. 2014. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun 82:2390–2399 http://dx.doi.org/10.1128/IAI.01759-14. [PubMed]
120. Adams V, Watts TD, Bulach DM, Lyras D, Rood JI. 2015. Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens. Plasmid 80:90–96 http://dx.doi.org/10.1016/j.plasmid.2015.04.004. [PubMed]
121. Bantwal R, Bannam TL, Porter CJ, Quinsey NS, Lyras D, Adams V, Rood JI. 2012. The peptidoglycan hydrolase TcpG is required for efficient conjugative transfer of pCW3 in Clostridium perfringens. Plasmid 67:139–147 http://dx.doi.org/10.1016/j.plasmid.2011.12.016. [PubMed]
122. Parsons JA, Bannam TL, Devenish RJ, Rood JI. 2007. TcpA, an FtsK/SpoIIIE homolog, is essential for transfer of the conjugative plasmid pCW3 in Clostridium perfringens. J Bacteriol 189:7782–7790 http://dx.doi.org/10.1128/JB.00783-07. [PubMed]
123. Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI. 2012. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 83:275–288 http://dx.doi.org/10.1111/j.1365-2958.2011.07930.x. [PubMed]
124. Steen JA, Bannam TL, Teng WL, Devenish RJ, Rood JI. 2009. The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol 191:2926–2933 http://dx.doi.org/10.1128/JB.00032-09. [PubMed]
125. Teng WL, Bannam TL, Parsons JA, Rood JI. 2008. Functional characterization and localization of the TcpH conjugation protein from Clostridium perfringens. J Bacteriol 190:5075–5086 http://dx.doi.org/10.1128/JB.00386-08. [PubMed]
126. Wisniewski JA, Teng WL, Bannam TL, Rood JI. 2015. Two novel membrane proteins, TcpD and TcpE, are essential for conjugative transfer of pCW3 in Clostridium perfringens. J Bacteriol 197:774–781 http://dx.doi.org/10.1128/JB.02466-14. [PubMed]
127. Wisniewski JA, Traore DA, Bannam TL, Lyras D, Whisstock JC, Rood JI. 2016. TcpM: a novel relaxase that mediates transfer of large conjugative plasmids from Clostridium perfringens. Mol Microbiol 99:884–896 http://dx.doi.org/10.1111/mmi.13270. [PubMed]
128. Wisniewski JA, Rood JI. 2017. The Tcp conjugation system of Clostridium perfringens. Plasmid 91:28–36 http://dx.doi.org/10.1016/j.plasmid.2017.03.001. [PubMed]
129. Lacey JA, Keyburn AL, Ford ME, Portela RW, Johanesen PA, Lyras D, Moore RJ. 2017. Conjugation-mediated horizontal gene transfer of Clostridium perfringens plasmids in the chicken gastrointestinal tract results in the formation of new virulent strains. Appl Environ Microbiol 83:e01814–e01817 http://dx.doi.org/10.1128/AEM.01814-17. [PubMed]
130. Lanka E, Wilkins BM. 1995. DNA processing reactions in bacterial conjugation. Annu Rev Biochem 64:141–169 http://dx.doi.org/10.1146/annurev.bi.64.070195.001041. [PubMed]
131. Gibb B, Gupta K, Ghosh K, Sharp R, Chen J, Van Duyne GD. 2010. Requirements for catalysis in the Cre recombinase active site. Nucleic Acids Res 38:5817–5832 http://dx.doi.org/10.1093/nar/gkq384. [PubMed]
132. de la Cruz F, Frost LS, Meyer RJ, Zechner EL. 2010. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34:18–40 http://dx.doi.org/10.1111/j.1574-6976.2009.00195.x. [PubMed]
133. Chandran Darbari V, Waksman G. 2015. Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84:603–629 http://dx.doi.org/10.1146/annurev-biochem-062911-102821. [PubMed]
134. Christie PJ, Whitaker N, González-Rivera C. 2014. Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591 http://dx.doi.org/10.1016/j.bbamcr.2013.12.019. [PubMed]
135. Cascales E, Christie PJ. 2003. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149 http://dx.doi.org/10.1038/nrmicro753. [PubMed]
136. Errington J, Bath J, Wu LJ. 2001. DNA transport in bacteria. Nat Rev Mol Cell Biol 2:538–545 http://dx.doi.org/10.1038/35080005. [PubMed]
