1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Nonconventional Therapeutics against

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Caroline M. Grunenwald1,2, Monique R. Bennett3, Eric P. Skaar4,5
  • Editors: Vincent A. Fischetti6, Richard P. Novick7, Joseph J. Ferretti8, Daniel A. Portnoy9, Miriam Braunstein10, Julian I. Rood11
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; 2: Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232; 3: Graduate Program in Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232; 4: Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; 5: Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232; 6: The Rockefeller University, New York, NY; 7: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 8: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 9: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 10: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 11: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0047-2018
  • Received 24 April 2018 Accepted 25 April 2018 Published 13 December 2018
  • Eric P. Skaar, [email protected]
image of Nonconventional Therapeutics against <span class="jp-italic">Staphylococcus aureus</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Nonconventional Therapeutics against , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0047-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0047-2018-2.gif
  • Abstract:

    is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.

  • Citation: Grunenwald C, Bennett M, Skaar E. 2018. Nonconventional Therapeutics against . Microbiol Spectrum 6(6):GPP3-0047-2018. doi:10.1128/microbiolspec.GPP3-0047-2018.

References

1. Kirby WM. 1944. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99:452–453 http://dx.doi.org/10.1126/science.99.2579.452. [PubMed]
2. Barber M. 1961. Methicillin-resistant staphylococci. J Clin Pathol 14:385–393 http://dx.doi.org/10.1136/jcp.14.4.385. [PubMed]
3. Nannini E, Murray BE, Arias CA. 2010. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 10:516–521 http://dx.doi.org/10.1016/j.coph.2010.06.006. [PubMed]
4. Kallen AJ, Mu Y, Bulens S, Reingold A, Petit S, Gershman K, Ray SM, Harrison LH, Lynfield R, Dumyati G, Townes JM, Schaffner W, Patel PR, Fridkin SK, Active Bacterial Core Surveillance (ABCs) MRSA Investigators of the Emerging Infections Program. 2010. Health care-associated invasive MRSA infections, 2005-2008. JAMA 304:641–648 http://dx.doi.org/10.1001/jama.2010.1115. [PubMed]
5. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890 http://dx.doi.org/10.3201/eid0809.020063. [PubMed]
6. Ribeiro M, Monteiro FJ, Ferraz MP. 2012. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2:176–194 http://dx.doi.org/10.4161/biom.22905. [PubMed]
7. McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. 2014. Biofilms in periprosthetic orthopedic infections. Future Microbiol 9:987–1007 http://dx.doi.org/10.2217/fmb.14.64. [PubMed]
8. O’Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 http://dx.doi.org/10.1146/annurev.micro.54.1.49. [PubMed]
9. Martí M, Trotonda MP, Tormo-Más MA, Vergara-Irigaray M, Cheung AL, Lasa I, Penadés JR. 2010. Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12:55–64 http://dx.doi.org/10.1016/j.micinf.2009.10.005. [PubMed]
10. Lauderdale KJ, Malone CL, Boles BR, Morcuende J, Horswill AR. 2010. Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res 28:55–61. [PubMed]
11. Moormeier DE, Bose JL, Horswill AR, Bayles KW. 2014. Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio 5:e01341-14 http://dx.doi.org/10.1128/mBio.01341-14. [PubMed]
12. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. 2015. Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 13:1499–1516 http://dx.doi.org/10.1586/14787210.2015.1100533. [PubMed]
13. Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan JB. 2007. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother 51:2733–2740 http://dx.doi.org/10.1128/AAC.01249-06. [PubMed]
14. Izano EA, Amarante MA, Kher WB, Kaplan JB. 2008. Differential roles of poly- N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476 http://dx.doi.org/10.1128/AEM.02073-07. [PubMed]
15. Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. 2009. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination. J Antimicrob Chemother 64:88–93 http://dx.doi.org/10.1093/jac/dkp158. [PubMed]
16. Boles BR, Thoendel M, Roth AJ, Horswill AR. 2010. Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5:e10146 http://dx.doi.org/10.1371/journal.pone.0010146. [PubMed]
17. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S. 2007. Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132 http://dx.doi.org/10.1007/s00253-006-0790-y. [PubMed]
18. Fleming D, Chahin L, Rumbaugh K. 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother 61:e01998-16. [PubMed]
19. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF. 2003. Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407–3414 http://dx.doi.org/10.1128/AAC.47.11.3407-3414.2003. [PubMed]
20. Fernández-Hidalgo N, Almirante B. 2014. Antibiotic-lock therapy: a clinical viewpoint. Expert Rev Anti Infect Ther 12:117–129 http://dx.doi.org/10.1586/14787210.2014.863148. [PubMed]
21. Kokai-Kun JF, Chanturiya T, Mond JJ. 2009. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother 64:94–100 http://dx.doi.org/10.1093/jac/dkp145. [PubMed]
22. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332 http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011. [PubMed]
23. Jennings JA, Courtney HS, Haggard WO. 2012. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin Orthop Relat Res 470:2663–2670 http://dx.doi.org/10.1007/s11999-012-2388-2. [PubMed]
24. Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, Cheung GY, Otto M. 2012. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A 109:1281–1286 http://dx.doi.org/10.1073/pnas.1115006109. [PubMed]
25. Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M, van Strijp JA, Nijland R. 2013. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 15:1427–1437 http://dx.doi.org/10.1111/cmi.12130. [PubMed]
26. Peschel A, Otto M. 2013. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11:667–673 http://dx.doi.org/10.1038/nrmicro3110.
27. Richter K, Van den Driessche F, Coenye T. 2017. Innovative approaches to treat Staphylococcus aureus biofilm-related infections. Essays Biochem 61:61–70 http://dx.doi.org/10.1042/EBC20160056.
