No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genetics of Lactococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Philippe Gaudu1, Yuji Yamamoto2, Peter Ruhdal Jensen3, Karin Hammer4, Delphine Lechardeur5, Alexandra Gruss6
  • Editors: Vincent A. Fischetti7, Richard P. Novick8, Joseph J. Ferretti9, Daniel A. Portnoy10, Miriam Braunstein11, Julian I. Rood12
    Affiliations: 1: Institut Micalis, INRA, 78350 Jouy en Josas, France; 2: Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan; 3: National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark; 4: DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; 5: Institut Micalis, INRA, 78350 Jouy en Josas, France; 6: Institut Micalis, INRA, 78350 Jouy en Josas, France; 7: The Rockefeller University, New York, NY; 8: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 9: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 10: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 11: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 12: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
  • Received 29 May 2018 Accepted 08 January 2019 Published 12 July 2019
  • Alexandra Gruss, [email protected]
image of Genetics of Lactococci
    Preview this microbiology spectrum article:
    Zoom in

    Genetics of Lactococci, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0035-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0035-2018-2.gif
  • Abstract:

    is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue metabolites, and novel applications in health and biotechnology.

  • Citation: Gaudu P, Yamamoto Y, Jensen P, Hammer K, Lechardeur D, Gruss A. 2019. Genetics of Lactococci. Microbiol Spectrum 7(4):GPP3-0035-2018. doi:10.1128/microbiolspec.GPP3-0035-2018.


1. Antolín J, Cigüenza R, Salueña I, Vázquez E, Hernández J, Espinós D. 2004. Liver abscess caused by Lactococcus lactis cremoris: a new pathogen. Scand J Infect Dis 36:490–491 http://dx.doi.org/10.1080/00365540410020668. [PubMed]
2. Werner B, Moroni P, Gioia G, Lavín-Alconero L, Yousaf A, Charter ME, Carter BM, Bennett J, Nydam DV, Welcome F, Schukken YH. 2014. Short communication: genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms. J Dairy Sci 97:6964–6969 http://dx.doi.org/10.3168/jds.2014-8314. [PubMed]
3. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355 http://dx.doi.org/10.1126/science.289.5483.1352. [PubMed]
4. Ballal SA, Veiga P, Fenn K, Michaud M, Kim JH, Gallini CA, Glickman JN, Quéré G, Garault P, Béal C, Derrien M, Courtin P, Kulakauskas S, Chapot-Chartier MP, van Hylckama Vlieg J, Garrett WS. 2015. Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc Natl Acad Sci U S A 112:7803–7808 http://dx.doi.org/10.1073/pnas.1501897112. [PubMed]
5. Nouaille S, Mondeil S, Finoux AL, Moulis C, Girbal L, Cocaign-Bousquet M. 2017. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 45:11711–11724 http://dx.doi.org/10.1093/nar/gkx781. [PubMed]
6. Chopin MC, Chopin A, Bidnenko E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr Opin Microbiol 8:473–479 http://dx.doi.org/10.1016/j.mib.2005.06.006. [PubMed]
7. Deveau H, Labrie SJ, Chopin MC, Moineau S. 2006. Biodiversity and classification of lactococcal phages. Appl Environ Microbiol 72:4338–4346 http://dx.doi.org/10.1128/AEM.02517-05. [PubMed]
8. Labrie SJ, Moineau S. 2007. Abortive infection mechanisms and prophage sequences significantly influence the genetic makeup of emerging lytic lactococcal phages. J Bacteriol 189:1482–1487 http://dx.doi.org/10.1128/JB.01111-06. [PubMed]
9. Mahony J, Cambillau C, van Sinderen D. 2017. Host recognition by lactic acid bacterial phages. FEMS Microbiol Rev 41(Suppl 1) :S16–S26 http://dx.doi.org/10.1093/femsre/fux019. [PubMed]
10. Samson JE, Moineau S. 2013. Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368 http://dx.doi.org/10.1146/annurev-food-030212-182541. [PubMed]
11. Spinelli S, Veesler D, Bebeacua C, Cambillau C. 2014. Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 5:3 http://dx.doi.org/10.3389/fmicb.2014.00003. [PubMed]
12. Sturino JM, Klaenhammer TR. 2004. Bacteriophage defense systems and strategies for lactic acid bacteria. Adv Appl Microbiol 56:331–378 http://dx.doi.org/10.1016/S0065-2164(04)56011-2.
13. Douglas G, Azcarate-Peril M, Klaenhammer T. 2015. Genomic evolution of lactic acid bacteria: from single gene function to the pan-genome, p 32–35. In Mozzi F, Raya RR, Vignolo GM (ed), Biotechnology of Lactic Acid Bacteria: Novel Applications, 2nd ed. Wiley-Blackwell, Chichester, United Kingdom.
14. Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P. 2002. Genome plasticity in Lactococcus lactis. Antonie van Leeuwenhoek 82:123–132 http://dx.doi.org/10.1023/A:1020633010337. [PubMed]
15. Song AA, In LLA, Lim SHE, Rahim RA. 2017. A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16:55 http://dx.doi.org/10.1186/s12934-017-0669-x. [PubMed]
16. de Moreno de LeBlanc A, Del Carmen S, Chatel JM, Miyoshi A, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JG. 2015. Current review of genetically modified lactic acid bacteria for the prevention and treatment of colitis using murine models. Gastroenterol Res Pract 2015:146972 http://dx.doi.org/10.1155/2015/146972. [PubMed]
17. Pillar CM, Gilmore MS. 2004. Enterococcal virulence: pathogenicity island of E. Faecalis. Front Biosci 9:2335–2346 http://dx.doi.org/10.2741/1400. [PubMed]
18. Nunez N, Derré-Bobillot A, Gaubert S, Herry JM, Deschamps J, Wei Y, Baranek T, Si-Tahar M, Briandet R, Serror P, Archambaud C. 2018. Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection. Sci Rep 8:1749 http://dx.doi.org/10.1038/s41598-018-20206-6. [PubMed]
19. Kim S, Covington A, Pamer EG. 2017. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 279:90–105 http://dx.doi.org/10.1111/imr.12563. [PubMed]
20. Pérez-Núñez D, Briandet R, David B, Gautier C, Renault P, Hallet B, Hols P, Carballido-López R, Guédon E. 2011. A new morphogenesis pathway in bacteria: unbalanced activity of cell wall synthesis machineries leads to coccus-to-rod transition and filamentation in ovococci. Mol Microbiol 79:759–771 http://dx.doi.org/10.1111/j.1365-2958.2010.07483.x. [PubMed]
21. Halpern D, Chiapello H, Schbath S, Robin S, Hennequet-Antier C, Gruss A, El Karoui M. 2007. Identification of DNA motifs implicated in maintenance of bacterial core genomes by predictive modeling. PLoS Genet 3:1614–1621 http://dx.doi.org/10.1371/journal.pgen.0030153. [PubMed]
22. Le Bourgeois P, Lautier M, van den Berghe L, Gasson MJ, Ritzenthaler P. 1995. Physical and genetic map of the Lactococcus lactis subsp. cremoris MG1363 chromosome: comparison with that of Lactococcus lactis subsp. lactis IL 1403 reveals a large genome inversion. J Bacteriol 177:2840–2850 http://dx.doi.org/10.1128/jb.177.10.2840-2850.1995. [PubMed]
23. Le Bourgeois P, Daveran-Mingot ML, Ritzenthaler P. 2000. Genome plasticity among related Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J Bacteriol 182:2481–2491 http://dx.doi.org/10.1128/JB.182.9.2481-2491.2000. [PubMed]
24. Campo N, Dias MJ, Daveran-Mingot ML, Ritzenthaler P, Le Bourgeois P. 2004. Chromosomal constraints in Gram-positive bacteria revealed by artificial inversions. Mol Microbiol 51:511–522 http://dx.doi.org/10.1046/j.1365-2958.2003.03847.x. [PubMed]
25. McKay LL, Baldwin KA, Efstathiou JD. 1976. Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl Environ Microbiol 32:45–52.
