1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Biology of Oral Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: J. Abranches1, L. Zeng2, J. K. Kajfasz3, S. R. Palmer4, B. Chakraborty5, Z. T. Wen6, V. P. Richards7, L. J. Brady8, J. A. Lemos9
  • Editors: Vincent A. Fischetti10, Richard P. Novick11, Joseph J. Ferretti12, Daniel A. Portnoy13, Miriam Braunstein14, Julian I. Rood15
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 2: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 3: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 4: Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH; 5: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 6: Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA; 7: Department of Biological Sciences, Clemson University, Clemson, SC; 8: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 9: Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL; 10: The Rockefeller University, New York, NY; 11: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 12: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 13: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 14: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 15: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec October 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0042-2018
  • Received 16 August 2018 Accepted 05 September 2018 Published 18 October 2018
  • Jacqueline Abranches, [email protected]
image of Biology of Oral Streptococci
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Biology of Oral Streptococci, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0042-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0042-2018-2.gif
  • Abstract:

    Bacteria belonging to the genus are the first inhabitants of the oral cavity, which can be acquired right after birth and thus play an important role in the assembly of the oral microbiota. In this article, we discuss the different oral environments inhabited by streptococci and the species that occupy each niche. Special attention is given to the taxonomy of , because this genus is now divided into eight distinct groups, and oral species are found in six of them. Oral streptococci produce an arsenal of adhesive molecules that allow them to efficiently colonize different tissues in the mouth. Also, they have a remarkable ability to metabolize carbohydrates via fermentation, thereby generating acids as byproducts. Excessive acidification of the oral environment by aciduric species such as is directly associated with the development of dental caries. However, less acid-tolerant species such as and produce large amounts of alkali, displaying an important role in the acid-base physiology of the oral cavity. Another important characteristic of certain oral streptococci is their ability to generate hydrogen peroxide that can inhibit the growth of . Thus, oral streptococci can also be beneficial to the host by producing molecules that are inhibitory to pathogenic species. Lastly, commensal and pathogenic streptococci residing in the oral cavity can eventually gain access to the bloodstream and cause systemic infections such as infective endocarditis.

  • Citation: Abranches J, Zeng L, Kajfasz J, Palmer S, Chakraborty B, Wen Z, Richards V, Brady L, Lemos J. 2018. Biology of Oral Streptococci. Microbiol Spectrum 6(5):GPP3-0042-2018. doi:10.1128/microbiolspec.GPP3-0042-2018.

References

1. Wade WG. 2013. The oral microbiome in health and disease. Pharmacol Res 69:137–143 http://dx.doi.org/10.1016/j.phrs.2012.11.006. [PubMed]
2. Giannobile WV, Wong DT. 2011. Salivary diagnostics: oral health and beyond! J Dent Res 90:1153–1154 http://dx.doi.org/10.1177/0022034511420436. [PubMed]
3. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. 2013. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791 http://dx.doi.org/10.1128/CMR.00021-13. [PubMed]
4. Costalonga M, Herzberg MC. 2014. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett 162(2 Pt A) :22–38 http://dx.doi.org/10.1016/j.imlet.2014.08.017. [PubMed]
5. Sherman JM. 1937. The Streptococci. Bacteriol Rev 1:3–97. [PubMed]
6. Lancefield RC. 1933. A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57:571–595 http://dx.doi.org/10.1084/jem.57.4.571. [PubMed]
7. Beighton D, Hardie JM, Whiley RA. 1991. A scheme for the identification of viridans streptococci. J Med Microbiol 35:367–372 http://dx.doi.org/10.1099/00222615-35-6-367. [PubMed]
8. Facklam R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630 http://dx.doi.org/10.1128/CMR.15.4.613-630.2002. [PubMed]
9. Ludwig W, Seewaldt E, Kilpper-Bälz R, Schleifer KH, Magrum L, Woese CR, Fox GE, Stackebrandt E. 1985. The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol 131:543–551.
10. Schleifer KH, Kilpper-Balz R. 1984. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol 34:31–34 http://dx.doi.org/10.1099/00207713-34-1-31.
11. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. 1995. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45:406–408 http://dx.doi.org/10.1099/00207713-45-2-406. [PubMed]
12. Whiley RA, Beighton D. 1998. Current classification of the oral streptococci. Oral Microbiol Immunol 13:195–216 http://dx.doi.org/10.1111/j.1399-302X.1998.tb00698.x. [PubMed]
13. Richards VP, Palmer SR, Pavinski Bitar PD, Qin X, Weinstock GM, Highlander SK, Town CD, Burne RA, Stanhope MJ. 2014. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol Evol 6:741–753 http://dx.doi.org/10.1093/gbe/evu048. [PubMed]
14. Jensen A, Scholz CF, Kilian M. 2016. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus. Int J Syst Evol Microbiol 66:4803–4820 http://dx.doi.org/10.1099/ijsem.0.001433. [PubMed]
15. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C. 2012. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377 http://dx.doi.org/10.1371/journal.pbio.1001377. [PubMed]
16. Huse SM, Ye Y, Zhou Y, Fodor AA. 2012. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One 7:e34242 http://dx.doi.org/10.1371/journal.pone.0034242. [PubMed]
17. Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM. 2017. Second era of OMICS in caries research: moving past the phase of disillusionment. J Dent Res 96:733–740 http://dx.doi.org/10.1177/0022034517701902. [PubMed]
18. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732 http://dx.doi.org/10.1128/JCM.43.11.5721-5732.2005. [PubMed]
19. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. 2003. Distribution of selected bacterial species on intraoral surfaces. J Clin Periodontol 30:644–654 http://dx.doi.org/10.1034/j.1600-051X.2003.00376.x. [PubMed]
20. Peterson SN, Snesrud E, Liu J, Ong AC, Kilian M, Schork NJ, Bretz W. 2013. The dental plaque microbiome in health and disease. PLoS One 8:e58487 http://dx.doi.org/10.1371/journal.pone.0058487. [PubMed]
21. Jakubovics NS. 2015. Intermicrobial interactions as a driver for community composition and stratification of oral biofilms. J Mol Biol 427:3662–3675 http://dx.doi.org/10.1016/j.jmb.2015.09.022. [PubMed]
22. Rosan B, Lamont RJ. 2000. Dental plaque formation. Microbes Infect 2:1599–1607 http://dx.doi.org/10.1016/S1286-4579(00)01316-2.
23. Richards VP, Alvarez AJ, Luce AR, Bedenbaugh M, Mitchell ML, Burne RA, Nascimento MM. 2017. Microbiomes of site-specific dental plaques from children with different caries status. Infect Immun 85:85 http://dx.doi.org/10.1128/IAI.00106-17. [PubMed]
24. Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. 2012. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One 7:e47722 http://dx.doi.org/10.1371/journal.pone.0047722. [PubMed]
25. Tanner AC, Kent RL Jr, Holgerson PL, Hughes CV, Loo CY, Kanasi E, Chalmers NI, Johansson I. 2011. Microbiota of severe early childhood caries before and after therapy. J Dent Res 90:1298–1305 http://dx.doi.org/10.1177/0022034511421201. [PubMed]
26. Kianoush N, Adler CJ, Nguyen KA, Browne GV, Simonian M, Hunter N. 2014. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity. PLoS One 9:e92940 http://dx.doi.org/10.1371/journal.pone.0092940. [PubMed]
27. Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. 2012. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J 6:1176–1185 http://dx.doi.org/10.1038/ismej.2011.191. [PubMed]
28. Camelo-Castillo AJ, Mira A, Pico A, Nibali L, Henderson B, Donos N, Tomás I. 2015. Subgingival microbiota in health compared to periodontitis and the influence of smoking. Front Microbiol 6:119 http://dx.doi.org/10.3389/fmicb.2015.00119. [PubMed]
29. Zhang SM, Tian F, Huang QF, Zhao YF, Guo XK, Zhang FQ. 2011. Bacterial diversity of subgingival plaque in 6 healthy Chinese individuals. Exp Ther Med 2:1023–1029 http://dx.doi.org/10.3892/etm.2011.311. [PubMed]
30. Zheng H, Xu L, Wang Z, Li L, Zhang J, Zhang Q, Chen T, Lin J, Chen F. 2015. Subgingival microbiome in patients with healthy and ailing dental implants. Sci Rep 5:10948 http://dx.doi.org/10.1038/srep10948. [PubMed]
31. Shaddox LM, Huang H, Lin T, Hou W, Harrison PL, Aukhil I, Walker CB, Klepac-Ceraj V, Paster BJ. 2012. Microbiological characterization in children with aggressive periodontitis. J Dent Res 91:927–933 http://dx.doi.org/10.1177/0022034512456039. [PubMed]
32. Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, Strausbaugh LD, Gamonal J, Diaz PI. 2013. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J 7:1016–1025 http://dx.doi.org/10.1038/ismej.2012.174. [PubMed]
33. Colombo AP, Teles RP, Torres MC, Souto R, Rosalém WJ Jr, Mendes MC, Uzeda M. 2002. Subgingival microbiota of Brazilian subjects with untreated chronic periodontitis. J Periodontol 73:360–369 http://dx.doi.org/10.1902/jop.2002.73.4.360. [PubMed]
34. Rams TE, Degener JE, van Winkelhoff AJ. 2014. Antibiotic resistance in human chronic periodontitis microbiota. J Periodontol 85:160–169 http://dx.doi.org/10.1902/jop.2013.130142.