28. Cassat JE, Skaar EP. 2013. Iron in infection and immunity. Cell Host Microbe 13:509–519 http://dx.doi.org/10.1016/j.chom.2013.04.010. [PubMed]
29. DeLeon K, Balldin F, Watters C, Hamood A, Griswold J, Sreedharan S, Rumbaugh KP. 2009. Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrob Agents Chemother 53:1331–1337 http://dx.doi.org/10.1128/AAC.01330-08. [PubMed]
30. Garcia RA, Tennent DJ, Chang D, Wenke JC, Sanchez CJ Jr. 2016. An in vitro comparison of PMMA and calcium sulfate as carriers for the local delivery of gallium(III) nitrate to staphylococcal infected surgical sites. BioMed Res Int 2016:7078989 http://dx.doi.org/10.1155/2016/7078989. [PubMed]
31. Kelson AB, Carnevali M, Truong-Le V. 2013. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms. Curr Opin Pharmacol 13:707–716 http://dx.doi.org/10.1016/j.coph.2013.07.001. [PubMed]
32. Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O. 2004. Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628 http://dx.doi.org/10.1126/science.1099930. [PubMed]
33. Stojiljkovic I, Kumar V, Srinivasan N. 1999. Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429–442 http://dx.doi.org/10.1046/j.1365-2958.1999.01175.x. [PubMed]
34. Richter K, Ramezanpour M, Thomas N, Prestidge CA, Wormald PJ, Vreugde S. 2016. Mind “De GaPP”: in vitro efficacy of deferiprone and gallium-protoporphyrin against Staphylococcus aureus biofilms. Int Forum Allergy Rhinol 6:737–743 http://dx.doi.org/10.1002/alr.21735. [PubMed]
35. Richter K, Thomas N, Zhang G, Prestidge CA, Coenye T, Wormald PJ, Vreugde S. 2017. Deferiprone and gallium-protoporphyrin have the capacity to potentiate the activity of antibiotics in Staphylococcus aureus small colony variants. Front Cell Infect Microbiol 7:280 http://dx.doi.org/10.3389/fcimb.2017.00280. [PubMed]
36. Richter K, Thomas N, Claeys J, McGuane J, Prestidge CA, Coenye T, Wormald PJ, Vreugde S. 2017. A Topical hydrogel with deferiprone and gallium-protoporphyrin targets bacterial iron metabolism and has antibiofilm activity. Antimicrob Agents Chemother 61:e00481-17 http://dx.doi.org/10.1128/AAC.00481-17. [PubMed]
37. Chang D, Garcia RA, Akers KS, Mende K, Murray CK, Wenke JC, Sanchez CJ. 2016. Activity of gallium meso- and protoporphyrin IX against biofilms of multidrug-resistant Acinetobacter baumannii isolates. Pharmaceuticals (Basel) 9:E16 http://dx.doi.org/10.3390/ph9010016. [PubMed]
38. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. 2008. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182 http://dx.doi.org/10.1128/IAI.00318-08. [PubMed]
39. Hancock RE, Rozek A. 2002. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149 http://dx.doi.org/10.1111/j.1574-6968.2002.tb11000.x. [PubMed]
40. de Breij A, Riool M, Kwakman PH, de Boer L, Cordfunke RA, Drijfhout JW, Cohen O, Emanuel N, Zaat SA, Nibbering PH, Moriarty TF. 2016. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release 222:1–8 http://dx.doi.org/10.1016/j.jconrel.2015.12.003. [PubMed]
41. Peek FAW, Nell MJ, Brand R, Jansen-Werkhoven TM, van Hoogdalem EJ, Frijns JHM. 2009. Double-blind placebo-controlled study of the novel peptide drug P60.4AC in chronic middle ear infection, abstr L1-337. Abstr 49th Interscience Conf Antimicrobial Agents, San Francisco, CA, 12 to 15 September 2009.
42. de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH. 2018. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044 http://dx.doi.org/10.1126/scitranslmed.aan4044.
43. Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Silvestri C, Orlando F, Kamysz W, Licci A, Nadolski P, Della Vittoria A, Łukasiak J, Scalise G, Saba V. 2007. Pretreatment with the protegrin IB-367 affects Gram-positive biofilm and enhances the therapeutic efficacy of linezolid in animal models of central venous catheter infection. JPEN J Parenter Enteral Nutr 31:463–468 http://dx.doi.org/10.1177/0148607107031006463. [PubMed]
44. Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silvestri C, Licci A, Skerlavaj B, Zanetti M, Saba V, Scalise G. 2006. Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptdes 27:2104–2110 http://dx.doi.org/10.1016/j.peptides.2006.03.007. [PubMed]
45. Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, Sun H. 2012. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One 7:e47255 http://dx.doi.org/10.1371/journal.pone.0047255. [PubMed]
46. Kiedrowski MR, Horswill AR. 2011. New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci 1241:104–121 http://dx.doi.org/10.1111/j.1749-6632.2011.06281.x. [PubMed]
47. Chen M, Yu Q, Sun H. 2013. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14:18488–18501 http://dx.doi.org/10.3390/ijms140918488. [PubMed]
48. Olson PD, Kuechenmeister LJ, Anderson KL, Daily S, Beenken KE, Roux CM, Reniere ML, Lewis TL, Weiss WJ, Pulse M, Nguyen P, Simecka JW, Morrison JM, Sayood K, Asojo OA, Smeltzer MS, Skaar EP, Dunman PM. 2011. Small molecule inhibitors of Staphylococcus aureus RnpA alter cellular mRNA turnover, exhibit antimicrobial activity, and attenuate pathogenesis. PLoS Pathog 7:e1001287 http://dx.doi.org/10.1371/journal.ppat.1001287.
49. Boles BR, Horswill AR. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052 http://dx.doi.org/10.1371/journal.ppat.1000052. [PubMed]
50. Singh PK, Donovan DM, Kumar A. 2014. Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother 58:4621–4629 http://dx.doi.org/10.1128/AAC.00126-14. [PubMed]
51. Tan L, Li SR, Jiang B, Hu XM, Li S. 2018. Therapeutic targeting of the Staphylococcus aureus accessory gene regulator ( agr) system. Front Microbiol 9:55 http://dx.doi.org/10.3389/fmicb.2018.00055. [PubMed]
52. Le KY, Otto M. 2015. Quorum-sensing regulation in staphylococci: an overview. Front Microbiol 6:1174 http://dx.doi.org/10.3389/fmicb.2015.01174. [PubMed]
53. Khodaverdian V, Pesho M, Truitt B, Bollinger L, Patel P, Nithianantham S, Yu G, Delaney E, Jankowsky E, Shoham M. 2013. Discovery of antivirulence agents against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:3645–3652 http://dx.doi.org/10.1128/AAC.00269-13. [PubMed]