26. Bourgoin F, Pluvinet A, Gintz B, Decaris B, Guédon G. 1999. Are horizontal transfers involved in the evolution of the Streptococcus thermophilus exopolysaccharide synthesis loci? Gene 233:151–161 http://dx.doi.org/10.1016/S0378-1119(99)00144-4.
27. Belhocine K, Plante I, Cousineau B. 2004. Conjugation mediates transfer of the Ll.LtrB group II intron between different bacterial species. Mol Microbiol 51:1459–1469 http://dx.doi.org/10.1111/j.1365-2958.2004.03923.x. [PubMed]
28. Kelly WJ, Altermann E, Lambie SC, Leahy SC. 2013. Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Front Microbiol 4:257 http://dx.doi.org/10.3389/fmicb.2013.00257. [PubMed]
29. Griffith F. 1928. The significance of pneumococcal types. J Hyg (Lond) 27:113–159 http://dx.doi.org/10.1017/S0022172400031879. [PubMed]
30. Helmark S, Hansen ME, Jelle B, Sørensen KI, Jensen PR. 2004. Transformation of Leuconostoc carnosum 4010 and evidence for natural competence of the organism. Appl Environ Microbiol 70:3695–3699 http://dx.doi.org/10.1128/AEM.70.6.3695-3699.2004. [PubMed]
31. Gardan R, Besset C, Guillot A, Gitton C, Monnet V. 2009. The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J Bacteriol 191:4647–4655 http://dx.doi.org/10.1128/JB.00257-09. [PubMed]
32. Gardan R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P, Monnet V. 2013. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol 195:1845–1855 http://dx.doi.org/10.1128/JB.02196-12. [PubMed]
33. Fontaine L, Goffin P, Dubout H, Delplace B, Baulard A, Lecat-Guillet N, Chambellon E, Gardan R, Hols P. 2013. Mechanism of competence activation by the ComRS signalling system in streptococci. Mol Microbiol 87:1113–1132 http://dx.doi.org/10.1111/mmi.12157. [PubMed]
34. Wydau S, Dervyn R, Anba J, Dusko Ehrlich S, Maguin E. 2006. Conservation of key elements of natural competence in Lactococcus lactis ssp. FEMS Microbiol Lett 257:32–42 http://dx.doi.org/10.1111/j.1574-6968.2006.00141.x. [PubMed]
35. Mulder J, Wels M, Kuipers OP, Kleerebezem M, Bron PA. 2017. Unleashing natural competence in Lactococcus lactis by induction of the competence regulator ComX. Appl Environ Microbiol 83:AEM.01320-17 http://dx.doi.org/10.1128/AEM.01320-17. [PubMed]
36. David B, Radziejwoski A, Toussaint F, Fontaine L, Henry de Frahan M, Patout C, van Dillen S, Boyaval P, Horvath P, Fremaux C, Hols P. 2017. Natural DNA transformation is functional in Lactococcus lactis ssp. cremoris KW2. Appl Environ Microbiol 83:AEM.01074-17 http://dx.doi.org/10.1128/AEM.01074-17. [PubMed]
37. Holo H, Nes IF. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123.
38. Vaughan EE, de Vos WM. 1995. Identification and characterization of the insertion element IS1070 from Leuconostoc lactis NZ6009. Gene 155:95–100 http://dx.doi.org/10.1016/0378-1119(94)00921-E.
39. Bolotin A, Mauger S, Malarme K, Ehrlich SD, Sorokin A. 1999. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie van Leeuwenhoek 76:27–76 http://dx.doi.org/10.1023/A:1002048720611. [PubMed]
40. Delorme C, Bartholini C, Luraschi M, Pons N, Loux V, Almeida M, Guédon E, Gibrat JF, Renault P. 2011. Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J Bacteriol 193:5581–5582 http://dx.doi.org/10.1128/JB.05404-11. [PubMed]
41. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P. 2004. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558 http://dx.doi.org/10.1038/nbt1034. [PubMed]
42. de Vos WM, Hugenholtz J. 2004. Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79 http://dx.doi.org/10.1016/j.tibtech.2003.11.011. [PubMed]
43. Garrigues C, Johansen E, Pedersen MB, Mollgaard H, Sorensen KI, Gaudu P, Gruss A, Lamberet G. 2006. Getting high (OD) on heme. Nat Rev Microbiol 4:c2; author reply c3. [PubMed]
44. Sijpesteijn AK. 1970. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie van Leeuwenhoek 36:335–348 http://dx.doi.org/10.1007/BF02069035. [PubMed]
45. Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaïki L, Lamberet G, Sourice S, Duwat P, Gruss A. 2002. Respiration capacity and consequences in Lactococcus lactis. Antonie van Leeuwenhoek 82:263–269 http://dx.doi.org/10.1023/A:1020635600343. [PubMed]
46. Duwat P, Sourice S, Cesselin B, Lamberet G, Vido K, Gaudu P, Le Loir Y, Violet F, Loubière P, Gruss A. 2001. Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516 http://dx.doi.org/10.1128/JB.183.15.4509-4516.2001. [PubMed]
47. Blank LM, Koebmann BJ, Michelsen O, Nielsen LK, Jensen PR. 2001. Hemin reconstitutes proton extrusion in an H(+)-ATPase-negative mutant of Lactococcus lactis. J Bacteriol 183:6707–6709 http://dx.doi.org/10.1128/JB.183.22.6707-6709.2001. [PubMed]
48. Gruss A, Borezée-Durant E, Lechardeur D. 2012. Environmental heme utilization by heme-auxotrophic bacteria. Adv Microb Physiol 61:69–124 http://dx.doi.org/10.1016/B978-0-12-394423-8.00003-2. [PubMed]
49. Neves AR, Pool WA, Kok J, Kuipers OP, Santos H. 2005. Overview on sugar metabolism and its control in Lactococcus lactis: the input from in vivo NMR. FEMS Microbiol Rev 29:531–554. [PubMed]
50. Cocaign-Bousquet M, Garrigues C, Loubiere P, Lindley ND. 1996. Physiology of pyruvate metabolism in Lactococcus lactis. Antonie van Leeuwenhoek 70:253–267 http://dx.doi.org/10.1007/BF00395936. [PubMed]
51. Liu J, Wang Z, Kandasamy V, Lee SY, Solem C, Jensen PR. 2017. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis. Metab Eng 44:22–29 http://dx.doi.org/10.1016/j.ymben.2017.09.001. [PubMed]
52. Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR. 2016. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 6:36769 http://dx.doi.org/10.1038/srep36769. [PubMed]
53. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P. 2000. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66:4112–4114 http://dx.doi.org/10.1128/AEM.66.9.4112-4114.2000. [PubMed]
54. Smid EJ, Kleerebezem M. 2014. Production of aroma compounds in lactic fermentations. Annu Rev Food Sci Technol 5:313–326 http://dx.doi.org/10.1146/annurev-food-030713-092339. [PubMed]
55. Bongers RS, Hoefnagel MH, Starrenburg MJ, Siemerink MA, Arends JG, Hugenholtz J, Kleerebezem M. 2003. IS 981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. J Bacteriol 185:4499–4507 http://dx.doi.org/10.1128/JB.185.15.4499-4507.2003. [PubMed]
56. Garrigues C, Loubiere P, Lindley ND, Cocaign-Bousquet M. 1997. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287 http://dx.doi.org/10.1128/jb.179.17.5282-5287.1997. [PubMed]
57. Solem C, Jensen PR. 2002. Modulation of gene expression made easy. Appl Environ Microbiol 68:2397–2403 http://dx.doi.org/10.1128/AEM.68.5.2397-2403.2002. [PubMed]
58. Jensen PR, Hammer K. 1998. Artificial promoters for metabolic optimization. Biotechnol Bioeng 58:191–195 http://dx.doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<191::AID-BIT11>3.0.CO;2-G.