35. Nascimento MM, Gordan VV, Garvan CW, Browngardt CM, Burne RA. 2009. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 24:89–95 http://dx.doi.org/10.1111/j.1399-302X.2008.00477.x. [PubMed]
36. Palmer SR, Miller JH, Abranches J, Zeng L, Lefebure T, Richards VP, Lemos JA, Stanhope MJ, Burne RA. 2013. Phenotypic heterogeneity of genomically-diverse isolates of Streptococcus mutans. PLoS One 8:e61358 http://dx.doi.org/10.1371/journal.pone.0061358. [PubMed]
37. Duran-Pinedo AE, Frias-Lopez J. 2015. Beyond microbial community composition: functional activities of the oral microbiome in health and disease. Microbes Infect 17:505–516 http://dx.doi.org/10.1016/j.micinf.2015.03.014. [PubMed]
38. Willenborg J, Goethe R. 2016. Metabolic traits of pathogenic streptococci. FEBS Lett 590:3905–3919 http://dx.doi.org/10.1002/1873-3468.12317. [PubMed]
39. Boyd DA, Cvitkovitch DG, Hamilton IR. 1995. Sequence, expression, and function of the gene for the nonphosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase of Streptococcus mutans. J Bacteriol 177:2622–2627 http://dx.doi.org/10.1128/jb.177.10.2622-2627.1995. [PubMed]
40. Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594. [PubMed]
41. Vadeboncoeur C, Pelletier M. 1997. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19:187–207 http://dx.doi.org/10.1111/j.1574-6976.1997.tb00297.x. [PubMed]
42. Davidson AL, Chen J. 2004. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241–268 http://dx.doi.org/10.1146/annurev.biochem.73.011303.073626. [PubMed]
43. Buckwalter CM, King SJ. 2012. Pneumococcal carbohydrate transport: food for thought. Trends Microbiol 20:517–522 http://dx.doi.org/10.1016/j.tim.2012.08.008. [PubMed]
44. Cornejo OE, Lefébure T, Bitar PD, Lang P, Richards VP, Eilertson K, Do T, Beighton D, Zeng L, Ahn SJ, Burne RA, Siepel A, Bustamante CD, Stanhope MJ. 2013. Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans. Mol Biol Evol 30:881–893 http://dx.doi.org/10.1093/molbev/mss278. [PubMed]
45. Shelburne SA, Davenport MT, Keith DB, Musser JM. 2008. The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends Microbiol 16:318–325 http://dx.doi.org/10.1016/j.tim.2008.04.002. [PubMed]
46. Deutscher J. 2008. The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93 http://dx.doi.org/10.1016/j.mib.2008.02.007. [PubMed]
47. Titgemeyer F, Hillen W. 2002. Global control of sugar metabolism: a Gram-positive solution. Antonie van Leeuwenhoek 82:59–71 http://dx.doi.org/10.1023/A:1020628909429. [PubMed]
48. Abranches J, Nascimento MM, Zeng L, Browngardt CM, Wen ZT, Rivera MF, Burne RA. 2008. CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 190:2340–2349 http://dx.doi.org/10.1128/JB.01237-07. [PubMed]
49. Iyer R, Baliga NS, Camilli A. 2005. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 187:8340–8349 http://dx.doi.org/10.1128/JB.187.24.8340-8349.2005. [PubMed]
50. Shelburne SA III, Keith D, Horstmann N, Sumby P, Davenport MT, Graviss EA, Brennan RG, Musser JM. 2008. A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A 105:1698–1703 http://dx.doi.org/10.1073/pnas.0711767105. [PubMed]