54. Yu G, Kuo D, Shoham M, Viswanathan R. 2014. Combinatorial synthesis and in vitro evaluation of a biaryl hydroxyketone library as antivirulence agents against MRSA. ACS Comb Sci 16:85–91 http://dx.doi.org/10.1021/co400142t. [PubMed]
55. Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M. 2015. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics. Antimicrob Agents Chemother 59:1512–1518 http://dx.doi.org/10.1128/AAC.04767-14. [PubMed]
56. Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, Sklar LA, Horswill AR, Hall PR, Gresham HD. 2014. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog 10:e1004174 http://dx.doi.org/10.1371/journal.ppat.1004174. [PubMed]
57. Daly SM, Elmore BO, Kavanaugh JS, Triplett KD, Figueroa M, Raja HA, El-Elimat T, Crosby HA, Femling JK, Cech NB, Horswill AR, Oberlies NH, Hall PR. 2015. ω-Hydroxyemodin limits staphylococcus aureus quorum sensing-mediated pathogenesis and inflammation. Antimicrob Agents Chemother 59:2223–2235 http://dx.doi.org/10.1128/AAC.04564-14. [PubMed]
58. Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH. 2014. Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77:1351–1358 http://dx.doi.org/10.1021/np5000704. [PubMed]
59. Todd DA, Parlet CP, Crosby HA, Malone CL, Heilmann KP, Horswill AR, Cech NB. 2017. Signal biosynthesis inhibition with ambuic acid as a strategy to target antibiotic-resistant infections. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.00263-17. [PubMed]
60. Brackman G, Breyne K, De Rycke R, Vermote A, Van Nieuwerburgh F, Meyer E, Van Calenbergh S, Coenye T. 2016. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus biofilms by affecting peptidoglycan biosynthesis and eDNA release. Sci Rep 6:20321 http://dx.doi.org/10.1038/srep20321. [PubMed]
61. Vermote A, Brackman G, Risseeuw MD, Vanhoutte B, Cos P, Van Hecke K, Breyne K, Meyer E, Coenye T, Van Calenbergh S. 2016. Hamamelitannin analogues that modulate quorum sensing as potentiators of antibiotics against Staphylococcus aureus. Angew Chem Int Ed Engl 55:6551–6555 http://dx.doi.org/10.1002/anie.201601973. [PubMed]
62. Vermote A, Brackman G, Risseeuw MDP, Coenye T, Van Calenbergh S. 2016. Design, synthesis and biological evaluation of novel hamamelitannin analogues as potentiators for vancomycin in the treatment of biofilm related Staphylococcus aureus infections. Bioorg Med Chem 24:4563–4575 http://dx.doi.org/10.1016/j.bmc.2016.07.058. [PubMed]
63. Jakobsen TH, Warming AN, Vejborg RM, Moscoso JA, Stegger M, Lorenzen F, Rybtke M, Andersen JB, Petersen R, Andersen PS, Nielsen TE, Tolker-Nielsen T, Filloux A, Ingmer H, Givskov M. 2017. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 7:9857 http://dx.doi.org/10.1038/s41598-017-09886-8. [PubMed]
64. Ferro TA, Araújo JM, Dos Santos Pinto BL, Dos Santos JS, Souza EB, da Silva BL, Colares VL, Novais TM, Filho CM, Struve C, Calixto JB, Monteiro-Neto V, da Silva LC, Fernandes ES. 2016. Cinnamaldehyde inhibits Staphylococcus aureus virulence factors and protects against infection in a Galleria mellonella model. Front Microbiol 7:2052 http://dx.doi.org/10.3389/fmicb.2016.02052. [PubMed]
65. Kavanaugh NL, Ribbeck K. 2012. Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Appl Environ Microbiol 78:4057–4061 http://dx.doi.org/10.1128/AEM.07499-11. [PubMed]
66. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. 2011. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661 http://dx.doi.org/10.1128/AAC.00045-11. [PubMed]
67. Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, Horswill AR, Bayles KW, Smeltzer MS. 2010. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One 5:e10790 http://dx.doi.org/10.1371/journal.pone.0010790. [PubMed]
68. Reyes D, Andrey DO, Monod A, Kelley WL, Zhang G, Cheung AL. 2011. Coordinated regulation by AgrA, SarA, and SarR to control agr expression in Staphylococcus aureus. J Bacteriol 193:6020–6031 http://dx.doi.org/10.1128/JB.05436-11. [PubMed]
69. Mrak LN, Zielinska AK, Beenken KE, Mrak IN, Atwood DN, Griffin LM, Lee CY, Smeltzer MS. 2012. saeRS and sarA act synergistically to repress protease production and promote biofilm formation in Staphylococcus aureus. PLoS One 7:e38453 http://dx.doi.org/10.1371/journal.pone.0038453. [PubMed]
70. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST. 2010. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86 http://dx.doi.org/10.2174/138920110790725401. [PubMed]
71. Chanishvili N. 2012. Phage therapy: history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res 83:3–40 http://dx.doi.org/10.1016/B978-0-12-394438-2.00001-3. [PubMed]
72. Wittebole X, De Roock S, Opal SM. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5:226–235 http://dx.doi.org/10.4161/viru.25991. [PubMed]
73. León M, Bastías R. 2015. Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6:343 http://dx.doi.org/10.3389/fmicb.2015.00343. [PubMed]
74. Malik U, Armstrong D, Ashworth M, Dregan A, L’Esperance V, McDonnell L, Molokhia M, White P. 2017. Association between prior antibiotic therapy and subsequent risk of community-acquired infections: a systematic review. J Antimicrob Chemother 73:287–296. [PubMed]
75. Kim S, Covington A, Pamer EG. 2017. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 279:90–105 http://dx.doi.org/10.1111/imr.12563. [PubMed]
76. Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis 187:613–624 http://dx.doi.org/10.1086/374001. [PubMed]
77. Wang Z, Zheng P, Ji W, Fu Q, Wang H, Yan Y, Sun J. 2016. SLPW: a virulent bacteriophage targeting methicillin-resistant Staphylococcus aureusin vitro and in vivo. Front Microbiol 7:934.
78. Kelly D, McAuliffe O, Ross RP, O’Mahony J, Coffey A. 2011. Development of a broad-host-range phage cocktail for biocontrol. Bioeng Bugs 2:31–37 http://dx.doi.org/10.4161/bbug.2.1.13657. [PubMed]
79. Pincus NB, Reckhow JD, Saleem D, Jammeh ML, Datta SK, Myles IA. 2015. Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One 10:e0124280 http://dx.doi.org/10.1371/journal.pone.0124280. [PubMed]
80. Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T, Ujihara T, Daibata M, Sugiura T, Matsuzaki S. 2014. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 16:512–517 http://dx.doi.org/10.1016/j.micinf.2014.02.011. [PubMed]