59. Koebmann BJ, Andersen HW, Solem C, Jensen PR. 2002. Experimental determination of control of glycolysis in Lactococcus lactis. Antonie van Leeuwenhoek 82:237–248 http://dx.doi.org/10.1023/A:1020643918089. [PubMed]
60. Andersen HW, Solem C, Hammer K, Jensen PR. 2001. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. J Bacteriol 183:3458–3467 http://dx.doi.org/10.1128/JB.183.11.3458-3467.2001. [PubMed]
61. Andersen HW, Pedersen MB, Hammer K, Jensen PR. 2001. Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur J Biochem 268:6379–6389 http://dx.doi.org/10.1046/j.0014-2956.2001.02599.x. [PubMed]
62. Pancholi V, Fischetti VA. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity. J Exp Med 176:415–426 http://dx.doi.org/10.1084/jem.176.2.415. [PubMed]
63. Henderson B, Martin A. 2011. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491 http://dx.doi.org/10.1128/IAI.00179-11. [PubMed]
64. Oliveira L, Madureira P, Andrade EB, Bouaboud A, Morello E, Ferreira P, Poyart C, Trieu-Cuot P, Dramsi S. 2012. Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One 7:e29963 http://dx.doi.org/10.1371/journal.pone.0029963. [PubMed]
65. Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789–798 http://dx.doi.org/10.1046/j.1365-2958.1998.01111.x. [PubMed]
66. Pedersen MB, Koebmann BJ, Jensen PR, Nilsson D. 2002. Increasing acidification of nonreplicating Lactococcus lactis delta thyA mutants by incorporating ATPase activity. Appl Environ Microbiol 68:5249–5257 http://dx.doi.org/10.1128/AEM.68.11.5249-5257.2002. [PubMed]
67. Oliver S. 2002. Metabolism: demand management in cells. Nature 418:33–34 http://dx.doi.org/10.1038/418033a. [PubMed]
68. Koebmann BJ, Solem C, Pedersen MB, Nilsson D, Jensen PR. 2002. Expression of genes encoding F(1)-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis. Appl Environ Microbiol 68:4274–4282 http://dx.doi.org/10.1128/AEM.68.9.4274-4282.2002. [PubMed]
69. Dehli T, Solem C, Jensen PR. 2012. Tunable promoters in synthetic and systems biology. Subcell Biochem 64:181–201 http://dx.doi.org/10.1007/978-94-007-5055-5_9. [PubMed]
70. Richardson DJ. 2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571 http://dx.doi.org/10.1099/00221287-146-3-551. [PubMed]
71. Poole RK, Cook GM. 2000. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224 http://dx.doi.org/10.1016/S0065-2911(00)43005-5.
72. Rezaïki L, Cesselin B, Yamamoto Y, Vido K, van West E, Gaudu P, Gruss A. 2004. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 53:1331–1342 http://dx.doi.org/10.1111/j.1365-2958.2004.04217.x. [PubMed]
73. Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Møllgaard H, Gaudu P, Gruss A. 2008. Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190:4903–4911 http://dx.doi.org/10.1128/JB.00447-08. [PubMed]
74. Lechardeur D, Cesselin B, Liebl U, Vos MH, Fernandez A, Brun C, Gruss A, Gaudu P. 2012. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis. J Biol Chem 287:4752–4758 http://dx.doi.org/10.1074/jbc.M111.297531. [PubMed]
75. Gaudu P, Lamberet G, Poncet S, Gruss A. 2003. CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol Microbiol 50:183–192 http://dx.doi.org/10.1046/j.1365-2958.2003.03700.x. [PubMed]
76. Kaneko T, Takahashi M, Suzuki H. 1990. Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu. Appl Environ Microbiol 56:2644–2649.