137. Novick RP. 1987. Plasmid incompatibility. Microbiol Rev 51:381–395.
138. Chattoraj DK. 2000. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol Microbiol 37:467–476 http://dx.doi.org/10.1046/j.1365-2958.2000.01986.x.
139. Gerdes K, Howard M, Szardenings F. 2010. Pushing and pulling in prokaryotic DNA segregation. Cell 141:927–942 http://dx.doi.org/10.1016/j.cell.2010.05.033. [PubMed]
140. Salje J, Gayathri P, Löwe J. 2010. The ParMRC system: molecular mechanisms of plasmid segregation by actin-like filaments. Nat Rev Microbiol 8:683–692 http://dx.doi.org/10.1038/nrmicro2425. [PubMed]
141. Chen S, Larsson M, Robinson RC, Chen SL. 2017. Direct and convenient measurement of plasmid stability in lab and clinical isolates of E. coli. Sci Rep 7:4788 http://dx.doi.org/10.1038/s41598-017-05219-x. [PubMed]
142. Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J. 2009. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 73:534–552 http://dx.doi.org/10.1111/j.1365-2958.2009.06771.x. [PubMed]
143. Watts TD, Johanesen PA, Lyras D, Rood JI, Adams V. 2017. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies. Plasmid 91:68–75 http://dx.doi.org/10.1016/j.plasmid.2017.03.008. [PubMed]
144. Miyamoto K, Seike S, Takagishi T, Okui K, Oda M, Takehara M, Nagahama M. 2015. Identification of the replication region in pBCNF5603, a bacteriocin-encoding plasmid, in the enterotoxigenic Clostridium perfringens strain F5603. BMC Microbiol 15:118 http://dx.doi.org/10.1186/s12866-015-0443-3. [PubMed]
145. Shimizu T, Ohshima S, Ohtani K, Shimizu T, Hayashi H. 2001. Genomic map of Clostridium perfringens strain 13. Microbiol Immunol 45:179–189 http://dx.doi.org/10.1111/j.1348-0421.2001.tb01278.x. [PubMed]
146. Wade B, Keyburn AL, Seemann T, Rood JI, Moore RJ. 2015. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens. Vet Microbiol 180:299–303 http://dx.doi.org/10.1016/j.vetmic.2015.09.019. [PubMed]
147. Rhem MN, Lech EM, Patti JM, McDevitt D, Höök M, Jones DB, Wilhelmus KR. 2000. The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis. Infect Immun 68:3776–3779 http://dx.doi.org/10.1128/IAI.68.6.3776-3779.2000. [PubMed]
148. Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, Höök M. 1994. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62:152–161.