81. Wills QF, Kerrigan C, Soothill JS. 2005. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49:1220–1221 http://dx.doi.org/10.1128/AAC.49.3.1220-1221.2005. [PubMed]
82. Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. 2007. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51:2765–2773 http://dx.doi.org/10.1128/AAC.01513-06. [PubMed]
83. Gu J, Xu W, Lei L, Huang J, Feng X, Sun C, Du C, Zuo J, Li Y, Du T, Li L, Han W. 2011. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 49:111–117 http://dx.doi.org/10.1128/JCM.01144-10. [PubMed]
84. Chhibber S, Kaur T, Sandeep Kaur. 2013. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 8:e56022 http://dx.doi.org/10.1371/journal.pone.0056022. [PubMed]
85. Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ. 2013. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234 http://dx.doi.org/10.1097/PRS.0b013e31827e47cd. [PubMed]
86. Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M, São-José C, Cavaco-Silva P, Garcia M. 2014. In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63:1055–1065 http://dx.doi.org/10.1099/jmm.0.071753-0. [PubMed]
87. Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G. 2016. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res 143:87–94 http://dx.doi.org/10.4103/0971-5916.178615. [PubMed]
88. Chhibber S, Shukla A, Kaur S. 2017. Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.02146-16. [PubMed]
89. Kelly D, McAuliffe O, Ross RP, Coffey A. 2012. Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Lett Appl Microbiol 54:286–291 http://dx.doi.org/10.1111/j.1472-765X.2012.03205.x. [PubMed]
90. Gutiérrez D, Vandenheuvel D, Martínez B, Rodríguez A, Lavigne R, García P. 2015. Two phages, phiIPLA-RODI and phiIPLA-C1C, Lyse mono- and dual-species staphylococcal biofilms. Appl Environ Microbiol 81:3336–3348 http://dx.doi.org/10.1128/AEM.03560-14. [PubMed]
91. Lungren MP, Christensen D, Kankotia R, Falk I, Paxton BE, Kim CY. 2013. Bacteriophage K for reduction of Staphylococcus aureus biofilm on central venous catheter material. Bacteriophage 3:e26825 http://dx.doi.org/10.4161/bact.26825. [PubMed]
92. Drilling A, Morales S, Boase S, Jervis-Bardy J, James C, Jardeleza C, Tan NC, Cleland E, Speck P, Vreugde S, Wormald PJ. 2014. Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment of Staphylococcus aureus infection in a sheep model of sinusitis. Int Forum Allergy Rhinol 4:176–186 http://dx.doi.org/10.1002/alr.21270. [PubMed]
93. Drilling AJ, Ooi ML, Miljkovic D, James C, Speck P, Vreugde S, Clark J, Wormald PJ. 2017. Long-term safety of topical bacteriophage application to the frontal sinus region. Front Cell Infect Microbiol 7:49 http://dx.doi.org/10.3389/fcimb.2017.00049. [PubMed]
94. Lungren MP, Donlan RM, Kankotia R, Paxton BE, Falk I, Christensen D, Kim CY. 2014. Bacteriophage K antimicrobial-lock technique for treatment of Staphylococcus aureus central venous catheter-related infection: a leporine model efficacy analysis. J Vasc Interv Radiol 25:1627–1632 http://dx.doi.org/10.1016/j.jvir.2014.06.009. [PubMed]
95. Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. 2013. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am 95:117–125 http://dx.doi.org/10.2106/JBJS.K.01135. [PubMed]
96. Kaur S, Harjai K, Chhibber S. 2014. Bacteriophage mediated killing of Staphylococcus aureus in vitro on orthopaedic K wires in presence of linezolid prevents implant colonization. PLoS One 9:e90411 http://dx.doi.org/10.1371/journal.pone.0090411. [PubMed]
97. Kaur S, Harjai K, Chhibber S. 2016. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One 11:e0157626 http://dx.doi.org/10.1371/journal.pone.0157626. [PubMed]
98. Vaks L, Benhar I. 2011. Antibacterial application of engineered bacteriophage nanomedicines: antibody-targeted, chloramphenicol prodrug loaded bacteriophages for inhibiting the growth of Staphylococcus aureus bacteria. Methods Mol Biol 726:187–206 http://dx.doi.org/10.1007/978-1-61779-052-2_13. [PubMed]
99. Fairhead H. 2009. SASP gene delivery: a novel antibacterial approach. Drug News Perspect 22:197–203 http://dx.doi.org/10.1358/dnp.2009.22.4.1367708. [PubMed]
100. Yacoby I, Bar H, Benhar I. 2007. Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother 51:2156–2163 http://dx.doi.org/10.1128/AAC.00163-07. [PubMed]
101. Yacoby I, Shamis M, Bar H, Shabat D, Benhar I. 2006. Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob Agents Chemother 50:2087–2097 http://dx.doi.org/10.1128/AAC.00169-06. [PubMed]
102. Embleton ML, Nair SP, Heywood W, Menon DC, Cookson BD, Wilson M. 2005. Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 49:3690–3696 http://dx.doi.org/10.1128/AAC.49.9.3690-3696.2005. [PubMed]
103. Kaźmierczak Z, Górski A, Dąbrowska K. 2014. Facing antibiotic resistance: Staphylococcus aureus phages as a medical tool. Viruses 6:2551–2570 http://dx.doi.org/10.3390/v6072551. [PubMed]
104. Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay JP. 2007. European regulatory conundrum of phage therapy. Future Microbiol 2:485–491 http://dx.doi.org/10.2217/17460913.2.5.485. [PubMed]
105. Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E, Górski A. 2012. Clinical aspects of phage therapy. Adv Virus Res 83:73–121 http://dx.doi.org/10.1016/B978-0-12-394438-2.00003-7. [PubMed]
106. Sulakvelidze A, Alavidze Z, Morris JG Jr. 2001. Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659 http://dx.doi.org/10.1128/AAC.45.3.649-659.2001. [PubMed]
107. Kurlenda J, Grinholc M. 2012. Alternative therapies in Staphylococcus aureus diseases. Acta Biochim Pol 59:171–184. [PubMed]
108. Meladze GD, Mebuke MG, Chkhetiia NS, Kiknadze NI, Koguashvili GG. 1982. Efficacy of staphylococcal bacteriophage in the treatment of purulent lung and pleural diseases. Grudn Khir 1982:53–56.
109. Górski A, Miedzybrodzki R, Borysowski J, Weber-Dabrowska B, Lobocka M, Fortuna W, Letkiewicz S, Zimecki M, Filby G. 2009. Bacteriophage therapy for the treatment of infections. Curr Opin Investig Drugs 10:766–774. [PubMed]
110. Slopek S, Durlakowa I, Weber-Dabrowska B, Kucharewicz-Krukowska A, Dabrowski M, Bisikiewicz R. 1983. Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch Immunol Ther Exp (Warsz) 31:267–291.
111. Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783 http://dx.doi.org/10.2217/fmb.13.47. [PubMed]
112. O’Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005. Potential of the polyvalent anti- Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl Environ Microbiol 71:1836–1842 http://dx.doi.org/10.1128/AEM.71.4.1836-1842.2005. [PubMed]
113. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage treatment of human infections. Bacteriophage 1:66–85 http://dx.doi.org/10.4161/bact.1.2.15845. [PubMed]
114. Loc-Carrillo C, Abedon ST. 2011. Pros and cons of phage therapy. Bacteriophage 1:111–114 http://dx.doi.org/10.4161/bact.1.2.14590. [PubMed]
115. Schindler CA, Schuhardt VT. 1964. Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc Natl Acad Sci U S A 51:414–421 http://dx.doi.org/10.1073/pnas.51.3.414. [PubMed]
116. Climo MW, Patron RL, Goldstein BP, Archer GL. 1998. Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob Agents Chemother 42:1355–1360 http://dx.doi.org/10.1128/AAC.42.6.1355. [PubMed]
117. Mohamed MF, Hamed MI, Panitch A, Seleem MN. 2014. Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob Agents Chemother 58:4113–4122 http://dx.doi.org/10.1128/AAC.02578-14. [PubMed]
118. Patron RL, Climo MW, Goldstein BP, Archer GL. 1999. Lysostaphin treatment of experimental aortic valve endocarditis caused by a Staphylococcus aureus isolate with reduced susceptibility to vancomycin. Antimicrob Agents Chemother 43:1754–1755 http://dx.doi.org/10.1128/AAC.43.7.1754. [PubMed]
119. Kumar JK. 2008. Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80:555–561 http://dx.doi.org/10.1007/s00253-008-1579-y. [PubMed]
120. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. 2012. Endolysins as antimicrobials. Adv Virus Res 83:299–365 http://dx.doi.org/10.1016/B978-0-12-394438-2.00007-4. [PubMed]
121. Dajcs JJ, Hume EB, Moreau JM, Caballero AR, Cannon BM, O’Callaghan RJ. 2000. Lysostaphin treatment of methicillin-resistant Staphylococcus aureus keratitis in the rabbit. Invest Ophthalmol Vis Sci 41:1432–1437. [PubMed]
122. Windolf CD, Lögters T, Scholz M, Windolf J, Flohé S. 2014. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS One 9:e115940 http://dx.doi.org/10.1371/journal.pone.0115940. [PubMed]
123. Belyansky I, Tsirline VB, Martin TR, Klima DA, Heath J, Lincourt AE, Satishkumar R, Vertegel A, Heniford BT. 2011. The addition of lysostaphin dramatically improves survival, protects porcine biomesh from infection, and improves graft tensile shear strength. J Surg Res 171:409–415 http://dx.doi.org/10.1016/j.jss.2011.04.014. [PubMed]
124. Quickel KE Jr, Selden R, Caldwell JR, Nora NF, Schaffner W. 1971. Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus. Appl Microbiol 22:446–450. [PubMed]
125. Wittekind M, Schuch R. 2016. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr Opin Microbiol 33:18–24 http://dx.doi.org/10.1016/j.mib.2016.05.006. [PubMed]
126. Fischetti VA. 2010. Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362 http://dx.doi.org/10.1016/j.ijmm.2010.04.002. [PubMed]
127. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171 http://dx.doi.org/10.2217/fmb.12.97. [PubMed]
128. Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. 2017. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31:e00071-17 http://dx.doi.org/10.1128/CMR.00071-17. [PubMed]
129. Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, Becker SC, Foster-Frey J, Donovan DM. 2015. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother 70:1453–1465 http://dx.doi.org/10.1093/jac/dku552. [PubMed]
130. Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM. 2009. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 443:32–41 http://dx.doi.org/10.1016/j.gene.2009.04.023. [PubMed]
131. Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. 2012. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78:2297–2305 http://dx.doi.org/10.1128/AEM.07050-11. [PubMed]
132. Hathaway H, Alves DR, Bean J, Esteban PP, Ouadi K, Sutton JM, Jenkins AT. 2015. Poly(N-isopropylacrylamide-co-allylamine) (PNIPAM-co-ALA) nanospheres for the thermally triggered release of bacteriophage K. Eur J Pharm Biopharm 96:437–441 http://dx.doi.org/10.1016/j.ejpb.2015.09.013. [PubMed]
133. Becker SC, Foster-Frey J, Donovan DM. 2008. The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191 http://dx.doi.org/10.1111/j.1574-6968.2008.01308.x. [PubMed]
134. Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, Yagyu K, Muraoka A, Sugai M, Hiramatsu K, Honke K, Matsuzaki S. 2007. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 196:1237–1247 http://dx.doi.org/10.1086/521305. [PubMed]
135. O’Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. 2005. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 187:7161–7164 http://dx.doi.org/10.1128/JB.187.20.7161-7164.2005. [PubMed]
136. Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. 2010. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:1603–1612 http://dx.doi.org/10.1128/AAC.01625-09. [PubMed]
137. Fenton M, Casey PG, Hill C, Gahan CG, Ross RP, McAuliffe O, O’Mahony J, Maher F, Coffey A. 2010. The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. Bioeng Bugs 1:404–407 http://dx.doi.org/10.4161/bbug.1.6.13422. [PubMed]
138. Jun SY, Jung GM, Yoon SJ, Oh MD, Choi YJ, Lee WJ, Kong JC, Seol JG, Kang SH. 2013. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents 41:156–161 http://dx.doi.org/10.1016/j.ijantimicag.2012.10.011.
139. Yang H, Zhang Y, Yu J, Huang Y, Zhang XE, Wei H. 2014. Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureusin vitro and in vivo. Antimicrob Agents Chemother 58:536–542 http://dx.doi.org/10.1128/AAC.01793-13. [PubMed]
140. Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA. 2011. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 55:738–744 http://dx.doi.org/10.1128/AAC.00890-10. [PubMed]
141. Chopra S, Harjai K, Chhibber S. 2016. Potential of combination therapy of endolysin MR-10 and minocycline in treating MRSA induced systemic and localized burn wound infections in mice. Int J Med Microbiol 306:707–716 http://dx.doi.org/10.1016/j.ijmm.2016.08.003. [PubMed]
142. Hathaway H, Ajuebor J, Stephens L, Coffey A, Potter U, Sutton JM, Jenkins AT. 2017. Thermally triggered release of the bacteriophage endolysin CHAP K and the bacteriocin lysostaphin for the control of methicillin resistant Staphylococcus aureus (MRSA). J Control Release 245:108–115 http://dx.doi.org/10.1016/j.jconrel.2016.11.030. [PubMed]
143. Filatova LY, Donovan DM, Becker SC, Lebedev DN, Priyma AD, Koudriachova HV, Kabanov AV, Klyachko NL. 2013. Physicochemical characterization of the staphylolytic LysK enzyme in complexes with polycationic polymers as a potent antimicrobial. Biochimie 95:1689–1696 http://dx.doi.org/10.1016/j.biochi.2013.04.013. [PubMed]
144. Jun SY, Jung GM, Son JS, Yoon SJ, Choi YJ, Kang SH. 2011. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother 55:1764–1767 http://dx.doi.org/10.1128/AAC.01097-10. [PubMed]
145. Jun SY, Jung GM, Yoon SJ, Choi YJ, Koh WS, Moon KS, Kang SH. 2014. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother 58:2084–2088 http://dx.doi.org/10.1128/AAC.02232-13. [PubMed]
146. Jun SY, Jung GM, Yoon SJ, Youm SY, Han HY, Lee JH, Kang SH. 2016. Pharmacokinetics of the phage endolysin-based candidate drug SAL200 in monkeys and its appropriate intravenous dosing period. Clin Exp Pharmacol Physiol 43:1013–1016 http://dx.doi.org/10.1111/1440-1681.12613. [PubMed]
147. Jun SY, Jang IJ, Yoon S, Jang K, Yu KS, Cho JY, Seong MW, Jung GM, Yoon SJ, Kang SH. 2017. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother 61:61 http://dx.doi.org/10.1128/AAC.02629-16. [PubMed]
148. Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. 2013. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:2743–2750 http://dx.doi.org/10.1128/AAC.02526-12. [PubMed]
149. ClinicalTrials.gov. 2017. Safety, efficacy and pharmcokinetics of CF-301 vs. placebo in addition to antibacterial therapy for treatment of S. aureus bacteremia. https://clinicaltrials.gov/ct2/show/NCT03163446.