51. Zeng L, Burne RA. 2010. Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans. Mol Microbiol 75:1145–1158 http://dx.doi.org/10.1111/j.1365-2958.2009.07029.x. [PubMed]
52. Hondorp ER, Hou SC, Hause LL, Gera K, Lee CE, McIver KS. 2013. PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol Microbiol 88:1176–1193 http://dx.doi.org/10.1111/mmi.12250. [PubMed]
53. Valdes KM, Sundar GS, Vega LA, Belew AT, Islam E, Binet R, El-Sayed NM, Le Breton Y, McIver KS. 2016. The fruRBA operon is necessary for group A streptococcal growth in fructose and for resistance to neutrophil killing during growth in whole human blood. Infect Immun 84:1016–1031 http://dx.doi.org/10.1128/IAI.01296-15. [PubMed]
54. Fleming E, Camilli A. 2016. ManLMN is a glucose transporter and central metabolic regulator in Streptococcus pneumoniae. Mol Microbiol 102:467–487 http://dx.doi.org/10.1111/mmi.13473. [PubMed]
55. Fleming E, Lazinski DW, Camilli A. 2015. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments. Mol Microbiol 97:360–380 http://dx.doi.org/10.1111/mmi.13033. [PubMed]
56. Burne RA. 1998. Oral streptococci... products of their environment. J Dent Res 77:445–452 http://dx.doi.org/10.1177/00220345980770030301. [PubMed]
57. Bowen WH, Koo H. 2011. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86 http://dx.doi.org/10.1159/000324598. [PubMed]
58. Kreth J, Merritt J, Qi F. 2009. Bacterial and host interactions of oral streptococci. DNA Cell Biol 28:397–403 http://dx.doi.org/10.1089/dna.2009.0868. [PubMed]
59. Scannapieco FA, Solomon L, Wadenya RO. 1994. Emergence in human dental plaque and host distribution of amylase-binding streptococci. J Dent Res 73:1627–1635 http://dx.doi.org/10.1177/00220345940730100701. [PubMed]
60. Kolenbrander PE, Palmer RJ Jr, Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI. 2006. Bacterial interactions and successions during plaque development. Periodontol 2000 42:47–79 http://dx.doi.org/10.1111/j.1600-0757.2006.00187.x. [PubMed]
61. Nobbs AH, Lamont RJ, Jenkinson HF. 2009. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450 http://dx.doi.org/10.1128/MMBR.00014-09. [PubMed]
62. Brady LJ, Maddocks SE, Larson MR, Forsgren N, Persson K, Deivanayagam CC, Jenkinson HF. 2010. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286 http://dx.doi.org/10.1111/j.1365-2958.2010.07212.x. [PubMed]
63. Demuth DR, Duan Y, Brooks W, Holmes AR, McNab R, Jenkinson HF. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol Microbiol 20:403–413 http://dx.doi.org/10.1111/j.1365-2958.1996.tb02627.x. [PubMed]
64. Hannig C, Hannig M, Kensche A, Carpenter G. 2017. The mucosal pellicle: an underestimated factor in oral physiology. Arch Oral Biol 80:144–152 http://dx.doi.org/10.1016/j.archoralbio.2017.04.001. [PubMed]
65. Bensing BA, Khedri Z, Deng L, Yu H, Prakobphol A, Fisher SJ, Chen X, Iverson TM, Varki A, Sullam PM. 2016. Novel aspects of sialoglycan recognition by the Siglec-like domains of streptococcal SRR glycoproteins. Glycobiology 26:1222–1234.