149. Xu Y, Rivas JM, Brown EL, Liang X, Höök M. 2004. Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J Infect Dis 189:2323–2333 http://dx.doi.org/10.1086/420851. [PubMed]
150. Wade B, Keyburn AL, Haring V, Ford M, Rood JI, Moore RJ. 2016. The adherent abilities of Clostridium perfringens strains are critical for the pathogenesis of avian necrotic enteritis. Vet Microbiol 197:53–61 http://dx.doi.org/10.1016/j.vetmic.2016.10.028. [PubMed]
151. Kawahara K, Yonogi S, Munetomo R, Oki H, Yoshida T, Kumeda Y, Matsuda S, Kodama T, Ohkubo T, Iida T, Nakamura S. 2016. Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Biochem Biophys Res Commun 480:261–267 http://dx.doi.org/10.1016/j.bbrc.2016.10.042. [PubMed]
152. Toniti W, Yoshida T, Tsurumura T, Irikura D, Monma C, Kamata Y, Tsuge H. 2017. Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. PLoS One 12:e0171278 http://dx.doi.org/10.1371/journal.pone.0171278. [PubMed]
153. Marshall KM, Bradshaw M, Johnson EA. 2010. Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum. PLoS One 5:e11087 http://dx.doi.org/10.1371/journal.pone.0011087. [PubMed]
154. Riley MA, Wertz JE. 2002. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137 http://dx.doi.org/10.1146/annurev.micro.56.012302.161024. [PubMed]
155. Mahony DE, Li A. 1978. Comparative study of ten bacteriocins of Clostridium perfringens. Antimicrob Agents Chemother 14:886–892 http://dx.doi.org/10.1128/AAC.14.6.886. [PubMed]
156. Barbara AJ, Trinh HT, Glock RD, Glenn Songer J. 2008. Necrotic enteritis-producing strains of Clostridium perfringens displace non-necrotic enteritis strains from the gut of chicks. Vet Microbiol 126:377–382 http://dx.doi.org/10.1016/j.vetmic.2007.07.019. [PubMed]
157. Tagg JR, Dajani AS, Wannamaker LW. 1976. Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756.
158. Surana S, Tosolini AP, Meyer IFG, Fellows AD, Novoselov SS, Schiavo G. 2018. The travel diaries of tetanus and botulinum neurotoxins. Toxicon 147:58–67 http://dx.doi.org/10.1016/j.toxicon.2017.10.008. [PubMed]
159. Brüggemann H, Bäumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321 http://dx.doi.org/10.1073/pnas.0335853100. [PubMed]
160. Rossetto O, Scorzeto M, Megighian A, Montecucco C. 2013. Tetanus neurotoxin. Toxicon 66:59–63 http://dx.doi.org/10.1016/j.toxicon.2012.12.027. [PubMed]
161. Connan C, Denève C, Mazuet C, Popoff MR. 2013. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani. Toxicon 75:90–100 http://dx.doi.org/10.1016/j.toxicon.2013.06.001. [PubMed]
162. Raffestin S, Dupuy B, Marvaud JC, Popoff MR. 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol Microbiol 55:235–249 http://dx.doi.org/10.1111/j.1365-2958.2004.04377.x. [PubMed]
163. Carter GP, Larcombe S, Li L, Jayawardena D, Awad MM, Songer JG, Lyras D. 2014. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int J Med Microbiol 304:1147–1159 http://dx.doi.org/10.1016/j.ijmm.2014.08.008. [PubMed]
164. Popp D, Narita A, Lee LJ, Ghoshdastider U, Xue B, Srinivasan R, Balasubramanian MK, Tanaka T, Robinson RC. 2012. Novel actin-like filament structure from Clostridium tetani. J Biol Chem 287:21121–21129 http://dx.doi.org/10.1074/jbc.M112.341016. [PubMed]
165. Jiang S, Ghoshdastider U, Narita A, Popp D, Robinson RC. 2016. Structural complexity of filaments formed from the actin and tubulin folds. Commun Integr Biol 9:e1242538 http://dx.doi.org/10.1080/19420889.2016.1242538. [PubMed]