150. Schuch R, Lee HM, Schneider BC, Sauve KL, Law C, Khan BK, Rotolo JA, Horiuchi Y, Couto DE, Raz A, Fischetti VA, Huang DB, Nowinski RC, Wittekind M. 2014. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 209:1469–1478 http://dx.doi.org/10.1093/infdis/jit637. [PubMed]
151. Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. 2017. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother 61:e02666-16 http://dx.doi.org/10.1128/AAC.02666-16. [PubMed]
152. Sorek R, Lawrence CM, Wiedenheft B. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu Rev Biochem 82:237–266 http://dx.doi.org/10.1146/annurev-biochem-072911-172315. [PubMed]
153. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712 http://dx.doi.org/10.1126/science.1138140. [PubMed]
154. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607 http://dx.doi.org/10.1038/nature09886. [PubMed]
155. Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL. 2014. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5:e00928-13 http://dx.doi.org/10.1128/mBio.00928-13. [PubMed]
156. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239 http://dx.doi.org/10.1038/nbt.2508. [PubMed]
157. Citorik RJ, Mimee M, Lu TK. 2014. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145 http://dx.doi.org/10.1038/nbt.3011. [PubMed]
158. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150 http://dx.doi.org/10.1038/nbt.3043. [PubMed]
159. Kang YK, Kwon K, Ryu JS, Lee HN, Park C, Chung HJ. 2017. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug Chem 28:957–967 http://dx.doi.org/10.1021/acs.bioconjchem.6b00676. [PubMed]
160. Luo ML, Leenay RT, Beisel CL. 2016. Current and future prospects for CRISPR-based tools in bacteria. Biotechnol Bioeng 113:930–943 http://dx.doi.org/10.1002/bit.25851. [PubMed]
161. Park MK, Chin BA. 2016. Novel approach of a phage-based magnetoelastic biosensor for the detection of Salmonella enterica serovar Typhimurium in soil. J Microbiol Biotechnol 26:2051–2059 http://dx.doi.org/10.4014/jmb.1609.09062. [PubMed]
162. Hamblin MR. 2016. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 33:67–73 http://dx.doi.org/10.1016/j.mib.2016.06.008. [PubMed]
163. Wan MT, Lin JY. 2014. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 7:145–163. [PubMed]
164. Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. 2013. Antimicrobial strategies centered around reactive oxygen species: bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37:955–989 http://dx.doi.org/10.1111/1574-6976.12026.
165. Romanova NA, Brovko LY, Moore L, Pometun E, Savitsky AP, Ugarova NN, Griffiths MW. 2003. Assessment of photodynamic destruction of Escherichia coli O157:H7 and Listeria monocytogenes by using ATP bioluminescence. Appl Environ Microbiol 69:6393–6398 http://dx.doi.org/10.1128/AEM.69.11.6393-6398.2003. [PubMed]
166. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P. 2008. Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother 52:299–305 http://dx.doi.org/10.1128/AAC.00988-07. [PubMed]
167. Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W, Chopra I. 2009. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother 64:735–740 http://dx.doi.org/10.1093/jac/dkp299. [PubMed]
168. Gao Y, Mai B, Wang A, Li M, Wang X, Zhang K, Liu Q, Wei S, Wang P. 2018. Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of Staphylococcus aureus. Photodiagnosis Photodyn Ther 21:316–326. [PubMed]
169. Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, Cavaleiro JA, Cunha A, Gomes NC, Alves E, Almeida A. 2010. Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar Drugs 8:91–105 http://dx.doi.org/10.3390/md8010091. [PubMed]
170. Maisch T. 2015. Resistance in antimicrobial photodynamic inactivation of bacteria. Photochem Photobiol Sci 14:1518–1526 http://dx.doi.org/10.1039/C5PP00037H. [PubMed]
171. Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G. 2010. In vitro resistance selection studies of RLP068/Cl, a new Zn(II) phthalocyanine suitable for antimicrobial photodynamic therapy. Antimicrob Agents Chemother 54:637–642 http://dx.doi.org/10.1128/AAC.00603-09. [PubMed]
172. Fu XJ, Fang Y, Yao M. 2013. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. BioMed Res Int 2013:159157 http://dx.doi.org/10.1155/2013/159157. [PubMed]
173. Sharma SK, Dai T, Kharkwal GB, Huang YY, Huang L, De Arce VJ, Tegos GP, Hamblin MR. 2011. Drug discovery of antimicrobial photosensitizers using animal models. Curr Pharm Des 17:1303–1319 http://dx.doi.org/10.2174/138161211795703735. [PubMed]
174. Maisch T. 2009. A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev Med Chem 9:974–983 http://dx.doi.org/10.2174/138955709788681582. [PubMed]
175. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. 2011. Photodynamic therapy for infections: clinical applications. Lasers Surg Med 43:755–767 http://dx.doi.org/10.1002/lsm.21080. [PubMed]
176. Grinholc M, Szramka B, Olender K, Graczyk A. 2007. Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta Biochim Pol 54:665–670. [PubMed]
177. Grinholc M, Szramka B, Kurlenda J, Graczyk A, Bielawski KP. 2008. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J Photochem Photobiol B 90:57–63 http://dx.doi.org/10.1016/j.jphotobiol.2007.11.002. [PubMed]
178. Grinholc M, Kawiak A, Kurlenda J, Graczyk A, Bielawski KP. 2008. Photodynamic effect of protoporphyrin diarginate (PPArg2) on methicillin-resistant Staphylococcus aureus and human dermal fibroblasts. Acta Biochim Pol 55:85–90. [PubMed]
179. Peloi LS, Soares RR, Biondo CE, Souza VR, Hioka N, Kimura E. 2008. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci 33:231–237 http://dx.doi.org/10.1007/s12038-008-0040-9. [PubMed]
180. Abouelfetouh AA, Nafee NA, Moussa NK. 2016. The degree of virulence does not necessarily affect MRSA biofilm strength and response to photodynamic therapy. Microb Pathog 91:54–60 http://dx.doi.org/10.1016/j.micpath.2015.11.012. [PubMed]
181. Griffiths MA, Wren BW, Wilson M. 1997. Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. J Antimicrob Chemother 40:873–876 http://dx.doi.org/10.1093/jac/40.6.873. [PubMed]
182. Hajim KI, Salih DS, Rassam YZ. 2010. Laser light combined with a photosensitizer may eliminate methicillin-resistant strains of Staphylococcus aureus. Lasers Med Sci 25:743–748 http://dx.doi.org/10.1007/s10103-010-0803-z. [PubMed]
183. Sangha KK, Kumar BV, Agrawal RK, Deka D, Verma R. 2014. Proteomic characterization of lytic bacteriophages of Staphylococcus aureus isolated from sewage affluent of India. Int Sch Res Notices 2014:265298 http://dx.doi.org/10.1155/2014/265298.