77. Koebmann B, Blank LM, Solem C, Petranovic D, Nielsen LK, Jensen PR. 2008. Increased biomass yield of Lactococcus lactis during energetically limited growth and respiratory conditions. Biotechnol Appl Biochem 50:25–33 http://dx.doi.org/10.1042/BA20070132. [PubMed]
78. Rezaïki L, Lamberet G, Derré A, Gruss A, Gaudu P. 2008. Lactococcus lactis produces short-chain quinones that cross-feed group B Streptococcus to activate respiration growth. Mol Microbiol 67:947–957 http://dx.doi.org/10.1111/j.1365-2958.2007.06083.x. [PubMed]
79. D’mello R, Hill S, Poole RK. 1996. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763 http://dx.doi.org/10.1099/00221287-142-4-755. [PubMed]
80. Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, Gaudu P. 2005. Respiration metabolism of group B Streptococcus is activated by environmental haem and quinone and contributes to virulence. Mol Microbiol 56:525–534 http://dx.doi.org/10.1111/j.1365-2958.2005.04555.x. [PubMed]
81. Joubert L, Dagieu JB, Fernandez A, Derré-Bobillot A, Borezée-Durant E, Fleurot I, Gruss A, Lechardeur D. 2017. Visualization of the role of host heme on the virulence of the heme auxotroph Streptococcus agalactiae. Sci Rep 7:40435 http://dx.doi.org/10.1038/srep40435. [PubMed]
82. Joubert L, Derré-Bobillot A, Gaudu P, Gruss A, Lechardeur D. 2014. HrtBA and menaquinones control haem homeostasis in Lactococcus lactis. Mol Microbiol 93:823–833 http://dx.doi.org/10.1111/mmi.12705. [PubMed]
83. Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P. 2004. Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657 http://dx.doi.org/10.1128/JB.186.6.1648-1657.2004. [PubMed]
84. Galinier A, Deutscher J. 2017. Sophisticated regulation of transcriptional factors by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Mol Biol 429:773–789 http://dx.doi.org/10.1016/j.jmb.2017.02.006. [PubMed]
85. Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J. 2007. Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270 http://dx.doi.org/10.1128/JB.01768-06. [PubMed]
86. van der Meulen SB, de Jong A, Kok J. 2016. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism. RNA Biol 13:353–366 http://dx.doi.org/10.1080/15476286.2016.1146855. [PubMed]
87. Rosinski-Chupin I, Sauvage E, Sismeiro O, Villain A, Da Cunha V, Caliot ME, Dillies MA, Trieu-Cuot P, Bouloc P, Lartigue MF, Glaser P. 2015. Single nucleotide resolution RNA-seq uncovers new regulatory mechanisms in the opportunistic pathogen Streptococcus agalactiae. BMC Genomics 16:419 http://dx.doi.org/10.1186/s12864-015-1583-4. [PubMed]
88. Zomer AL, Buist G, Larsen R, Kok J, Kuipers OP. 2007. Time-resolved determination of the CcpA regulon of Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:1366–1381 http://dx.doi.org/10.1128/JB.01013-06. [PubMed]
89. Brooijmans RJ, de Vos WM, Hugenholtz J. 2009. Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75:3580–3585 http://dx.doi.org/10.1128/AEM.00147-09. [PubMed]
90. Stauff DL, Bagaley D, Torres VJ, Joyce R, Anderson KL, Kuechenmeister L, Dunman PM, Skaar EP. 2008. Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190:3588–3596 http://dx.doi.org/10.1128/JB.01921-07. [PubMed]
91. Sawai H, Yamanaka M, Sugimoto H, Shiro Y, Aono S. 2012. Structural basis for the transcriptional regulation of heme homeostasis in Lactococcus lactis. J Biol Chem 287:30755–30768 http://dx.doi.org/10.1074/jbc.M112.370916. [PubMed]
92. Stauff DL, Torres VJ, Skaar EP. 2007. Signaling and DNA-binding activities of the Staphylococcus aureus HssR-HssS two-component system required for heme sensing. J Biol Chem 282:26111–26121 http://dx.doi.org/10.1074/jbc.M703797200. [PubMed]
93. Tachon S, Brandsma JB, Yvon M. 2010. NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. Appl Environ Microbiol 76:1311–1319 http://dx.doi.org/10.1128/AEM.02120-09. [PubMed]
94. Yamamoto Y, Poyart C, Trieu-Cuot P, Lamberet G, Gruss A, Gaudu P. 2006. Roles of environmental heme, and menaquinone, in Streptococcus agalactiae. Biometals 19:205–210 http://dx.doi.org/10.1007/s10534-005-5419-6. [PubMed]
95. Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C. 2000. Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J Bacteriol 182:3863–3866 http://dx.doi.org/10.1128/JB.182.13.3863-3866.2000. [PubMed]
96. Huycke MM, Moore D, Joyce W, Wise P, Shepard L, Kotake Y, Gilmore MS. 2001. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol Microbiol 42:729–740 http://dx.doi.org/10.1046/j.1365-2958.2001.02638.x.
97. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70:187–221 http://dx.doi.org/10.1007/BF00395933. [PubMed]
98. Guillot A, Boulay M, Chambellon É, Gitton C, Monnet V, Juillard V. 2016. Mass spectrometry analysis of the extracellular peptidome of Lactococcus lactis: lines of evidence for the coexistence of extracellular protein hydrolysis and intracellular peptide excretion. J Proteome Res 15:3214–3224 http://dx.doi.org/10.1021/acs.jproteome.6b00424. [PubMed]
99. Mierau I, Kunji ER, Leenhouts KJ, Hellendoorn MA, Haandrikman AJ, Poolman B, Konings WN, Venema G, Kok J. 1996. Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol 178:2794–2803 http://dx.doi.org/10.1128/jb.178.10.2794-2803.1996. [PubMed]
100. Cocaign-Bousquet M, Garrigues C, Novak L, Lindley ND, Loubiere P. 1995. Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. J Appl Microbiol 79:108–116.
101. Martinussen J, Schallert J, Andersen B, Hammer K. 2001. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J Bacteriol 183:2785–2794 http://dx.doi.org/10.1128/JB.183.9.2785-2794.2001. [PubMed]
102. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 http://dx.doi.org/10.1101/gr.GR-1697R. [PubMed]
103. Jørgensen CM, Fields CJ, Chander P, Watt D, Burgner JW II, Smith JL, Switzer RL. 2008. pyr RNA binding to the Bacillus caldolyticus PyrR attenuation protein: characterization and regulation by uridine and guanosine nucleotides. FEBS J 275:655–670 http://dx.doi.org/10.1111/j.1742-4658.2007.06227.x. [PubMed]
104. Jendresen CB, Dimitrov P, Gautier L, Liu M, Martinussen J, Kilstrup M. 2014. Towards in vivo regulon kinetics: PurR activation by 5-phosphoribosyl-α-1-pyrophosphate during purine depletion in Lactococcus lactis. Microbiology 160:1321–1331 http://dx.doi.org/10.1099/mic.0.077933-0. [PubMed]
105. Fields CJ, Switzer RL. 2007. Regulation of pyr gene expression in Mycobacterium smegmatis by PyrR-dependent translational repression. J Bacteriol 189:6236–6245 http://dx.doi.org/10.1128/JB.00803-07. [PubMed]
106. Jendresen CB, Martinussen J, Kilstrup M. 2012. The PurR regulon in Lactococcus lactis: transcriptional regulation of the purine nucleotide metabolism and translational machinery. Microbiology 158:2026–2038 http://dx.doi.org/10.1099/mic.0.059576-0. [PubMed]
107. Kilstrup M, Martinussen J. 1998. A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. J Bacteriol 180:3907–3916.
108. Kilstrup M, Jessing SG, Wichmand-Jørgensen SB, Madsen M, Nilsson D. 1998. Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol 180:3900–3906.
109. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. 2016. Phosphoribosyl diphosphate (PRPP): biosynthesis, enzymology, utilization, and metabolic significance. Microbiol Mol Biol Rev 81:e00040-16. [PubMed]
110. Martinussen J, Hammer K. 1995. Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology 141:1883–1890 http://dx.doi.org/10.1099/13500872-141-8-1883. [PubMed]
111. Solem C, Defoor E, Jensen PR, Martinussen J. 2008. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 74:4772–4775 http://dx.doi.org/10.1128/AEM.00134-08. [PubMed]
112. Defoor E, Kryger MB, Martinussen J. 2007. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 153:3645–3659 http://dx.doi.org/10.1099/mic.0.2007/005959-0. [PubMed]
113. Martinussen J, Sørensen C, Jendresen CB, Kilstrup M. 2010. Two nucleoside transporters in Lactococcus lactis with different substrate specificities. Microbiology 156:3148–3157 http://dx.doi.org/10.1099/mic.0.039818-0. [PubMed]
114. Papadimitriou K, Alegría Á, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, Lemos JA, Linares DM, Ross P, Stanton C, Turroni F, van Sinderen D, Varmanen P, Ventura M, Zúñiga M, Tsakalidou E, Kok J. 2016. Stress physiology of lactic acid bacteria. Microbiol Mol Biol Rev 80:837–890 http://dx.doi.org/10.1128/MMBR.00076-15. [PubMed]
115. Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. 2017. The evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 41(Suppl 1) :S220–S243 http://dx.doi.org/10.1093/femsre/fux028. [PubMed]
116. Rallu F, Gruss A, Ehrlich SD, Maguin E. 2000. Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol 35:517–528 http://dx.doi.org/10.1046/j.1365-2958.2000.01711.x.