166. Licona-Cassani C, Steen JA, Zaragoza NE, Moonen G, Moutafis G, Hodson MP, Power J, Nielsen LK, Marcellin E. 2016. Tetanus toxin production is triggered by the transition from amino acid consumption to peptides. Anaerobe 41:113–124 http://dx.doi.org/10.1016/j.anaerobe.2016.07.006. [PubMed]
167. Fournier PE, Levy PY, Million M, Croce O, Blanc-Tailleur C, Brouqui P, Raoult D. 2014. Genome of a chronic osteitis-causing Clostridium tetani. New Microbes New Infect 2:25–26 http://dx.doi.org/10.1002/2052-2975.27. [PubMed]
168. Brüggemann H, Brzuszkiewicz E, Chapeton-Montes D, Plourde L, Speck D, Popoff MR. 2015. Genomics of Clostridium tetani. Res Microbiol 166:326–331 http://dx.doi.org/10.1016/j.resmic.2015.01.002. [PubMed]
169. Cohen JE, Wang R, Shen RF, Wu WW, Keller JE. 2017. Comparative pathogenomics of Clostridium tetani. PLoS One 12:e0182909 http://dx.doi.org/10.1371/journal.pone.0182909. [PubMed]
170. Rouli L, MBengue M, Robert C, Ndiaye M, La Scola B, Raoult D. 2014. Genomic analysis of three African strains of Bacillus anthracis demonstrates that they are part of the clonal expansion of an exclusively pathogenic bacterium. New Microbes New Infect 2:161–169 http://dx.doi.org/10.1002/nmi2.62. [PubMed]
171. Collins MD, East AK. 1998. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J ApplMicrobiol 84:5–17 http://dx.doi.org/10.1046/j.1365-2672.1997.00313.x. [PubMed]
172. Hill KK, Xie G, Foley BT, Smith TJ. 2015. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 107(Pt A) :2–8 http://dx.doi.org/10.1016/j.toxicon.2015.09.011. [PubMed]
173. Hill KK, Xie G, Foley BT, Smith TJ, Munk AC, Bruce D, Smith LA, Brettin TS, Detter JC. 2009. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol 7:66 http://dx.doi.org/10.1186/1741-7007-7-66. [PubMed]
174. Stringer SC, Carter AT, Webb MD, Wachnicka E, Crossman LC, Sebaihia M, Peck MW. 2013. Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum. BMC Genomics 14:333 http://dx.doi.org/10.1186/1471-2164-14-333. [PubMed]
175. Williamson CH, Sahl JW, Smith TJ, Xie G, Foley BT, Smith LA, Fernández RA, Lindström M, Korkeala H, Keim P, Foster J, Hill K. 2016. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genomics 17:180 http://dx.doi.org/10.1186/s12864-016-2502-z. [PubMed]
176. Schiavo G, Benfenati F, Poulain B, Rossetto O, Polverino de Laureto P, DasGupta BR, Montecucco C. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359:832–835 http://dx.doi.org/10.1038/359832a0. [PubMed]
177. Hauser D, Gibert M, Marvaud JC, Eklund MW, Popoff MR. 1995. Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum. Toxicon 33:515–526 http://dx.doi.org/10.1016/0041-0101(94)00190-J.
178. Raffestin S, Marvaud JC, Cerrato R, Dupuy B, Popoff MR. 2004. Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani. Anaerobe 10:93–100 http://dx.doi.org/10.1016/j.anaerobe.2004.01.001. [PubMed]
179. Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. 2017. Historical perspectives and guidelines for botulinum neurotoxin subtype nomenclature. Toxins (Basel) 9:E38 http://dx.doi.org/10.3390/toxins9010038. [PubMed]
180. Fujinaga Y, Popoff MR. 2018. Translocation and dissemination of botulinum neurotoxin from the intestinal tract. Toxicon 147:13–18 http://dx.doi.org/10.1016/j.toxicon.2017.10.020. [PubMed]