184. Almeida PP, Pereira IS, Rodrigues KB, Leal LS, Marques AS, Rosa LP, da Silva FC, da Silva RAA. 2017. Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers Med Sci 32:1337–1342 http://dx.doi.org/10.1007/s10103-017-2247-1. [PubMed]
185. Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, Xu C, Wang P. 2017. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine 12:5915–5931 http://dx.doi.org/10.2147/IJN.S138185. [PubMed]
186. Topaloglu N, Güney M, Yuksel S, Gülsoy M. 2015. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models. J Biomed Opt 20:28003 http://dx.doi.org/10.1117/1.JBO.20.2.028003. [PubMed]
187. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR. 2010. Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42:38–44 http://dx.doi.org/10.1002/lsm.20887. [PubMed]
188. Vecchio D, Dai T, Huang L, Fantetti L, Roncucci G, Hamblin MR. 2013. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion. J Biophotonics 6:733–742 http://dx.doi.org/10.1002/jbio.201200121. [PubMed]
189. Li S, Cui S, Yin D, Zhu Q, Ma Y, Qian Z, Gu Y. 2017. Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue. Nanoscale 9:3912–3924 http://dx.doi.org/10.1039/C6NR07188K. [PubMed]
190. Dos Reis JA Jr, Dos Santos JN, Barreto BS, de Assis PN, Almeida PF, Pinheiro AL. 2015. Photodynamic antimicrobial chemotherapy (PACT) in osteomyelitis induced by Staphylococcus aureus: microbiological and histological study. J Photochem Photobiol B 149:235–242 http://dx.doi.org/10.1016/j.jphotobiol.2015.06.005. [PubMed]
191. dos Reis JA Jr, de Carvalho FB, Trindade RF, de Assis PN, de Almeida PF, Pinheiro AL. 2014. A new preclinical approach for treating chronic osteomyelitis induced by Staphylococcus aureus: in vitro and in vivo study on photodynamic antimicrobial therapy (PAmT). Lasers Med Sci 29:789–795 http://dx.doi.org/10.1007/s10103-013-1422-2. [PubMed]
192. Bisland SK, Chien C, Wilson BC, Burch S. 2006. Pre-clinical in vitro and in vivo studies to examine the potential use of photodynamic therapy in the treatment of osteomyelitis. Photochem Photobiol Sci 5:31–38 http://dx.doi.org/10.1039/B507082A. [PubMed]
193. Goto B, Iriuchishima T, Horaguchi T, Tokuhashi Y, Nagai Y, Harada T, Saito A, Aizawa S. 2011. Therapeutic effect of photodynamic therapy using Na-pheophorbide a on osteomyelitis models in rats. Photomed Laser Surg 29:183–189 http://dx.doi.org/10.1089/pho.2010.2803. [PubMed]
194. Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hamblin MR, Morimoto Y. 2011. Photodynamic therapy using intra-articular Photofrin for murine MRSA arthritis: biphasic light dose response for neutrophil-mediated antibacterial effect. Lasers Surg Med 43:221–229 http://dx.doi.org/10.1002/lsm.21037. [PubMed]
195. Tanaka M, Mroz P, Dai T, Huang L, Morimoto Y, Kinoshita M, Yoshihara Y, Nemoto K, Shinomiya N, Seki S, Hamblin MR. 2012. Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. PLoS One 7:e39823 http://dx.doi.org/10.1371/journal.pone.0039823. [PubMed]
196. Kossakowska M, Nakonieczna J, Kawiak A, Kurlenda J, Bielawski KP, Grinholc M. 2013. Discovering the mechanisms of strain-dependent response of Staphylococcus aureus to photoinactivation: oxidative stress toleration, endogenous porphyrin level and strain’s virulence. Photodiagn Photodyn Ther 10:348–355 http://dx.doi.org/10.1016/j.pdpdt.2013.02.004. [PubMed]
197. Iluz N, Maor Y, Keller N, Malik Z. 2018. The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus. Lasers Surg Med 50:535–551 http://dx.doi.org/10.1002/lsm.22785. [PubMed]
198. Perez-Laguna V, Garcia-Luque I, Ballesta S, Perez-Artiaga L, Lampaya-Perez V, Samper S, Soria-Lozano P, Rezusta A, Gilaberte Y. 2017. Antimicrobial photodynamic activity of Rose Bengal, alone or in combination with Gentamicin, against planktonic and biofilm Staphylococcus aureus. Photodiagnosis Photodyn Ther 21:211–216. [PubMed]
199. Zhang QZ, Zhao KQ, Wu Y, Li XH, Yang C, Guo LM, Liu CH, Qu D, Zheng CQ. 2017. 5-aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS One 12:e0174627 http://dx.doi.org/10.1371/journal.pone.0174627. [PubMed]
200. Grinholc M, Nakonieczna J, Negri A, Rapacka-Zdonczyk A, Motyka A, Fila G, Kurlenda J, Leibner-Ciszak J, Otto M, Bielawski KP. 2013. The agr function and polymorphism: impact on Staphylococcus aureus susceptibility to photoinactivation. J Photochem Photobiol B 129:100–107 http://dx.doi.org/10.1016/j.jphotobiol.2013.10.006. [PubMed]
201. Park HJ, Moon YH, Yoon HE, Park YM, Yoon JH, Bang IS. 2013. Agr function is upregulated by photodynamic therapy for Staphylococcus aureus and is related to resistance to photodynamic therapy. Microbiol Immunol 57:547–552 http://dx.doi.org/10.1111/1348-0421.12070. [PubMed]
202. Gad F, Zahra T, Francis KP, Hasan T, Hamblin MR. 2004. Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci 3:451–458 http://dx.doi.org/10.1039/b311901g. [PubMed]
203. Hope CK, Packer S, Wilson M, Nair SP. 2009. The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother 64:59–61 http://dx.doi.org/10.1093/jac/dkp157. [PubMed]
204. Bullous AJ, Alonso CM, Boyle RW. 2011. Photosensitiser-antibody conjugates for photodynamic therapy. Photochem Photobiol Sci 10:721–750 http://dx.doi.org/10.1039/c0pp00266f. [PubMed]
205. Zheng X, Sallum UW, Verma S, Athar H, Evans CL, Hasan T. 2009. Exploiting a bacterial drug-resistance mechanism: a light-activated construct for the destruction of MRSA. Angew Chem Int Ed Engl 48:2148–2151 http://dx.doi.org/10.1002/anie.200804804. [PubMed]
206. Surdel MC, Horvath DJ Jr, Lojek LJ, Fullen AR, Simpson J, Dutter BF, Salleng KJ, Ford JB, Jenkins JL, Nagarajan R, Teixeira PL, Albertolle M, Georgiev IS, Jansen ED, Sulikowski GA, Lacy DB, Dailey HA, Skaar EP. 2017. Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc Natl Acad Sci U S A 114:E6652–E6659 http://dx.doi.org/10.1073/pnas.1700469114. [PubMed]
207. Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M. 2011. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci 10:712–720 http://dx.doi.org/10.1039/c0pp00360c.