117. Duwat P, Ehrlich SD, Gruss A. 1999. Effects of metabolic flux on stress response pathways in Lactococcus lactis. Mol Microbiol 31:845–858 http://dx.doi.org/10.1046/j.1365-2958.1999.01222.x. [PubMed]
118. Solopova A, Formosa-Dague C, Courtin P, Furlan S, Veiga P, Péchoux C, Armalyte J, Sadauskas M, Kok J, Hols P, Dufrêne YF, Kuipers OP, Chapot-Chartier MP, Kulakauskas S. 2016. Regulation of cell wall plasticity by nucleotide metabolism in Lactococcus lactis. J Biol Chem 291:11323–11336 http://dx.doi.org/10.1074/jbc.M116.714303. [PubMed]
119. Carvalho SM, Kloosterman TG, Manzoor I, Caldas J, Vinga S, Martinussen J, Saraiva LM, Kuipers OP, Neves AR. 2018. Interplay between capsule expression and uracil metabolism in Streptococcus pneumoniae D39. Front Microbiol 9:321 http://dx.doi.org/10.3389/fmicb.2018.00321. [PubMed]
120. Tan YP, Giffard PM, Barry DG, Huston WM, Turner MS. 2008. Random mutagenesis identifies novel genes involved in the secretion of antimicrobial, cell wall-lytic enzymes by Lactococcus lactis. Appl Environ Microbiol 74:7490–7496 http://dx.doi.org/10.1128/AEM.00767-08. [PubMed]
121. Frees D, Varmanen P, Ingmer H. 2001. Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol 41:93–103 http://dx.doi.org/10.1046/j.1365-2958.2001.02503.x. [PubMed]
122. Nakano S, Küster-Schöck E, Grossman AD, Zuber P. 2003. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 100:13603–13608 http://dx.doi.org/10.1073/pnas.2235180100. [PubMed]
123. Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier MP, Erkelenz M, Mervelet P, Noirot P, Frees D, Kuipers OP, Kok J, Gruss A, Buist G, Kulakauskas S. 2007. SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 282:19342–19354 http://dx.doi.org/10.1074/jbc.M611308200. [PubMed]
124. Potrykus K, Cashel M. 2008. (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51 http://dx.doi.org/10.1146/annurev.micro.62.081307.162903. [PubMed]
125. Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. 2011. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217 http://dx.doi.org/10.1371/journal.ppat.1002217. [PubMed]
126. Smith WM, Pham TH, Lei L, Dou J, Soomro AH, Beatson SA, Dykes GA, Turner MS. 2012. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 ( gdpP) induced by high-temperature growth. Appl Environ Microbiol 78:7753–7759 http://dx.doi.org/10.1128/AEM.02316-12. [PubMed]
127. Zhu Y, Pham TH, Nhiep TH, Vu NM, Marcellin E, Chakrabortti A, Wang Y, Waanders J, Lo R, Huston WM, Bansal N, Nielsen LK, Liang ZX, Turner MS. 2016. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Mol Microbiol 99:1015–1027 http://dx.doi.org/10.1111/mmi.13281. [PubMed]
128. Tan E, Rao F, Pasunooti S, Pham TH, Soehano I, Turner MS, Liew CW, Lescar J, Pervushin K, Liang ZX. 2013. Solution structure of the PAS domain of a thermophilic YybT protein homolog reveals a potential ligand-binding site. J Biol Chem 288:11949–11959 http://dx.doi.org/10.1074/jbc.M112.437764. [PubMed]
129. Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L. 2017. Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A 114:E7226–E7235 http://dx.doi.org/10.1073/pnas.1704756114. [PubMed]
130. Sanders JW, Venema G, Kok J, Leenhouts K. 1998. Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene. Mol Gen Genet 257:681–685 http://dx.doi.org/10.1007/s004380050697.
131. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310 http://dx.doi.org/10.1046/j.1365-2958.1998.00676.x. [PubMed]
132. Poelarends GJ, Mazurkiewicz P, Konings WN. 2002. Multidrug transporters and antibiotic resistance in Lactococcus lactis. Biochim Biophys Acta 1555:1–7 http://dx.doi.org/10.1016/S0005-2728(02)00246-3.
133. Filipic B, Golic N, Jovcic B, Tolinacki M, Bay DC, Turner RJ, Antic-Stankovic J, Kojic M, Topisirovic L. 2013. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. Res Microbiol 164:46–54 http://dx.doi.org/10.1016/j.resmic.2012.09.003. [PubMed]
134. Fernandez A, Lechardeur D, Derré-Bobillot A, Couvé E, Gaudu P, Gruss A. 2010. Two coregulated efflux transporters modulate intracellular heme and protoporphyrin IX availability in Streptococcus agalactiae. PLoS Pathog 6:e1000860 http://dx.doi.org/10.1371/journal.ppat.1000860. [PubMed]
135. Oxaran V, Ledue-Clier F, Dieye Y, Herry JM, Péchoux C, Meylheuc T, Briandet R, Juillard V, Piard JC. 2012. Pilus biogenesis in Lactococcus lactis: molecular characterization and role in aggregation and biofilm formation. PLoS One 7:e50989 http://dx.doi.org/10.1371/journal.pone.0050989. [PubMed]
136. Meyrand M, Guillot A, Goin M, Furlan S, Armalyte J, Kulakauskas S, Cortes-Perez NG, Thomas G, Chat S, Péchoux C, Dupres V, Hols P, Dufrêne YF, Trugnan G, Chapot-Chartier MP. 2013. Surface proteome analysis of a natural isolate of Lactococcus lactis reveals the presence of pili able to bind human intestinal epithelial cells. Mol Cell Proteomics 12:3935–3947 http://dx.doi.org/10.1074/mcp.M113.029066. [PubMed]
137. Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Péchoux C, Hols P, Dufrêne YF, Kulakauskas S. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 285:10464–10471 http://dx.doi.org/10.1074/jbc.M109.082958. [PubMed]
138. Sadovskaya I, Vinogradov E, Courtin P, Armalyte J, Meyrand M, Giaouris E, Palussière S, Furlan S, Péchoux C, Ainsworth S, Mahony J, van Sinderen D, Kulakauskas S, Guérardel Y, Chapot-Chartier MP. 2017. Another brick in the wall: a rhamnan polysaccharide trapped inside peptidoglycan of Lactococcus lactis. MBio 8:e01303-17 http://dx.doi.org/10.1128/mBio.01303-17. [PubMed]
139. Lopez de Felipe F, Hugenholtz J. 1999. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol Lett 179:461–466 http://dx.doi.org/10.1111/j.1574-6968.1999.tb08763.x.