181. Zhang S, Lebreton F, Mansfield MJ, Miyashita SI, Zhang J, Schwartzman JA, Tao L, Masuyer G, Martínez-Carranza M, Stenmark P, Gilmore MS, Doxey AC, Dong M. 2018. Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium. Cell Host Microbe 23:169–176.e6 http://dx.doi.org/10.1016/j.chom.2017.12.018. [PubMed]
182. Hill KK, Smith TJ. 2013. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr Top Microbiol Immunol 364:1–20. [PubMed]
183. Barash JR, Arnon SS. 2014. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins. J Infect Dis 209:183–191 http://dx.doi.org/10.1093/infdis/jit449. [PubMed]
184. Dover N, Barash JR, Hill KK, Xie G, Arnon SS. 2014. Molecular characterization of a novel botulinum neurotoxin type H gene. J Infect Dis 209:192–202 http://dx.doi.org/10.1093/infdis/jit450. [PubMed]
185. Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L, Miyashita SI, Martínez-Carranza M, Dong M, Stenmark P. 2017. Identification and characterization of a novel botulinum neurotoxin. Nat Commun 8:14130 http://dx.doi.org/10.1038/ncomms14130. [PubMed]
186. Popoff MR. 2014. Botulinum neurotoxins: more and more diverse and fascinating toxic proteins. J Infect Dis 209:168–169 http://dx.doi.org/10.1093/infdis/jit505. [PubMed]
187. Dupuy B, Raffestin S, Matamouros S, Mani N, Popoff MR, Sonenshein AL. 2006. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol Microbiol 60:1044–1057 http://dx.doi.org/10.1111/j.1365-2958.2006.05159.x. [PubMed]
188. Marvaud JC, Eisel U, Binz T, Niemann H, Popoff MR. 1998. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR. Infect Immun 66:5698–5702.
189. Skarin H, Håfström T, Westerberg J, Segerman B. 2011. Clostridium botulinum group III: a group with dual identity shaped by plasmids, phages and mobile elements. BMC Genomics 12:185 http://dx.doi.org/10.1186/1471-2164-12-185. [PubMed]
190. Dover N, Barash JR, Hill KK, Davenport KW, Teshima H, Xie G, Arnon SS. 2013. Clostridium botulinum strain Af84 contains three neurotoxin gene clusters: bont/A2, bont/F4 and bont/F5. PLoS One 8:e61205 http://dx.doi.org/10.1371/journal.pone.0061205. [PubMed]
191. Smith TJ, Hill KK, Foley BT, Detter JC, Munk AC, Bruce DC, Doggett NA, Smith LA, Marks JD, Xie G, Brettin TS. 2007. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS One 2:e1271 http://dx.doi.org/10.1371/journal.pone.0001271. [PubMed]
192. Raphael BH, Bradshaw M, Kalb SR, Joseph LA, Lúquez C, Barr JR, Johnson EA, Maslanka SE. 2014. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5. Appl Environ Microbiol 80:3250–3257 http://dx.doi.org/10.1128/AEM.00284-14. [PubMed]
193. Franciosa G, Maugliani A, Scalfaro C, Aureli P. 2009. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS One 4:e4829 http://dx.doi.org/10.1371/journal.pone.0004829. [PubMed]
194. Hosomi K, Sakaguchi Y, Kohda T, Gotoh K, Motooka D, Nakamura S, Umeda K, Iida T, Kozaki S, Mukamoto M. 2014. Complete nucleotide sequence of a plasmid containing the botulinum neurotoxin gene in Clostridium botulinum type B strain 111 isolated from an infant patient in Japan. Mol Genet Genomics 289:1267–1274 http://dx.doi.org/10.1007/s00438-014-0887-4. [PubMed]
195. Marshall KM, Bradshaw M, Pellett S, Johnson EA. 2007. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem Biophys Res Commun 361:49–54 http://dx.doi.org/10.1016/j.bbrc.2007.06.166. [PubMed]
196. Umeda K, Seto Y, Kohda T, Mukamoto M, Kozaki S. 2012. Stability of toxigenicity in proteolytic Clostridium botulinum type B upon serial passage. Microbiol Immunol 56:338–341 http://dx.doi.org/10.1111/j.1348-0421.2012.00441.x. [PubMed]