66. Bensing BA, López JA, Sullam PM. 2004. The Streptococcus gordonii surface proteins GspB and Hsa mediate binding to sialylated carbohydrate epitopes on the platelet membrane glycoprotein Ibalpha. Infect Immun 72:6528–6537 http://dx.doi.org/10.1128/IAI.72.11.6528-6537.2004. [PubMed]
67. Wu H, Bu S, Newell P, Chen Q, Fives-Taylor P. 2007. Two gene determinants are differentially involved in the biogenesis of Fap1 precursors in Streptococcus parasanguis. J Bacteriol 189:1390–1398 http://dx.doi.org/10.1128/JB.00836-06. [PubMed]
68. Singh AK, Woodiga SA, Grau MA, King SJ. 2017. Streptococcus oralis neuraminidase modulates adherence to multiple carbohydrates on platelets. Infect Immun 85:85 http://dx.doi.org/10.1128/IAI.00774-16. [PubMed]
69. Deng L, Bensing BA, Thamadilok S, Yu H, Lau K, Chen X, Ruhl S, Sullam PM, Varki A. 2014. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog 10:e1004540 http://dx.doi.org/10.1371/journal.ppat.1004540. [PubMed]
70. Handley PS, Correia FF, Russell K, Rosan B, DiRienzo JM. 2005. Association of a novel high molecular weight, serine-rich protein (SrpA) with fibril-mediated adhesion of the oral biofilm bacterium Streptococcus cristatus. Oral Microbiol Immunol 20:131–140 http://dx.doi.org/10.1111/j.1399-302X.2004.00190.x. [PubMed]
71. Couvigny B, Lapaque N, Rigottier-Gois L, Guillot A, Chat S, Meylheuc T, Kulakauskas S, Rohde M, Mistou MY, Renault P, Doré J, Briandet R, Serror P, Guédon E. 2017. Three glycosylated serine-rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, Streptococcus salivarius. Environ Microbiol 19:3579–3594 http://dx.doi.org/10.1111/1462-2920.13853. [PubMed]
72. Seepersaud R, Bensing BA, Yen YT, Sullam PM. 2012. The accessory Sec protein Asp2 modulates GlcNAc deposition onto the serine-rich repeat glycoprotein GspB. J Bacteriol 194:5564–5575 http://dx.doi.org/10.1128/JB.01000-12. [PubMed]
73. Seepersaud R, Sychantha D, Bensing BA, Clarke AJ, Sullam PM. 2017. O-acetylation of the serine-rich repeat glycoprotein GspB is coordinated with accessory Sec transport. PLoS Pathog 13:e1006558 http://dx.doi.org/10.1371/journal.ppat.1006558. [PubMed]
74. Zhou M, Wu H. 2009. Glycosylation and biogenesis of a family of serine-rich bacterial adhesins. Microbiology 155:317–327 http://dx.doi.org/10.1099/mic.0.025221-0. [PubMed]
75. Bensing BA, Sullam PM. 2002. An accessory sec locus of Streptococcus gordonii is required for export of the surface protein GspB and for normal levels of binding to human platelets. Mol Microbiol 44:1081–1094 http://dx.doi.org/10.1046/j.1365-2958.2002.02949.x. [PubMed]
76. McNab R, Holmes AR, Clarke JM, Tannock GW, Jenkinson HF. 1996. Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infect Immun 64:4204–4210. [PubMed]
77. Elliott D, Harrison E, Handley PS, Ford SK, Jaffray E, Mordan N, McNab R. 2003. Prevalence of Csh-like fibrillar surface proteins among mitis group oral streptococci. Oral Microbiol Immunol 18:114–120 http://dx.doi.org/10.1034/j.1399-302X.2003.00052.x. [PubMed]
78. Bowen WH. 2016. Dental caries: not just holes in teeth! A perspective. Mol Oral Microbiol 31:228–233 http://dx.doi.org/10.1111/omi.12132. [PubMed]
79. Tanzer JM, Thompson AM, Grant LP, Vickerman MM, Scannapieco FA. 2008. Streptococcus gordonii’s sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch Oral Biol 53:133–140 http://dx.doi.org/10.1016/j.archoralbio.2007.08.011. [PubMed]
80. Ricker A, Vickerman M, Dongari-Bagtzoglou A. 2014. Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans. J Oral Microbiol 6:6 http://dx.doi.org/10.3402/jom.v6.23419. [PubMed]
81. Yoshida Y, Konno H, Nagano K, Abiko Y, Nakamura Y, Tanaka Y, Yoshimura F. 2014. The influence of a glucosyltransferase, encoded by gtfP, on biofilm formation by Streptococcus sanguinis in a dual-species model. APMIS 122:951–960 http://dx.doi.org/10.1111/apm.12238. [PubMed]
82. Frandsen EV, Pedrazzoli V, Kilian M. 1991. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 6:129–133 http://dx.doi.org/10.1111/j.1399-302X.1991.tb00466.x. [PubMed]
83. Sullam PM, Costerton JW, Yamasaki R, Dazin PF, Mills J. 1993. Inhibition of platelet binding and aggregation by streptococcal exopolysaccharide. J Infect Dis 167:1123–1130 http://dx.doi.org/10.1093/infdis/167.5.1123.