140. Duwat P, Sourice S, Ehrlich SD, Gruss A. 1995. recA gene involvement in oxidative and thermal stress in Lactococcus lactis. Dev Biol Stand 85:455–467. [PubMed]
141. Li Y, Hugenholtz J, Abee T, Molenaar D. 2003. Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol 69:5739–5745 http://dx.doi.org/10.1128/AEM.69.10.5739-5745.2003. [PubMed]
142. Rochat T, Miyoshi A, Gratadoux JJ, Duwat P, Sourice S, Azevedo V, Langella P. 2005. High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE. Microbiology 151:3011–3018 http://dx.doi.org/10.1099/mic.0.27861-0. [PubMed]
143. Rallu F, Gruss A, Maguin E. 1996. Lactococcus lactis and stress. Antonie van Leeuwenhoek 70:243–251 http://dx.doi.org/10.1007/BF00395935. [PubMed]
144. Mercier C, Durrieu C, Briandet R, Domakova E, Tremblay J, Buist G, Kulakauskas S. 2002. Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol Microbiol 46:235–243 http://dx.doi.org/10.1046/j.1365-2958.2002.03160.x. [PubMed]
145. Jones AL, Needham RH, Clancy A, Knoll KM, Rubens CE. 2003. Penicillin-binding proteins in Streptococcus agalactiae: a novel mechanism for evasion of immune clearance. Mol Microbiol 47:247–256 http://dx.doi.org/10.1046/j.1365-2958.2003.03297.x.
146. Jones AL, Mertz RH, Carl DJ, Rubens CE. 2007. A streptococcal penicillin-binding protein is critical for resisting innate airway defenses in the neonatal lung. J Immunol 179:3196–3202 http://dx.doi.org/10.4049/jimmunol.179.5.3196. [PubMed]
147. Ryssel M, Hviid AM, Dawish MS, Haaber J, Hammer K, Martinussen J, Kilstrup M. 2014. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity. Microbiology 160:2551–2559 http://dx.doi.org/10.1099/mic.0.082586-0. [PubMed]
148. Rochat T, Gratadoux JJ, Corthier G, Coqueran B, Nader-Macias ME, Gruss A, Langella P. 2005. Lactococcus lactis SpOx spontaneous mutants: a family of oxidative-stress-resistant dairy strains. Appl Environ Microbiol 71:2782–2788 http://dx.doi.org/10.1128/AEM.71.5.2782-2788.2005. [PubMed]
149. Ocaña VS, Pesce de Ruiz Holgado AA, Nader-Macías ME. 1999. Selection of vaginal H 2O 2-generating lactobacillus species for probiotic use. Curr Microbiol 38:279–284 http://dx.doi.org/10.1007/PL00006802. [PubMed]
150. Seki M, Iida K, Saito M, Nakayama H, Yoshida S. 2004. Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate. J Bacteriol 186:2046–2051 http://dx.doi.org/10.1128/JB.186.7.2046-2051.2004. [PubMed]
151. Cesselin B, Ali D, Gratadoux JJ, Gaudu P, Duwat P, Gruss A, El Karoui M. 2009. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155:2274–2281 http://dx.doi.org/10.1099/mic.0.027797-0. [PubMed]
152. Del Carmen S, de Moreno de LeBlanc A, Levit R, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JG. 2017. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 42:122–129 http://dx.doi.org/10.1016/j.intimp.2016.11.017. [PubMed]
153. Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefèvre F, Gratadoux JJ, Honvo-Hueto E, Chilmonczyk S, Blugeon S, Corthier G, Langella P, Bermúdez-Humarán LG. 2010. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol 144:35–41 http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.037. [PubMed]
154. Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. 2018. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 10:eaao2586 http://dx.doi.org/10.1126/scitranslmed.aao2586. [PubMed]
155. Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol 3:37–58 http://dx.doi.org/10.1146/annurev-food-022811-101255. [PubMed]
156. Franza T, Delavenne E, Derré-Bobillot A, Juillard V, Boulay M, Demey E, Vinh J, Lamberet G, Gaudu P. 2016. A partial metabolic pathway enables group B streptococcus to overcome quinone deficiency in a host bacterial community. Mol Microbiol 102:81–91 http://dx.doi.org/10.1111/mmi.13447. [PubMed]
157. Diep DB, Nes IF. 2002. Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets 3:107–122 http://dx.doi.org/10.2174/1389450024605409. [PubMed]
158. Mercier C, Domakova E, Tremblay J, Kulakauskas S. 2000. Effects of a muramidase on a mixed bacterial community. FEMS Microbiol Lett 187:47–52 http://dx.doi.org/10.1111/j.1574-6968.2000.tb09135.x. [PubMed]
159. Nouaille S, Rault L, Jeanson S, Loubière P, Le Loir Y, Even S. 2014. Contribution of Lactococcus lactis reducing properties to the downregulation of a major virulence regulator in Staphylococcus aureus, the agr system. Appl Environ Microbiol 80:7028–7035 http://dx.doi.org/10.1128/AEM.02287-14. [PubMed]
160. Assis BS, Germon P, Silva AM, Even S, Nicoli JR, Le Loir Y. 2015. Lactococcus lactis V7 inhibits the cell invasion of bovine mammary epithelial cells by Escherichia coli and Staphylococcus aureus. Benef Microbes 6:879–886 http://dx.doi.org/10.3920/BM2015.0019. [PubMed]
161. Mannam P, Jones KF, Geller BL. 2004. Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes. Infect Immun 72:3444–3450 http://dx.doi.org/10.1128/IAI.72.6.3444-3450.2004. [PubMed]
162. Bermúdez-Humarán LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, Saucedo-Cardenas O, Montes de Oca-Luna R, Le Loir Y. 2003. Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production. Infect Immun 71:1887–1896 http://dx.doi.org/10.1128/IAI.71.4.1887-1896.2003. [PubMed]
163. Repa A, Grangette C, Daniel C, Hochreiter R, Hoffmann-Sommergruber K, Thalhamer J, Kraft D, Breiteneder H, Mercenier A, Wiedermann U. 2003. Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine 22:87–95 http://dx.doi.org/10.1016/S0264-410X(03)00528-0.
164. Chatel JM, Nouaille S, Adel-Patient K, Le Loir Y, Boe H, Gruss A, Wal JM, Langella P. 2003. Characterization of a Lactococcus lactis strain that secretes a major epitope of bovine beta-lactoglobulin and evaluation of its immunogenicity in mice. Appl Environ Microbiol 69:6620–6627 http://dx.doi.org/10.1128/AEM.69.11.6620-6627.2003. [PubMed]
165. Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM. 2016. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 15:70 http://dx.doi.org/10.1186/s12934-016-0468-9. [PubMed]
166. Maguin E, Prévost H, Ehrlich SD, Gruss A. 1996. Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935 http://dx.doi.org/10.1128/jb.178.3.931-935.1996. [PubMed]
167. Biswas I, Gruss A, Ehrlich SD, Maguin E. 1993. High-efficiency gene inactivation and replacement system for Gram-positive bacteria. J Bacteriol 175:3628–3635 http://dx.doi.org/10.1128/jb.175.11.3628-3635.1993. [PubMed]
168. Leenhouts K, Buist G, Bolhuis A, ten Berge A, Kiel J, Mierau I, Dabrowska M, Venema G, Kok J. 1996. A general system for generating unlabelled gene replacements in bacterial chromosomes. Mol Gen Genet 253:217–224 http://dx.doi.org/10.1007/s004380050315.