197. Weigand MR, Pena-Gonzalez A, Shirey TB, Broeker RG, Ishaq MK, Konstantinidis KT, Raphael BH. 2015. Implications of genome-based discrimination between Clostridium botulinum group I and Clostridium sporogenes strains for bacterial taxonomy. Appl Environ Microbiol 81:5420–5429 http://dx.doi.org/10.1128/AEM.01159-15. [PubMed]
198. Carter AT, Austin JW, Weedmark KA, Corbett C, Peck MW. 2014. Three classes of plasmid (47-63 kb) carry the type B neurotoxin gene cluster of group II Clostridium botulinum. Genome Biol Evol 6:2076–2087 http://dx.doi.org/10.1093/gbe/evu164. [PubMed]
199. Carter AT, Austin JW, Weedmark KA, Peck MW. 2016. Evolution of chromosomal Clostridium botulinum type E neurotoxin gene clusters: evidence provided by their rare plasmid-borne counterparts. Genome Biol Evol 8:540–555 http://dx.doi.org/10.1093/gbe/evw017. [PubMed]
200. Carter AT, Stringer SC, Webb MD, Peck MW. 2013. The type F6 neurotoxin gene cluster locus of group II clostridium botulinum has evolved by successive disruption of two different ancestral precursors. Genome Biol Evol 5:1032–1037 http://dx.doi.org/10.1093/gbe/evt068. [PubMed]
201. Zhang Z, Hintsa H, Chen Y, Korkeala H, Lindström M. 2013. Plasmid-borne type E neurotoxin gene clusters in Clostridium botulinum strains. Appl Environ Microbiol 79:3856–3859 http://dx.doi.org/10.1128/AEM.00080-13. [PubMed]
202. Skarin H, Segerman B. 2014. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens. PLoS One 9:e107777 http://dx.doi.org/10.1371/journal.pone.0107777. [PubMed]
203. Sakaguchi Y, Hayashi T, Kurokawa K, Nakayama K, Oshima K, Fujinaga Y, Ohnishi M, Ohtsubo E, Hattori M, Oguma K. 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc Natl Acad Sci USA 102:17472–17477 http://dx.doi.org/10.1073/pnas.0505503102. [PubMed]
204. Sakaguchi Y, Hayashi T, Yamamoto Y, Nakayama K, Zhang K, Ma S, Arimitsu H, Oguma K. 2009. Molecular analysis of an extrachromosomal element containing the C2 toxin gene discovered in Clostridium botulinum type C. J Bacteriol 191:3282–3291 http://dx.doi.org/10.1128/JB.01797-08. [PubMed]
205. Sakaguchi Y, Suzuki T, Yamamoto Y, Nishikawa A, Oguma K. 2015. Genomics of Clostridium botulinum group III strains. Res Microbiol 166:318–325 http://dx.doi.org/10.1016/j.resmic.2014.07.016. [PubMed]
206. Zhou Y, Sugiyama H, Nakano H, Johnson EA. 1995. The genes for the Clostridium botulinum type G toxin complex are on a plasmid. Infect Immun 63:2087–2091.
207. Smith TJ, Hill KK, Xie G, Foley BT, Williamson CHD, Foster JT, Johnson SL, Chertkov O, Teshima H, Gibbons HS, Johnsky LA, Karavis MA, Smith LA. 2015. Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. Infect Genet Evol 30:102–113 http://dx.doi.org/10.1016/j.meegid.2014.12.002. [PubMed]
208. Halpin JL, Hill K, Johnson SL, Bruce DC, Shirey TB, Dykes JK, Lúquez C. 2017. Finished whole-genome sequence of Clostridium argentinense producing botulinum neurotoxin type G. Genome Announc 5:e00380–e17. [PubMed]
209. Hauser D, Gibert M, Boquet P, Popoff MR. 1992. Plasmid localization of a type E botulinal neurotoxin gene homologue in toxigenic Clostridium butyricum strains, and absence of this gene in non-toxigenic C. butyricum strains. FEMS Microbiol Lett 78:251–255 http://dx.doi.org/10.1111/j.1574-6968.1992.tb05576.x.