84. Oetjen J, Fives-Taylor P, Froeliger EH. 2002. The divergently transcribed Streptococcus parasanguis virulence-associated fimA operon encoding an Mn(2+)-responsive metal transporter and pepO encoding a zinc metallopeptidase are not coordinately regulated. Infect Immun 70:5706–5714 http://dx.doi.org/10.1128/IAI.70.10.5706-5714.2002.
85. Burnette-Curley D, Wells V, Viscount H, Munro CL, Fenno JC, Fives-Taylor P, Macrina FL. 1995. FimA, a major virulence factor associated with Streptococcus parasanguis endocarditis. Infect Immun 63:4669–4674. [PubMed]
86. Bowen WH, Burne RA, Wu H, Koo H. 2017. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol 10.1016/j.tim.2017.09.008.
87. Marsh PD. 1994. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271 http://dx.doi.org/10.1177/08959374940080022001. [PubMed]
88. Burne RA, Marquis RE. 2000. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6 http://dx.doi.org/10.1111/j.1574-6968.2000.tb09393.x. [PubMed]
89. Van Wuyckhuyse BC, Perinpanayagam HE, Bevacqua D, Raubertas RF, Billings RJ, Bowen WH, Tabak LA. 1995. Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J Dent Res 74:686–690 http://dx.doi.org/10.1177/00220345950740021001. [PubMed]
90. Peterson S, Woodhead J, Crall J. 1985. Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition. Pediatr Res 19:796–799 http://dx.doi.org/10.1203/00006450-198508000-00003. [PubMed]
91. Epstein SR, Mandel I, Scopp IW. 1980. Salivary composition and calculus formation in patients undergoing hemodialysis. J Periodontol 51:336–338 http://dx.doi.org/10.1902/jop.1980.51.6.336. [PubMed]
92. He J, Hwang G, Liu Y, Gao L, Kilpatrick-Liverman L, Santarpia P, Zhou X, Koo H. 2016. l-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. J Bacteriol 198:2651–2661 http://dx.doi.org/10.1128/JB.00021-16. [PubMed]
93. Margolis HC, Duckworth JH, Moreno EC. 1988. Composition and buffer capacity of pooled starved plaque fluid from caries-free and caries-susceptible individuals. J Dent Res 67:1476–1482 http://dx.doi.org/10.1177/00220345880670120701. [PubMed]
94. Nascimento MM, Browngardt C, Xiaohui X, Klepac-Ceraj V, Paster BJ, Burne RA. 2014. The effect of arginine on oral biofilm communities. Mol Oral Microbiol 29:45–54 http://dx.doi.org/10.1111/omi.12044. [PubMed]
95. Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ. 2008. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417 http://dx.doi.org/10.1128/JCM.01410-07. [PubMed]
96. Herrero ER, Slomka V, Bernaerts K, Boon N, Hernandez-Sanabria E, Passoni BB, Quirynen M, Teughels W. 2016. Antimicrobial effects of commensal oral species are regulated by environmental factors. J Dent 47:23–33 http://dx.doi.org/10.1016/j.jdent.2016.02.007. [PubMed]
97. García-Mendoza A, Liébana J, Castillo AM, de la Higuera A, Piédrola G. 1993. Evaluation of the capacity of oral streptococci to produce hydrogen peroxide. J Med Microbiol 39:434–439 http://dx.doi.org/10.1099/00222615-39-6-434. [PubMed]
98. Kreth J, Merritt J, Shi W, Qi F. 2005. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203 http://dx.doi.org/10.1128/JB.187.21.7193-7203.2005. [PubMed]
99. Kreth J, Zhang Y, Herzberg MC. 2008. Streptococcal antagonism in oral biofilms: streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190:4632–4640 http://dx.doi.org/10.1128/JB.00276-08. [PubMed]
100. Liu L, Tong H, Dong X. 2012. Function of the pyruvate oxidase-lactate oxidase cascade in interspecies competition between Streptococcus oligofermentans and Streptococcus mutans. Appl Environ Microbiol 78:2120–2127 http://dx.doi.org/10.1128/AEM.07539-11. [PubMed]
101. Tong H, Chen W, Merritt J, Qi F, Shi W, Dong X. 2007. Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H 2O 2: a possible counteroffensive strategy for interspecies competition. Mol Microbiol 63:872–880 http://dx.doi.org/10.1111/j.1365-2958.2006.05546.x. [PubMed]