169. Siegers K, Heinzmann S, Entian KD. 1996. Biosynthesis of lantibiotic nisin. Posttranslational modification of its prepeptide occurs at a multimeric membrane-associated lanthionine synthetase complex. J Biol Chem 271:12294–12301 http://dx.doi.org/10.1074/jbc.271.21.12294. [PubMed]
170. Siegers K, Entian KD. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol 61:1082–1089.
171. Horn N, Swindell S, Dodd H, Gasson M. 1991. Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol Gen Genet 228:129–135 http://dx.doi.org/10.1007/BF00282457.
172. Mierau I, Kleerebezem M. 2005. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717 http://dx.doi.org/10.1007/s00253-005-0107-6. [PubMed]
173. Zhu D, Liu F, Xu H, Bai Y, Zhang X, Saris PE, Qiao M. 2015. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8. FEMS Microbiol Lett 362:362 http://dx.doi.org/10.1093/femsle/fnv107. [PubMed]
174. Jensen PR, Hammer K. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87.
175. Ogaugwu CE, Cheng Q, Fieck A, Hurwitz I, Durvasula R. 2017. Characterization of a Lactococcus lactis promoter for heterologous protein production. Biotechnol Rep (Amst) 17:86–92 http://dx.doi.org/10.1016/j.btre.2017.11.010. [PubMed]
176. Brøndsted L, Hammer K. 1999. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl Environ Microbiol 65:752–758.
177. Stoll SM, Ginsburg DS, Calos MP. 2002. Phage TP901-1 site-specific integrase functions in human cells. J Bacteriol 184:3657–3663 http://dx.doi.org/10.1128/JB.184.13.3657-3663.2002. [PubMed]
178. Frazier CL, San Filippo J, Lambowitz AM, Mills DA. 2003. Genetic manipulation of Lactococcus lactis by using targeted group II introns: generation of stable insertions without selection. Appl Environ Microbiol 69:1121–1128 http://dx.doi.org/10.1128/AEM.69.2.1121-1128.2003. [PubMed]
179. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712 http://dx.doi.org/10.1126/science.1138140. [PubMed]
180. Millen AM, Horvath P, Boyaval P, Romero DA. 2012. Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis. PLoS One 7:e51663 http://dx.doi.org/10.1371/journal.pone.0051663. [PubMed]
181. Hidalgo-Cantabrana C, O’Flaherty S, Barrangou R. 2017. CRISPR-based engineering of next-generation lactic acid bacteria. Curr Opin Microbiol 37:79–87 http://dx.doi.org/10.1016/j.mib.2017.05.015. [PubMed]
182. Kunji ER, Slotboom DJ, Poolman B. 2003. Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108 http://dx.doi.org/10.1016/S0005-2736(02)00712-5.
183. Poquet I, Ehrlich SD, Gruss A. 1998. An export-specific reporter designed for Gram-positive bacteria: application to Lactococcus lactis. J Bacteriol 180:1904–1912.
184. Le Loir Y, Gruss A, Ehrlich SD, Langella P. 1994. Direct screening of recombinants in Gram-positive bacteria using the secreted staphylococcal nuclease as a reporter. J Bacteriol 176:5135–5139 http://dx.doi.org/10.1128/jb.176.16.5135-5139.1994. [PubMed]
185. Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P. 2001. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 67:4119–4127 http://dx.doi.org/10.1128/AEM.67.9.4119-4127.2001. [PubMed]
186. Le Loir Y, Gruss A, Ehrlich SD, Langella P. 1998. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 180:1895–1903.
187. Schneewind O, Mihaylova-Petkov D, Model P. 1993. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J 12:4803–4811 http://dx.doi.org/10.1002/j.1460-2075.1993.tb06169.x. [PubMed]
188. Navarre WW, Schneewind O. 1999. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229.
189. Fischetti VA, Pancholi V, Schneewind O. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol 4:1603–1605 http://dx.doi.org/10.1111/j.1365-2958.1990.tb02072.x. [PubMed]
190. Dieye Y, Oxaran V, Ledue-Clier F, Alkhalaf W, Buist G, Juillard V, Lee CW, Piard JC. 2010. Functionality of sortase A in Lactococcus lactis. Appl Environ Microbiol 76:7332–7337 http://dx.doi.org/10.1128/AEM.00928-10. [PubMed]
191. Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A. 1997. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol 179:3068–3072 http://dx.doi.org/10.1128/jb.179.9.3068-3072.1997. [PubMed]
192. Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, Venema G, Kuipers OP, Kok J. 2003. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 278:23874–23881 http://dx.doi.org/10.1074/jbc.M211055200. [PubMed]
193. Lindholm A, Smeds A, Palva A. 2004. Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis. Appl Environ Microbiol 70:2061–2071 http://dx.doi.org/10.1128/AEM.70.4.2061-2071.2004. [PubMed]
194. Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. 2000. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051 http://dx.doi.org/10.1046/j.1365-2958.2000.01757.x. [PubMed]
195. Buist G, Karsens H, Nauta A, van Sinderen D, Venema G, Kok J. 1997. Autolysis of Lactococcus lactis caused by induced overproduction of its major autolysin, AcmA. Appl Environ Microbiol 63:2722–2728.
196. Gasson MJ. 1996. Lytic systems in lactic acid bacteria and their bacteriophages. Antonie van Leeuwenhoek 70:147–159 http://dx.doi.org/10.1007/BF00395931. [PubMed]
197. Sanders JW, Venema G, Kok J. 1997. A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis. Appl Environ Microbiol 63:4877–4882.
198. de Ruyter PG, Kuipers OP, Meijer WC, de Vos WM. 1997. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979 http://dx.doi.org/10.1038/nbt1097-976. [PubMed]
199. Schuch R, Nelson D, Fischetti VA. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889 http://dx.doi.org/10.1038/nature01026. [PubMed]
200. Loeffler JM, Nelson D, Fischetti VA. 2001. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172 http://dx.doi.org/10.1126/science.1066869. [PubMed]
201. Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 98:4107–4112 http://dx.doi.org/10.1073/pnas.061038398. [PubMed]
202. Bidnenko E, Mercier C, Tremblay J, Tailliez P, Kulakauskas S. 1998. Estimation of the state of the bacterial cell wall by fluorescent in situ hybridization. Appl Environ Microbiol 64:3059–3062.
203. Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. 2003. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol 21:785–789 http://dx.doi.org/10.1038/nbt840. [PubMed]
204. Dickely F, Nilsson D, Hansen EB, Johansen E. 1995. Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 15:839–847 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02354.x. [PubMed]
205. Bermúdez-Humarán LG, Cortes-Perez NG, Le Loir Y, Alcocer-González JM, Tamez-Guerra RS, de Oca-Luna RM, Langella P. 2004. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol 53:427–433 http://dx.doi.org/10.1099/jmm.0.05472-0. [PubMed]
206. Norton PM, Brown HW, Wells JM, Macpherson AM, Wilson PW, Le Page RW. 1996. Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol 14:167–177 http://dx.doi.org/10.1111/j.1574-695X.1996.tb00284.x. [PubMed]
207. Grangette C, Müller-Alouf H, Hols P, Goudercourt D, Delcour J, Turneer M, Mercenier A. 2004. Enhanced mucosal delivery of antigen with cell wall mutants of lactic acid bacteria. Infect Immun 72:2731–2737 http://dx.doi.org/10.1128/IAI.72.5.2731-2737.2004. [PubMed]
208. Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK. 2015. Lactic acid bacteria: 20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99:2967–2977 http://dx.doi.org/10.1007/s00253-015-6498-0. [PubMed]
209. Rosales-Mendoza S, Angulo C, Meza B. 2016. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol 34:124–136 http://dx.doi.org/10.1016/j.tibtech.2015.11.007. [PubMed]
210. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database) :D141–D145 http://dx.doi.org/10.1093/nar/gkn879. [PubMed]
211. Lechardeur D, Cesselin B, Fernandez A, Lamberet G, Garrigues C, Pedersen M, Gaudu P, Gruss A. 2011. Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22:143–149 http://dx.doi.org/10.1016/j.copbio.2010.12.001. [PubMed]
212. Cesselin B, Garrigues C, Pedersen MB, Roussel C, Gruss A, Gaudu P. 2018. Task distribution between acetate and acetoin pathways to prolong growth in lactococcus lactis under respiration conditions. Appl Environ Microbiol 84. http://dx.doi.org/10.1128/AEM.01005-18. [PubMed]

Article metrics loading...



is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue metabolites, and novel applications in health and biotechnology.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The phylogenetic tree reveals similarities between lactococci and streptococcal pathogens. A phylogenetic tree built on 16S sequences was constructed directly on the Ribosomal Database interface ( 210 ). Branches with a bootstrap value below 60% are indicated with an asterisk. Respiration capacity (see text) is indicated by a red R. R indicates conditional respiration: for , , and spp., aerobic respiration is activated by exogenous heme. For all spp. and , respiration is activated by exogenous heme and menaquinone. Opportunist pathogens are indicated in bold. , ; , ; , ; , ; , ; , . This figure is based on reference 155 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Basics of fermentation. The NADH/NAD ratio is placed as a central determinant of carbon metabolic choice in ( 56 ). Sugar fermentation generates ATP, which is used for amino acid anabolism. In anaerobic conditions and rapid sugar flux, essentially all sugar is converted to lactate (homolactic fermentation) from pyruvate (glycolysis). When sugar flux is slower, in the presence of sugars other than glucose or lactose or in aerobic growth, mixed acid fermentation may occur. The latter conditions are characterized by lower NADH/NAD ratios than those found during homolactic fermentations. Besides NADH, glycolysis generates ATP and pyruvate from sugar degradation. Pyruvate dehydrogenase (Pdh) provides extra NADH from pyruvate when oxygen is present. Lactate dehydrogenase (Ldh) oxidizes NADH into NAD by conversion of pyruvate into lactate, thus maintaining glycolytic activity during fermentation. When oxygen is present, NADH can be oxidized by the cytoplasmic HO-forming NADH oxidase (NoxE), generating NAD. The ATPase expulses H at the expense of ATP to avoid acidification due to glycolysis. Pyruvate build-up leads to synthesis of acetate or the neutral acetoin and diacetyl (also see Fig. 4 ). This figure is modified from reference 155 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Basics of respiration. Refer to Fig. 2 for reactions 1, 2, and 5, which are common to fermentation and respiration (numbering is the same). The membrane respiration chain (RC) comprises an electron donor (putatively encoded by [ 45 , 89 ]), menaquinones (encoded by operon genes or provided exogenously [ 80 ]), and a terminal electron acceptor (the cytochrome oxidase encoded by [ 46 , 211 ]). Heme (red star) must be added exogenously (red arrow) to activate cytochrome oxidase. and lactobacilli with respiration capacity (see Fig. 1 legend) require menaquinones (schematic molecule with green center) and heme to activate respiration. Respiration chain activity results in H expulsion. The ATPase might import H, which generates ATP but with low efficiency ( 47 , 77 ). lacks a complete Krebs cycle. Thus, NADH, which is needed for the respiratory chain, is produced by carbon catabolism. Once phosphorylated, sugar is catabolized to pyruvate via glycolysis with production of ATP and NADH. As the respiration chain consumes NADH, Ldh activity decreases and pyruvic acid accumulates. Pyruvic acid dissociates to pyruvate and a proton, decreasing the internal pH. To avoid acidification, pyruvate/pyruvic acid is converted to acetolactate via acetolactate synthase (Als) and then to the neutral compound acetoin with production of CO. Diacetyl is produced by spontaneous oxidation of acetolactate. This pathway raises the pH and improves cell survival. Some LAB convert acetoin to 2,3-butanediol. Pyruvate may also be converted to acetyl-CoA via pyruvate dehydrogenase (Pdh), providing extra NADH and CO. Acetyl-CoA is further converted to acetate with production of ATP, promoting higher cell density. Acetate, acetoin, diacetyl, and 2,3-butanediol diffuse or are secreted into the medium. This figure is modified from reference 155 .

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Schematic representation of heme-sensing and HrtBA-mediated efflux, which regulate heme homeostasis. In and numerous commensal bacteria, heme is suggested to be taken up by gene products (green ovals) and/or by diffusion through membranes ( 75 , 82 ). Internalized heme binds to the HrtR repressor, which releases binding to the operon. Consequent activation of results in heme efflux ( 74 ). Red squares, heme.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Respiration metabolism increases the survival capacity of lactococci. When supplemented with hemin, aerobically grown lactococci can undergo respiration metabolism. As a result, cells stored at 4°C show markedly better survival compared to cells grown aerobically in the absence of heme or in static conditions. Improved survival was also observed when cells were maintained at 30°C. The experiment shown was performed by Karin Vido in the authors’ laboratory.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Bacterial root formation in semiliquid medium. Bacterial chains (here, an mutant of ; parental strain) diffuse slowly in a semiliquid (0.035% agar) medium. Bacterial dechained mutants diffuse more quickly to form roots. In this experiment, all the roots corresponded to independent mutants in the same gene, , encoding PBP1A (reproduced from Kulakauskas and coworkers [ 144 ]). Note that a similar strategy of semiliquid medium selection was used to uncover the existence of a cell-surface carbohydrate pellicle in ; the system is readily applied to other bacteria ( 137 ).

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

produces menaquinones that cross-feed the opportunist pathogen . Heme is present in the solid medium. A broad horizontal streak of an strain (NEM316) is shown. Spots of cultures of wild type (left) or that is defective for menaquinone synthesis (right) are deposited directly over the streaks. A stimulated growth zone is observed directly surrounding the wild-type strain but not the mutant. From ( 78 ).

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Respiring can improve survival of nonrespiring bacteria in coculture. Differentially marked wild-type and (nonrespiring mutant) strains were grown separately or together in coculture. Nonrespiring grew less well and showed poor survival when maintained in an aerobic medium with heme over a 3-day period. However, the respiring wild-type strain thrived. In contrast, the strain fared much better when grown in coculture with the wild-type strain, as determined by cell count determinations. From ( 72 ).

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018
Permissions and Reprints Request Permissions
Download as Powerpoint


Generic image for table

Characteristics of

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0035-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error