210. Franciosa G, Scalfaro C, Di Bonito P, Vitale M, Aureli P. 2011. Identification of novel linear megaplasmids carrying a ß-lactamase gene in neurotoxigenic Clostridium butyricum type E strains. PLoS One 6:e21706 http://dx.doi.org/10.1371/journal.pone.0021706. [PubMed]
211. Wang X, Maegawa T, Karasawa T, Kozaki S, Tsukamoto K, Gyobu Y, Yamakawa K, Oguma K, Sakaguchi Y, Nakamura S. 2000. Genetic analysis of type E botulinum toxin-producing Clostridium butyricum strains. Appl Environ Microbiol 66:4992–4997 http://dx.doi.org/10.1128/AEM.66.11.4992-4997.2000. [PubMed]
212. Janezic S, Potocnik M, Zidaric V, Rupnik M. 2016. Highly divergent Clostridium difficile strains isolated from the environment. PLoS One 11:e0167101 http://dx.doi.org/10.1371/journal.pone.0167101. [PubMed]
213. Amy J, Johanesen P, Lyras D. 2015. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 80:97–110 http://dx.doi.org/10.1016/j.plasmid.2015.04.006. [PubMed]
214. Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. 2014. Clostridium difficile virulence factors: insights into an anaerobic spore-forming pathogen. Gut Microbes 5:579–593 http://dx.doi.org/10.4161/19490976.2014.969632. [PubMed]
215. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. 2016. Clostridium difficile infection. Nat Rev Dis Primers 2:16020 http://dx.doi.org/10.1038/nrdp.2016.20. [PubMed]
216. Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerborn M, von Eichel-Streiber C. 1997. Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem 244:735–742 http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00735.x. [PubMed]
217. Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR. 1997. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407.
218. Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O’Connor JR, Rood JI. 2007. Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol 189:7290–7301 http://dx.doi.org/10.1128/JB.00731-07. [PubMed]
219. Brouwer MS, Roberts AP, Hussain H, Williams RJ, Allan E, Mullany P. 2013. Horizontal gene transfer converts non-toxigenic Clostridium difficile strains into toxin producers. Nat Commun 4:2601 http://dx.doi.org/10.1038/ncomms3601. [PubMed]
220. Dingle KE, Elliott B, Robinson E, Griffiths D, Eyre DW, Stoesser N, Vaughan A, Golubchik T, Fawley WN, Wilcox MH, Peto TE, Walker AS, Riley TV, Crook DW, Didelot X. 2014. Evolutionary history of the Clostridium difficile pathogenicity locus. Genome Biol Evol 6:36–52 http://dx.doi.org/10.1093/gbe/evt204. [PubMed]
221. Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J. 2017. A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol 250:23–28 http://dx.doi.org/10.1016/j.jbiotec.2017.02.017. [PubMed]
222. Sekulovic O, Meessen-Pinard M, Fortier LC. 2011. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J Bacteriol 193:2726–2734 http://dx.doi.org/10.1128/JB.00787-10. [PubMed]
223. Ramírez-Vargas G, Goh S, Rodríguez C. 2018. The novel phages phiCD5763 and phiCD2955 represent two groups of big plasmidial siphoviridae phages of Clostridium difficile. Front Microbiol 9:26 http://dx.doi.org/10.3389/fmicb.2018.00026. [PubMed]
224. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402 http://dx.doi.org/10.1186/1471-2164-12-402. [PubMed]
225. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410 http://dx.doi.org/10.1016/S0022-2836(05)80360-2.
226. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010 http://dx.doi.org/10.1093/bioinformatics/btr039. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0034-2018
2019-05-17
2019-08-25

Abstract:

The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The pCS1 family plasmids of . Shown is a visual representation of a blastn analysis comparing each of the seven sequenced pCS1 plasmids to the reference sequence of pCS1-3 from strain JGS6382. The third ring from the center (green) and the coordinates (in kb) correspond to pCS1-3. Plasmids displaying 70 to 100% identity to pCS1-3 at a particular locus are shown with a solid block of colour on their respective ring. Identity to pCS1-3 between 50 and 70% is represented as a pale block of colour and if the identity is lower than 50% it is represented as a gap in the corresponding ring. Conserved loci on pCS1-3 are indicated as a gray arc on the outermost ring and labeled. Genes of interest are annotated as black arrows on the outermost ring and also labeled. Sequences analyzed and accession numbers: pCS1-1 (LN679999), pCS1-2 (LN681232), pCS1-3 (LN681235), pCS1-4 (LN681233), pCS1-5 (MG205643), pCS1-6 (MG205642), pCS1-7 (MG205641). Produced using BRIG ( 224 ).

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Nucleotide alignment of pCW3-like plasmids from . Full plasmid sequences were aligned using the blastn algorithm ( 225 ) and Easyfig for visualization ( 226 ). The plasmid names are noted on the left along with the toxin or antibiotic resistance determinants encoded within each plasmid sequence. Predicted (ORFs) are indicated by arrows with the following color code: conserved ORFs (light blue), conjugation genes, dark blue; toxin genes, yellow; partitioning genes, green; red; group II introns, pink; antibiotic resistance genes (orange) less-conserved ORFs, gray. The scale bar and key for nucleotide identity are shown.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of the pCW3 conjugation apparatus. The arrangement of the proteins within the model is based on protein localization studies and bioinformatics analysis. Black arrows indicate confirmed protein interactions between Tcp proteins and only Tcp proteins required for wild-type transfer of pCW3 are shown. Indicated within the membrane are the integral membrane proteins TcpH (brown), the peptidoglycan hydrolase TcpG (purple), the assembly factor TcpC (green; monomers as different shades), the proteins of unknown function, TcpD (yellow) and TcpE (pink) and the putative coupling protein TcpA (orange). Within the cytoplasm are a putative ATPase TcpF (red) and the novel relaxase TcpM (blue) in complex with the double stranded pCW3 site. Dotted arrows indicate putative ATPase activity. Reproduced with permission from Wisniewski and Rood (2017).

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Sequence alignment of pCP13-like plasmids from . The plasmid sequences of pCP-TS1, pCP-OS1, pCP13 and pBCNF5603 were aligned using the Blastn algorithm using Easyfig ( 226 ). The percentage identity is indicated by the scale bar at the bottom right and each sequence is compared separately to the sequences above and below. ORFs are indicated by arrows and ORFs of particular interest are colored as follows: green, restriction modification systems; red, replication and maintenance; purple, toxin genes; yellow, transposase genes; dark blue, putative collagen adhesins; orange, putative relaxase enzymes.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Blast analysis of the tetanus toxin plasmid family. Plasmid sequences derived from were compared to the 74 kb pE88 plasmid (GenBank accession number NC 004565). The two outermost rings show predicted (ORFs) for both the (+) and (-) DNA strands. The position of the tetanus toxin gene () and the regulator () are shown. DNA regions with less than 80% sequence identity are indicated by gaps. Strain ATCC 454 does not encode either the or genes. The regions denoted A through E indicate deletions within plasmids found in wildtype strains and include and DNA directed RNA polymerase sigma-70 factor (A), and an ABC anti-microbial transporter system (B), an / two-component system (C), and an ABC-type lipoprotein export system/permease complex (D), and another ABC multidrug-resistance transporter/permease complex (E). Reproduced with permission from Cohen (2017).

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Gene arrangement for toxin loci. The two basic loci types, + and +, are indicated. Similar genes are designated with the same color and the toxin gene serotype designation is given on the right.

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

The toxinotype classification scheme

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018
Generic image for table
TABLE 2

Summary of BoNT-producing species and toxin gene locations

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0034-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error