102. Boggs JM, South AH, Hughes AL. 2012. Phylogenetic analysis supports horizontal gene transfer of l-amino acid oxidase gene in Streptococcus oligofermentans. Infect Genet Evol 12:1005–1009 http://dx.doi.org/10.1016/j.meegid.2012.02.014. [PubMed]
103. Tong H, Chen W, Shi W, Qi F, Dong X. 2008. SO-LAAO, a novel l-amino acid oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus mutans by generating H 2O 2 from peptone. J Bacteriol 190:4716–4721 http://dx.doi.org/10.1128/JB.00363-08. [PubMed]
104. Zheng LY, Itzek A, Chen ZY, Kreth J. 2011. Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. Int J Oral Sci 3:82–89 http://dx.doi.org/10.4248/IJOS11030. [PubMed]
105. Huang X, Palmer SR, Ahn SJ, Richards VP, Williams ML, Nascimento MM, Burne RA. 2016. A highly arginolytic Streptococcus species that potently antagonizes Streptococcus mutans. Appl Environ Microbiol 82:2187–2201 http://dx.doi.org/10.1128/AEM.03887-15. [PubMed]
106. Wang BY, Kuramitsu HK. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl Environ Microbiol 71:354–362 http://dx.doi.org/10.1128/AEM.71.1.354-362.2005. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0042-2018
2018-10-18
2019-10-14

Abstract:

Bacteria belonging to the genus are the first inhabitants of the oral cavity, which can be acquired right after birth and thus play an important role in the assembly of the oral microbiota. In this article, we discuss the different oral environments inhabited by streptococci and the species that occupy each niche. Special attention is given to the taxonomy of , because this genus is now divided into eight distinct groups, and oral species are found in six of them. Oral streptococci produce an arsenal of adhesive molecules that allow them to efficiently colonize different tissues in the mouth. Also, they have a remarkable ability to metabolize carbohydrates via fermentation, thereby generating acids as byproducts. Excessive acidification of the oral environment by aciduric species such as is directly associated with the development of dental caries. However, less acid-tolerant species such as and produce large amounts of alkali, displaying an important role in the acid-base physiology of the oral cavity. Another important characteristic of certain oral streptococci is their ability to generate hydrogen peroxide that can inhibit the growth of . Thus, oral streptococci can also be beneficial to the host by producing molecules that are inhibitory to pathogenic species. Lastly, commensal and pathogenic streptococci residing in the oral cavity can eventually gain access to the bloodstream and cause systemic infections such as infective endocarditis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogeny of the indicated streptococcal species derived from a core set of 136 concatenated genes. Numbers on branches show bootstrap support for each relationship. The color shading indicates the eight major groups.

Source: microbiolspec October 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0042-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Simplified schematic of homolactic fermentation and heterolactic fermentation. While homolactic fermentation generates almost exclusively lactate, heterolactic fermentation generates formate, acetoin, ethanol, and reduced amounts of lactate.

Source: microbiolspec October 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0042-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Simplified schematic of the phosphoenolpyruvate sugar:phosphotransferase system. EI, enzyme I; EII, enzyme II P, phosphate; PEP, phosphoenolpyruvate.

Source: microbiolspec October 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0042-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error