208. Yin R, Agrawal T, Khan U, Gupta GK, Rai V, Huang YY, Hamblin MR. 2015. Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine (Lond) 10:2379–2404 http://dx.doi.org/10.2217/nnm.15.67.
209. Bombelli C, Bordi F, Ferro S, Giansanti L, Jori G, Mancini G, Mazzuca C, Monti D, Ricchelli F, Sennato S, Venanzi M. 2008. New cationic liposomes as vehicles of m-tetrahydroxyphenylchlorin in photodynamic therapy of infectious diseases. Mol Pharm 5:672–679 http://dx.doi.org/10.1021/mp800037d. [PubMed]
210. Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S. 2013. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int J Pharm 454:249–258 http://dx.doi.org/10.1016/j.ijpharm.2013.06.067. [PubMed]
211. Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM. 2008. Biocidal activity of nanocrystalline silver powders and particles. Langmuir 24:7457–7464 http://dx.doi.org/10.1021/la800091y. [PubMed]
212. Guo Y, Rogelj S, Zhang P. 2010. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of Gram-positive bacteria. Nanotechnology 21:065102 http://dx.doi.org/10.1088/0957-4484/21/6/065102. [PubMed]
213. Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. 2016. Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6:2458–2487 http://dx.doi.org/10.7150/thno.16183. [PubMed]
214. Genina EA, Bashkatov AN, Kolesnikova EA, Basko MV, Terentyuk GS, Tuchin VV. 2014. Optical coherence tomography monitoring of enhanced skin optical clearing in rats in vivo. J Biomed Opt 19:21109 http://dx.doi.org/10.1117/1.JBO.19.2.021109. [PubMed]
215. Mannucci E, Genovese S, Monami M, Navalesi G, Dotta F, Anichini R, Romagnoli F, Gensini G. 2014. Photodynamic topical antimicrobial therapy for infected foot ulcers in patients with diabetes: a randomized, double-blind, placebo-controlled study: the D.A.N.T.E (Diabetic ulcer Antimicrobial New Topical treatment Evaluation) Study. Acta Diabetol 51:435–440 http://dx.doi.org/10.1007/s00592-013-0533-3. [PubMed]
216. Bryce E, Wong T, Forrester L, Masri B, Roscoe D. 2015. Reply to: nasal photodisinfection and chlorhexidine: post hoc ergo propter hoc? (J Hosp Infect 2015;90:83-84). J Hosp Infect 91:374–375 http://dx.doi.org/10.1016/j.jhin.2015.09.004. [PubMed]
217. ClinicalTrials.gov. 2014. Safety and feasibility study of methylene blue photodynamic therapy to sterilize deep tissue abscess cavities. https://clinicaltrials.gov/ct2/show/NCT02240498.
218. DeJonge M, Burchfield D, Bloom B, Duenas M, Walker W, Polak M, Jung E, Millard D, Schelonka R, Eyal F, Morris A, Kapik B, Roberson D, Kesler K, Patti J, Hetherington S. 2007. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr 151:260–265, 265.e1 http://dx.doi.org/10.1016/j.jpeds.2007.04.060.
219. Weisman LE, Fischer GW, Thackray HM, Johnson KE, Schuman RF, Mandy GT, Stratton BE, Adams KM, Kramer WG, Mond JJ. 2009. Safety and pharmacokinetics of a chimerized anti-lipoteichoic acid monoclonal antibody in healthy adults. Int Immunopharmacol 9:639–644 http://dx.doi.org/10.1016/j.intimp.2009.02.008. [PubMed]
220. Yu XQ, Robbie GJ, Wu Y, Esser MT, Jensen K, Schwartz HI, Bellamy T, Hernandez-Illas M, Jafri HS. 2016. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti- Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob Agents Chemother 61:e01020-16. [PubMed]
221. Rupp ME, Holley HP Jr, Lutz J, Dicpinigaitis PV, Woods CW, Levine DP, Veney N, Fowler VG Jr. 2007. Phase II, randomized, multicenter, double-blind, placebo-controlled trial of a polyclonal anti- Staphylococcus aureus capsular polysaccharide immune globulin in treatment of Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 51:4249–4254 http://dx.doi.org/10.1128/AAC.00570-07. [PubMed]
222. Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA Jr, Kwan TY, Mays HR, Rambhadran A, Zhang Y, Martin RL, Cavalier MC, Simard J, Shivaswamy S. 2018. A natural human monoclonal antibody targeting Staphylococcus protein A protects against Staphylococcus aureus bacteremia. PLoS One 13:e0190537 http://dx.doi.org/10.1371/journal.pone.0190537. [PubMed]
223. ClinicalTrials.gov. 2017. A study of the safety and efficacy of 514G3 in subjects hospitalized with bacteremia due to Staphylococcus aureus. https://clinicaltrials.gov/ct2/show/NCT02357966.
224. Badarau A, Rouha H, Malafa S, Battles MB, Walker L, Nielson N, Dolezilkova I, Teubenbacher A, Banerjee S, Maierhofer B, Weber S, Stulik L, Logan DT, Welin M, Mirkina I, Pleban C, Zauner G, Gross K, Jägerhofer M, Magyarics Z, Nagy E. 2016. Context matters: the importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. MAbs 8:1347–1360 http://dx.doi.org/10.1080/19420862.2016.1215791. [PubMed]
225. Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B, Magyarics Z, Nagy G, Mirkina I, Stulik L, Zerbs M, Jägerhofer M, Maierhofer B, Teubenbacher A, Dolezilkova I, Gross K, Banerjee S, Zauner G, Malafa S, Zmajkovic J, Maier S, Mabry R, Krauland E, Wittrup KD, Gerngross TU, Nagy E. 2015. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 7:243–254 http://dx.doi.org/10.4161/19420862.2014.985132. [PubMed]
226. ClinicalTrials.gov. 2017. Prevention of S. aureus pneumonia study in mechanically ventilated subjects who are heavily colonized with S. aureus. https://clinicaltrials.gov/ct2/show/NCT02940626?term=asn100&cond=s.+aureus&rank=1.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0047-2018
2018-12-13
2019-11-13

Abstract:

is one of the most important human pathogens that is responsible for a variety of diseases ranging from skin and soft tissue infections to endocarditis and sepsis. In recent decades, the treatment of staphylococcal infections has become increasingly difficult as the prevalence of multi-drug resistant strains continues to rise. With increasing mortality rates and medical costs associated with drug resistant strains, there is an urgent need for alternative therapeutic options. Many innovative strategies for alternative drug development are being pursued, including disruption of biofilms, inhibition of virulence factor production, bacteriophage-derived antimicrobials, anti-staphylococcal vaccines, and light-based therapies. While many compounds and methods still need further study to determine their feasibility, some are quickly approaching clinical application and may be available in the near future.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error